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Abstract: Response surface methodology is a collection of statistical and
mathematical techniques useful for developing, improving, and optimizing pro-
cesses. In this article response surface designs are used for improving the per-
formance of a unit by increasing the reliability for a given mission time or
increasing the mean life. A method of estimation of regression parameters of
mean lifetime is developed assuming life distribution to follow Weibull distri-
bution and experimental errors following independent Normal distribution. In
the process, the concept of random effects models is introduced in lifetime dis-
tribution. Thus the process parameters can be easily identified and properly
set up for improving mean life, and the developed method is illustrated with
examples.
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1. INTRODUCTION

In life testing problem, the most important question is how to improve the
mean life. Different tools and techniques are used to improve the mean life of
a unit or a device or a component. There are two major goals in reliability
experiments: reliability improvement (i.e., to increase the mean failure time)
and robust reliability (i.e., to reduce the influence of noise variation on reliabil-
ity). Applications of design of experiments in improving the quality of a unit
or a process is given Taguchi (1986, 1987), Condra (1993), Wu and Hamada
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(2000), Myers and Montgomery (2002). We usually assume that a first order
model is an adequate approximation to the true surface in a small region of
the explanatory variable of the x’s. If there is a curvature in the system, then
a polynomial of higher degree, such as the second order model must be used.
Practitioner is experimenting with a system (perhaps a new system) in which
the goal is not to find a point of optimum response, but to search for a new
region in which the process or product is improved.

In reliability theory, the random variable under consideration is the life of
a system or a device or a component. A question of fundamental importance
is how to improve the mean life or reliability of the system for a given mission
time, and both of them mean the same thing in most of the cases such as life
distributions are Log-normal, Exponential, Gamma, Extreme value, Weibull
etc. Aitkin and Clayton (1980) fitted complex censored survival data to Expo-
nential, Weibull and Extreme value distribution. Of late statistical techniques
of design of experiments and concepts of optimality have been used abundantly
in reliability theory, in order to improve the mean life of a unit which is express-
ible as a simple mathematical function of a number of exploratory variables, all
of which are non-stochastic and exploratory variables may be purely quantita-
tive type or mixture of qualitative-quantitative type. Much of the reliability
literature is concerned with estimating the reliability of an existing product.
Response surface methodology (RSM) is a collection of mathematical and sta-
tistical techniques useful for analyzing problems where several independent
variables influence a dependent variable. See Box and Draper (2007), My-
ers and Montgomery (2002), Khuri and Cornell (1996). Mukhopadhyay et al.
(2002) studied lifetime distribution assuming life distribution is Exponential
and experimental errors are correlated with associated robust designs (Das;
1997, 2003, 2004), Das and Park (2008).

In this paper we have assumed that the distribution of the performance
of a system or life of a component is Weibull. Mean life is conveniently writ-
ten as a reasonable function (i.e., approximated by a suitable polynomial) of
the exploratory variables, taking into consideration the fact that the life as a
random variable is non-negative. Very often the form of the function for the
mean life can be assumed to be known, with the parameters unknown in the
model. These parameters are estimated on the basis of the data realized after
conducting an experiment in a planned manner. The planned experimental
set up considered in the present article is a response surface design (optimum
rotatable first or second order design). In this article, we consider how to im-
prove the reliability i.e., the mean lifetime of a unit or a process through the
use of response surface designs. In such experiments, each unit is tested until
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it fails or is still functioning when the experiment is terminated. If it fails,
the experimental response is its failure time. If it is still functioning at the
termination time t0, it is said to be right censored at t0. Here we only consider
failure time as the experimental response. All the earlier authors used response
surface designed experiments for improving the quality of a unit without con-
sidering the experimental errors and the regression models thus developed are
inconsistent. As a result, the estimation procedure is also inconsistent. Some
authors (Aalen; 1989, 1994) studied the random effects in frailty model in
survival analysis. The use of random effects in the survival analysis models
is completely different issues. But it is well known that experimental error is
the most important part in case of design of experiments. The random effects
that used in this article indicates the experimental error which is essential for
generating the data set by performing an experiment. Thus the random effects
is appropriately used in this lifetime model (in Section 2).

