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Abstract. A multistate reliability system modeled by a semi-Markov process
is discussed. The states of the system consists of two sets - one of acceptable
states and other of down states. We derive a necessary and sufficient condition
under which the distribution of the first passage time from acceptable states to
down state is increasing failure rate (IFR) and increasing failure rate average
(IFRA). Some applications are provided.
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1 Introduction

We are concerned with a multistate system (MSS) having M+1 states 0,1,...,M
where ’0’ is the best state and ’M’ is the worst state. At time zero the system
begins at its best state and as time passes the system begins to deteriorate.
It is assumed that the time spent by the system in each state is random with
arbitrary sojourn time distribution. The system stays in some acceptable states
for some time and then it moves to unacceptable (down) state. The first time
at which the MSS enters the down state after spending a random amount of
time in acceptable states is termed as the first passage time (failure time) to
the down state of the MSS.
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We study the aging properties of the first passage time distribution of the
MSS modeled by the semi-Markov process {Yt, t ≥ 0}. In the MSS with states
{0, 1, ..., k− 1, k, k+ 1, ...,M} where {0, 1, ..., k− 1, k} is the acceptable states,
the sojourn time between state ’i’ to state ’j’ is assumed to be distributed with
arbitrary distribution Fij. Definitions and properties of a MSS can be seen in
El. Neweihi and Proschan (1984) and Barlow and Wu (1978). Markov and
semi-Markov modeling of a MSS is given in Lisnianski and Levitin (2003). In
this paper, our aim is to derive a necessary and sufficient condition for a MSS
failure time distribution to be IFR and IFRA and to highlight some poten-
tial applications. Deshpande et al. (1986) and Barlow and Proschan (1975)
described various aspects of positive aging in terms of conditional probabil-
ity distributions of residual lifetimes and failure rates. Bryson and Siddiqui
(1969) discussed the concept of ’aging’ or progressive shortening of an entity’s
residual lifetime in terms of survival time distribution.

Let F be the c. d. f. of a continuous random variable T representing
lifetime of a unit. Then R(t) = 1 − F (t) = F̄ (t) = P (T > t) is called its

reliability function (or survival function) and Rx(t) = R(t+x)
R(t)

is the survival
function of a unit of age t, i.e., conditional probability that a unit of age ’t’
will survive for an additional ’x’ unit of time. Obviously, any study of the
phenomenon of aging/ no aging ( i.e., age has no effect on the residual life
time) has to be based on Rx(t) and functions related to it. Following are
the definitions of IFR, IFRA, DFR and DFRA distributions (see Barlow and
Proschan (1975)).

Definition 1.1 Increasing failure rate (IFR) distribution: F is IFR if
Rx(t1) ≥ Rx(t2), x ≥ 0, 0 ≤ t1 ≤ t2 <∞.

Definition 1.2 Increasing failure rate average (IFRA) distributions: F is
IFRA if −1

t
logR(t) is increasing in t or equivalently F is said to be IFRA if

(R(t))1/t is decreasing in t.

Definition 1.3 Decreasing failure rate (DFR) distribution: F is DFR if
Rx(t1) ≤ Rx(t2), x ≥ 0, 0 ≤ t1 ≤ t2 <∞.

Definition 1.4 Decreasing failure rate average (DFRA) distributions: F is
DFRA if −1

t
logR(t) is decreasing in t or equivalently F is said to be DFRA if

(R(t))1/t is increasing in t.

Now for a continuous time Markov process {Yt, t ≥ 0} with state space S,
a countable set with a partial ordering, and transition matrix P, we say the
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Markov process is of monotone paths if P (Yt > Ys) = 1 for t > s. Define D a
subset of S to be an increasing set if i ∈ D and j ≥ i⇒ j ∈ D. This Markov
process is stochastically monotone if and only if i ≤ j ⇒ P (i,D) ≤ P (j,D)
for all increasing sets D. For a state i and a set D define TD(i) to be first
passage time from the state i to D, with TD(i) = 0 if i ∈ D and TD(i) =∞ if
D is never reached. Brown and Chaganty (1983) proved that, if {Yn, n ≥ 0} is
a stochastically monotone Markov chain with monotone paths on the partially
ordered countable set S, and D is an increasing set with the complement of D
in S finite, then TD(i), the first passage time from state i to set D, is IFRA.

Let E = {0, 1, 2, ...,M} be a set representing the state of the MSS and
probability space with probability function P , on which we define a bivariate
time homogeneous Markov chain (X,T ) = {Xn, Tn, n ∈ {0, 1, 2, ...}}, Xn takes
values of E and Tn on the half real line R+ = [0,∞), with 0 ≤ T1 ≤ T2 ≤
... ≤ Tn ≤ .... Put Un = Tn− Tn−1 for all n ≥ 1. This Markov process is called
a Markov renewal process (MRP) with transition function, the semi-Markov
kernel, Q = [Qij],

where Qij(t) = P [Xn+1 = j, Un ≤ t|Xn = i], i, j ∈ E, t ≥ 0

and Qii(t) = 0, i ∈ E, t ≥ 0.