The principal part of this article is the model-building of response i.e.,
failure time, assuming lifetime follows Weibull distribution, using the technique
of RSM. The next part of this article is the analytical techniques, the purpose
of which is to optimize the process. The process parameters are suitably set
up for increasing mean lifetime. As an illustration of the method developed
herein, analysis of two examples (one with simulated data and the other with
real experimental data) are given at the end of this article.

2. WEIBULL LIFE DISTRIBUTION

Suppose T denotes the failure time (or lifetime) of a unit. Here T only
takes non-negative values. In general, the failure time (T ) distributions are
commonly used for reliability studies: (a) Lognormal (b) Exponential and
(c) Weibull. The exponential distribution is a special case of the Weibull
distribution with shape parameter unity.

In this article, we assume lifetime (T ) of a component or a system, measured
in some unit follows Weibull distribution. Let x1, x2, ....,xn be n controllable
explanatory variables in the system which are highly related with lifetime
T . The probability density function (p.d.f.) of lifetime T given the vector
x = (x1, x2, . . . , xn)′, xi’s are so called explanatory variables, is of the form

f(t) =
δ

α(x)
(

t

α(x)
)(δ− 1) exp.[− (

t

α(x)
)δ] ; t ≥ 0, α(x) ≥ 0, δ ≥ 0. (2.1)

In (2.1) only the scale parameter ‘α’ depends on x. Some properties of
this model are noted in Section 6.1 in Lawless (1982). Here ‘δ’ is a positive
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shape parameter constant and in particular, the fact that ‘δ’ does not depend
on x implies proportional hazards for lifetimes and constant variance for log
lifetimes of individuals. This assumption is reasonable in many situations;
Pike (1966), Peto and Lee (1973) and Nelson (1972), for example, discuss this
in specific contexts.

We shall often work with log lifetime: the p.d.f. of Y = ln T , given x is

f1(y) =
1

d
exp.[

y −R
d

− exp.(
y −R
d

)]; −∞ < y < ∞, (2.2)

where R = g(x, β) = ln α(x) and d = 1
δ
.

Not that E(T ) = eg(x, β)Γ(d + 1), where β = (β0, β1, β2, . . . , βn)′, vector
of unknown regression coefficients, x = (x1, x2, . . . , xn)′, xi’s are so called ex-
planatory variables, non-stochastic and xi’s may or may not be mathematically
related and ‘d’ is a positive unknown constant involved in the distribution of
T , and g(x, β) is usually taken to represent a polynomial in some well defined
factors, the number of which may be denoted by k(< n). We take g(x, β)
to be a linear or quadratic function in k factors (n = k + 1 for a linear func-
tion and n =

(
k+2
2

)
for a quadratic function). A well laid out experimental

plan which in our case is an optimum rotatable first order or second order
design may be utilized for realizing the data on T for, say, N given values of
x which indicate N different operating conditions under the plan. Once the
data are obtained, the point is to estimate the parameters β0, β1, β2, . . . , βn in
an appropriate manner.

Now it is assumed that given x, T (lifetime) of the component or system
follows a Weibull distribution in an ideal situation (i.e., where lifetime dis-
tribution is Weibull for examples vacuum tubes (Kao, 1959), ball bearings
(Lieblein and Zelen, 1956), electrical insulation (Nelson, 1972), etc.) with
mean g(x, β)Γ(d + 1). This is same as assuming y= ln T = g(x, β) + dh,
where h follows the well known Standard Extreme value distribution so that
the density of y is given by (2.2). Assuming that the response surface g(x, β)
is of first order, (when the factors are independent) we adopt the model :

y = ln T = β0 + β1x1 + β2x2 + . . . . . .+ βnxn + dh,

where h follows the well known Standard Extreme value distribution with
E(h) = −ν where ν = 0.5772 . . ., is known as Euler’s constant and Var(h) =
π2

6
.

If there is a curvature in the system, then a polynomial of higher degree,
such as the second order model must be used as given below (standard response
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surface designs i.e. all factors appear at quantitative levels):

y = ln T = β0 +
n∑
i=1

βixi +
∑ n∑

i≤j=1

βijxixj + dh.

If in the system there are ‘p’ qualitative factors (characters) or treatments
viz. t1, t2, ......, tp and n quantitative factors viz. x1, x2, ......., xn the mean

life of T is given by eg1(t, x, a, β)Γ(d + 1). This is same as assuming y = ln
T = g1(t, x, a, β)+ dh. The model of a Quality-Quantity type second order
response surface model g1(t, x, a, β) (Adhikary and Panda (1992)) is given
below:

y = ln T = β0 +

p∑
j=1

ajtj +
n∑
i=1

βixi +
∑ n∑

i≤j=1

βijxixj + dh.

For u-th observation, the model is

yu = ln Tu = β0 +

p∑
j=1

ajutj +
n∑
i=1

βixiu +
∑ n∑

i≤j=1

βijxiuxju + dhu.

where β0 = fixed but unknown constant, tj = effect due to the j-th qualitative
character, say the j-th treatment Aj, j =1,2,..., p; aju = 0 or 1, according as
Aj is absent or not on the u-th observation; only one of a1u, a2u, ..... , apu is
unity and others are zero for the u-th observation, u = 1,2, ..., N (Adhikary
and Panda, 1992), and xi’s, βi’s are same as standard response model.

Below we have considered only for standard response designs but similar
treatment can be done for Quality-Quantity type designs. Let us take y as our
response variable, when the experiment is conducted to collect the data on the
basis of which the parameters β0, β1, β2, . . . , βn are to be estimated.

As soon as an experiment is conducted, the ideal situation mentioned in
connection with the distribution of T (Weibull distribution) or y = ln T
(Extreme value distribution) is violated. The experiment introduces some
noise factors which may be numerous, some of which may be even undefinable
or unidentifiable. The total impact on y of all these noise factors represented
by the experimental condition is denoted by ‘e’. We write (assuming first order
model)

y = β0 + β1x1 + β2x2 + . . .+ βnxn + dh+ e,

or, yu = β0 + β1x1u + β2x2u + . . .+ βnxnu + dhu + eu; 1 ≤ u ≤ N, (2.3)
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where βi’s are unknown regression parameters and xiu’s are experimental lev-
els which are non-stochastic, hu follows Standard Extreme value distribution,
and eu’s represent experimental error given rise to by the noise factors. It is
assumed that hu’s are all uncorrelated and hu and eu are uncorrelated. But
eu’s representing the experimental error with E(e) = 0, D(e) = σ2IN and eu’s
are independent and uncorrelated with variance σ2 may be known or unknown.

In this connection the choice of the experimental levels xiu’s, i.e., X =
((xiu); 1 ≤ i ≤ n, 1 ≤ u ≤ N), the design matrix is the most important part
for getting maximum information regarding the unknown regression parame-
ters. The prescription of the proper design matrix is a problem of regression
design of experiments (Box and Draper, 2007; Khuri and Cornell, 1996, etc.).
Construction and the properties of such designs are under the problem of re-
gression design of experiments. We have developed some designs under these
models. In this article, we are not considering the problem of construction of
design matrix ‘X’. Construction and properties of such designs will be pre-
sented in our subsequent articles. Herein we have considered the problem of
estimation of regression parameters and model building for mean lifetime ‘T ’,
when a design matrix ‘X’ is given. No mention has so far been made about
the distributional assumption of ‘e’. The most reasonable assumption of ‘e’
seems to be normal. In this case, the likelihood or the joint distribution takes
a complicated shape and finding maximum likelihood (ML) estimate of the
parameters appears to be a formidable task.

Commercial software such as the RELIABILITY procedure in SAS (SAS
Institute, 1989) and the Splus functions due to Meekar and Escobar (1998)
methods of estimation will not give the estimates of regression parameters in
the mean response function in our developed regression model. Hence, for
estimating the parameters β0, β1, β2, . . . , βn the method applied is the Least
Squares or some modification of it. As the distributional assumption is not of
much importance in applying the method of least squares, we do not bother
very much about the distribution of ‘e’ in further developments of the compu-
tational method. The computational method described in the following section
for the mentioned model is illustrated with the help of a simulated example.

3. ESTIMATION OF REGRESSION PARAMETERS

The model as explained in (2.3) is

yu = β1x1u + β2x2u + . . .+ βnxnu + dhu + eu; 1 ≤ u ≤ N, (3.1)

we have E(e) = 0 and D(e) = σ2IN and the other assumptions are given in
(2.2). Let εu = dhu + eu. Then E(εu) = −dν, V ar(εu) = d2 π2

6
+ σ2, and corr.