Now we consider the semi-Markov process (SMP), as defined in Pyke
(1961). It is the generalization of Markov process with countable state space.
SMP is a stochastic process which moves from one state to another of a count-
able number of states with successive states visiting form a Markov chain, and
that the process stays in a given state a random length of time, the distribu-
tion of which may depend on this state as well as on the one to be visited in
the next. Define Zt = XNt , Nt = sup{n, Tn = U1 + U2 + · · · + Un ≤ t}, it is
the semi-Markov process associated with the MRP defined above. In terms of
Z, the times T1, T2,... are successive times of transitions for Z, and X0, X1,
X2,...are successive states visited. If Q has the form

Qij(t) = P [Xn+1 = j|Xn = i][1− e−λ(i)t], i, j ∈ E, t ≥ 0,

for some function λ(i), i ∈ E, then the process Zt is a Markov process. That
is, in a Markov process, the distributions of the sojourn times are all expo-
nential independent of the next state. The word semi-Markov comes from the
somewhat limited Markov property which Z enjoys, namely, that the future
of Z is independent of its past given the present state provided the ”present”
is the time of jump.

Let Iij =indicator function of {i = j}. Define the transition probability
that system occupied state j ∈ E at time t > 0, given that it is started at
state i at time zero, as, ∀i, j ∈ E, t > 0,

pij(t) = P [Zt = j|Z0 = i] = P [XNt = j|X0 = i] = hi(t)Iij + Q ∗P(t)(i, j),
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where hi(t) = 1−
∑

kQik(t),P(t) = [pij(t)],

and Q ∗P(t)(i, j) =
∑

k∈E
∫ t

0
Qik(dx)pkj(t− x).

To obtain the reliability function of the semi-Markov system described
above, we must define a new process, Y with state space U

⋃
{∇}, where U

denotes set of all up states {0, 1, ..., k} and ∇ is the absorbing state in which
all the states {k + 1, ...,M} of the system is united. Let TD denote the time
of first entry to the down states of Z process.

That is,

Yt = Zt(ω) if t < TD(ω) and Yt = ∇ if t ≥ TD(ω).

Let 1 = (1, 1, ..., 1)T , a unit row vector with appropriate dimension. The
process Yt is a semi-Markov process with semi-Markov kernel Up︷ ︸︸ ︷

Q11(t)

Down︷ ︸︸ ︷
Q12(t)

0 0



We denote α = (

up,α1︷ ︸︸ ︷
α(0), ..., α(k),

down,α2︷ ︸︸ ︷
α(k + 1), ..., α(M)) where α(i) = P (Y0 = i).

The reliability function is

R(t) = P [∀u ∈ [0, t], Zu ∈ U ] = P [Yt ∈ U ] =
∑
j∈U

P [Yt = j]

=
∑
i∈U

∑
j∈U

P [Yt = j, Y0 = i] =
∑
i∈U

∑
j∈U

P [Yt = j|Y0 = i]P [Y0 = i]

=
∑
i∈U

∑
j∈U

pij(t)α(i).

2 Aging properties

The sojourn time of the MSS in each state or from one state to another in
a semi-Markov setup is a random variable. Consider the random lifetime of
the MSS, TD, the first passage time to the down state from upstate U , with
distribution F . In the following we assume that ∀i, j ∈ U, pij(t) is either
monotone increasing or decreasing in t.

Now we obtain a necessary and sufficient condition for the distribution of
semi-Markov system to be IFR.
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Theorem 2.1 For a semi-Markov system with monotone decreasing tran-
sition probability functions, and first passage time distribution F , the following
statements are equivalent:

(a) F is IFR
(b)

∑
i,j∈U p

′
ij(t+ x)α(i) ≤

∑
i,j∈U p

′
ij(t)α(i), t ≥ 0.

Proof: In the semi-Markov setup described above,

if Rx(t) = R(t+x)
R(t)

=
∑

i,j∈U pij(t+x)α(i)

R(t)
is decreasing in t then the rate of decrease

of
∑

i,j∈U pij(t + x)α(i) is larger than the rate of decrease of R(t). Therefore

if Rx(t) is decreasing,
∑

i,j∈U p
′
ij(t+ x)α(i) ≤

∑
i,j∈U p

′
ij(t)α(i), t ≥ 0.

Conversely suppose that (b) holds, then the rate of decrease of∑
i,j∈U pij(t + x)α(i) is larger than rate of decrease of R(t). Then obviously

we have Rx(t) is decreasing in t, which implies that F is IFR. �

However for a DFR distribution F the ’rate of increase’ of∑
i,j∈U pij(t + x)α(i) does not affect that of Rx(t). It is easy to prove Rx(t)

is increasing if and only if ∀i, j ∈ U, pij(t + x) is increasing in t, because
1/R(t) is an increasing function of t and product of two increasing functions,∑

i,j∈U pij(t + x)α(i) and 1/R(t), is again an increasing function. Hence we
have the following theorem.

Theorem 2.2 For a semi-Markov system with monotone increasing tran-
sition probability functions, and first passage time distribution F , F is DFR if
and only if ∀i, j ∈ U, pij(t+ x) increasing in t.

Now we prove a necessary and sufficient condition for the IFRA property
of first passage time distribution of the semi-Markov system.

Theorem 2.3 For a semi-Markov system with monotone decreasing tran-
sition probability functions, and first passage time distribution F, the following
two statements are equivalent:

(a) F is IFRA
(b)−t2

∑
i,j∈U p

′
ij(t)α(i) ≥ 1, t ≥ 0.

Proof: Suppose that, F is IFRA. Then (R(t))1/t is decreasing in t. But
(R(t))1/t = (

∑
i,j∈U pij(t)α(i))1/t is decreasing in t only when rate of de-

crease of
∑

i,j∈U pij(t)α(i) is larger than rate of decrease of 1/t. That is,∑
i,j∈U p

′
ij(t)α(i) ≤ − 1

t2
, t ≥ 0, i.e., −t2

∑
i,j∈U p

′
ij(t)α(i) ≥ 1, t ≥ 0.

Conversely suppose that (b) holds, then
∑

i,j∈U pij(t)α(i) is decreasing at

a greater rate than 1/t, so that (R(t))1/t is a decreasing function of t. Hence,
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first passage time distribution F of the semi-Markov system is IFRA. �

On a similar lines we prove a necessary and sufficient condition for the
DFRA property of first passage time distribution of the semi-Markov system.

Theorem 2.4 For a semi-Markov system with monotone increasing transi-
tion probability functions, and first passage time distribution F , the following
two statements are equivalent:

(a)F is DFRA
(b)

∑
i,j∈U p

′
ij(t)α(i) ≥

∑
i,j∈U pij(t)α(i), t ≥ 0.

Proof: Suppose that, F is DFRA. Then (R(t))1/t is increasing in t. Now
consider the logarithmic transformation of (R(t))1/t.

log(R(t))1/t =
log(

∑
i,j∈U pij(t)α(i))

t
is increasing in t only when rate of in-

crease of log(
∑

i,j∈U pij(t)α(i)) is larger than rate of increase of t. That is,∑
i,j∈U p

′
ij(t)α(i)∑

i,j∈U pij(t)α(i)
≥ 1, t ≥ 0, i.e.,

∑
i,j∈U p

′
ij(t)α(i) ≥

∑
i,j∈U pij(t)α(i), t ≥ 0.

Conversely suppose that (b) holds, then log(
∑

i,j∈U pij(t)α(i)) is increasing

at a greater rate than increase of t, so that (R(t))1/t is a increasing function
of t. Hence, first passage time distribution F of the semi-Markov system is
DFRA. �

3 Applications

Major application of the above results is in maintenance policies such as age
and block replacement policies. A variety of applications of IFR, DFR, IFRA
distributions in maintenance policies of a binary system can be seen in Barlow
and Proschan (1996). Under the IFR property the expected number of failures
will be less under block replacement than under age replacement. When we
identify the distribution of semi-Markov system is IFR or DFR, it will be
easy to employ suitable maintenance policies according to the above theorems.
We consider some examples that arise in practical applications such as power
generation system with multistate performance levels.

Example 3.1 Consider a Markov process in continuous time and discrete
state space {1, 2, ...,M}, given in Doob (1953), p.241. The system start in state
’1’ at time zero and as it enters ’M’, it remains there. Consider the intensity
matrix, Q = [Qij], with entries qij = 0, i ∈ {1, 2, ...,M−1}, j 6= i+1, qii+1 = q,
and qM = 0. The Kolmogorov’s system of differential equation becomes, for
pij(t− u) = P (Yt = j|Yu = i), 0 ≤ u < t and we take u = 0,

p
′

ik(t) = −qpik(t) + qpi+1k(t), i < M
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p
′

Mk(t) = 0

with initial conditions, pik(0) = δik, the indicator of {i = k}. Then, pMk(t) = 0,
k 6= M, pMM(t) = 1 and it is easily verified that the solution is

pik(t) = 0 k < i

=
(qt)k−ie−qt

(k − 1)!
, i ≤ k < M

= e−qt[eqt − 1− qt− · · · − (qt)M−i−1

(M − i− 1)!
], k = M

which is increasing initially (i. e., system is DFR) for t < t0, where t0 is the
time at which p

′

ik(t) = 0, ( i. e., the time at which pik(t) = pi+1k(t)) and then
decreasing in t > t0 (i. e., system is not DFR) for k ∈ {1, 2, ...,M − 1}, the
set of acceptable states. Here the process is of monotone paths.

Example 3.2 Consider a continuous time Markov process {Yt, t ≥ 0} with
state space {0, 1, ...,M} and Y0 = 0, such that the process stays in state i for a
random length of time whose distribution is exponential with mean 1/λi then
moves to state (i+ 1), this continues until down state M is reached. Consider
the intensity matrix 

−λ0 λ0 . .
. . . .
0 0 −λM−1 λM−1

0 0 0 0


The last row (0, 0, ..., 0) means that state ′M ′ is absorbing. Bhat (2000), p.197,
obtained the forward Kolmogorov’s differential equation, with initial conditions
p00(0) = 1, as

p
′

0k(t) = −λkp0k(t) + λk−1p0k−1(t), 0 ≤ k ≤M − 1.

Then,

p0k(t) = λk−1e
−λkt

∫ t

0

eλkxp0k−1(x)dx, k = 1, 2, ...,M − 1.

The nature of the above transition probability functions shows the first pas-
sage time is IFRA or IFR or DFR or no aging.

For a numerical realization, Lisnianski and Levitin (2003), p.145, consid-
ered an electric generator that has four possible performance levels 100MW
(state 0), 70MW (state 1), 50MW (state 2) and 0MW (state 3). The con-
stant demand is 60MW. The best state with performance rate 100MW is the
initial state. Times to failures are distributed exponentially with parameters,
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λ0,1 = 10−3 (hours(-1)), λ1,2 = 5.10−3 (hours(-1)), and λ2,3 = 2.10−3 (hours(-
1)). Hence, times to failures T0,1, T1,2 and T2,3 are random variables dis-
tributed according to the c. d. f., F0,1 = 1 − e−λ0,1t, F1,2 = 1 − e−λ1,2t and
F2,3 = 1− e−λ2,3t, for t > 0. The system is having monotone paths. Thus,

p0,1(t) = λ0,1e
−λ1,2t

∫ t

0

eλ1,2up0,0(u)du =
λ0,1

λ1,2

= 0.2,

p0,2(t) = λ1,2e
−λ2,3t

∫ t

0

eλ2,3xλ0,1e
−λ1,2x

∫ x

0

eλ1,2up0,0(u)dudx =
λ0,1

λ2,3

= 0.5,

This means that with exponentially distributed sojourn times, the system
failure time distribution is IFR as well as DFR, no ageing property of MSS.

On the other hand, when we consider the Weibull distribution for the so-
journ times, we can expect specific IFR or DFR property of first passage time
distribution. Let F0,1 = (1 − e−λ0,1t)θ0 , F1,2 = (1 − e−λ1,2t)θ1 and F2,3 =
(1 − e−λ2,3t)θ2 , for t > 0. Let state 0 and 1 be the up states and 3 and 4
be the down states.

p01(t) = θ0λ0,1

∫ t

0

(1− e−λ0,1x)θ0−1(1− (1− e−λ1,2x)θ1)dx

p02(t) = θ0λ0,1

∫ t

0

(1− e−λ0,1x)θ0−1

∫ x

0

θ1λ1,2(1− e−λ1,2u)θ1−1(1− (1− e−λ2,3u)θ2)dudx

For λ0,1 = 2, λ1,2 = 3, θ0 = 3, θ1 = 3 and θ2 = 3, the functions p01(t) and
p01(t), where

p01(t) =k1((−e10t +
3

10
e3t +

1

2
e7t − 1

13
− 1

9
e4t +

6

5
e8t − 3

4
e5t +

2

11
e2t

− 3

7
e6t)e−13t + 0.18)

p02(t) =k2((
1

225
e4t − 2

5
e14t +

4

84
e5t +

1

3
e16t − 5

144
e7t +

47

180
e17t−

20

99
e8t +

47

180
te19t +

10

81
e10t +

1

285
+

3

8
e11t − 2

225
e2t − 1

4
e13t

− 5

192
e3t +

10

117
e6t − 3

20
e9t +

1

7
e12t − 47

720
e15t)e−19t − 0.25)

increases in t for constants k1 and k2. This implies that, the first passage time
distribution is DFR.
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