(εu, εu′) = 0, for u 6= u′. (3.2)
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For constant term (intercept), in a design problem, it is normally as-
sumed that (x11, x12, . . . , x1N) = (1, 1, . . . , 1). Writing Y = Xβ + ε, where
Y = (y1, y2, . . . , yN)′, X = ((xiu); 1 ≤ i ≤ n, 1 ≤ u ≤ N), β = (β1, β2, . . .
, βn)′, ε = (ε1, ε2, . . . , εN)′. Now E(Y) = Xξ, where ξ = (β1 − dν, β2, . . . , βn)′,
E(ε) = −dνJN , Var(ε) = (d

2π2

6
+ σ2)IN , where JN is the vector of unities of

order N × 1.
For N observations, let us define zu = yu − yN ; 1 ≤ u ≤ (N − 1),

or, zu = β2(x2u − x2N) + β3(x3u − x3N) + . . .+ βn(xnu − xnN)
+ (dhu − dhN) + (eu − eN), as x1u = x1N = 1

or, zu = β2s2u + β3s3u + . . .+ βnsnu + ε∗u, say, 1 ≤ u ≤ (N − 1), (3.3)

where siu=(xiu− xiN); 2 ≤ i ≤ n; ε∗u = εu− εN = (dhu− dhN) + (eu− eN), 1 ≤
u ≤ (N − 1),

or, Z = Sη + ε∗, (3.4)

where Z = (z1, . . . , zN−1)
′ , S = ((siu); 2 ≤ i ≤ n, 1 ≤ u ≤ (N − 1)), η =

(β2, . . . , βn)′ , ε∗ = (ε∗1, . . . , ε
∗
(N−1))

′, E(ε∗u) = 0, 1 ≤ u ≤ (N − 1); Var (ε∗u) =

2[d
2π2

6
+ σ2]; 1 ≤ u ≤ (N − 1),

Cov.(ε∗u, ε
∗
u′) = [

d2π2

6
+ σ2] and Corr.(ε∗u, ε

∗
u′) =

1

2
; 1 ≤ u 6= u′ ≤ (N − 1),

(3.5)

E(ε∗) = 0, D(ε∗) = 2[d2π
2

6
+σ2]W, say, with W = [

1

2
I(N−1)+

1

2
E(N−1)×(N−1)].

Applying generalized least squares method to the linear model (3.4), we
have the following results.

Result 1. From (3.4), the best linear unbiased estimator (BLUE) of η is

η̂ = (S ′W−1S)−1 (S ′W−1Z). (3.6)

Result 2. An unbiased estimator (UE) of

2[d2π
2

6
+ σ2] is

(Z′W−1Z)− η̂′(S ′W−1S)η̂

(N − 1)− (n− 1)
. (3.7)

Case I: When σ2 is known
Result 3. Using (3.6) in (3.7), for known σ2 the estimate of ‘d’ is given by

d̂2 = [
1

2

(Z ′W−1Z)− η̂′(S ′W−1S)η̂

(N − 1)− (n− 1)
− σ2]/

π2

6
. (3.8)
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Result 4. From (3.1), the best linear unbiased estimator (BLUE) of ξ is
given by

ξ̂ = (X ′X)
−1

(X ′Y) , (3.9)

Result 5. An unbiased estimate of

[d2π
2

6
+ σ2] is

Y′Y − ξ̂
′
X ′Y

(N − n)
. (3.10)

Using the estimate of “d” as in (3.8), we get ξ̂1 = β̂1 − d̂ν or β̂1 = ξ̂1 + d̂ν,
β̂2 = ξ̂2, . . . , β̂n = ξ̂n.

Case II: When σ2 is unknown
Assuming error component is absent in the model (2.3) and using the orig-

inal distribution (Extreme value distribution) of y = ln T , the maximum like-
lihood function is

L(β, d) =
N∏
u=1

1

d
exp.[

yu −Ru

d
− exp.(

yu −Ru

d
)],

where Ru =
∑n

i=1 βixi for first order model and for second order model Ru

=
∑n

i=1 βixi +
∑∑n

i≤j=1 βijxixj.
Maximum likelihood estimates for d, β1, β2, ......., βn are obtained from

the following maximum likelihood equations (considering first order model),
by Newton Raphson method:

N∑
u=1

epuxiu =
N∑
u=1

xiu; i = 1, 2, ....., n,

and
N∑
u=1

pu e
pu = N +

N∑
u=1

pu, (3.11)

where pu = 1
d

(yu −
∑n

i=1 βixiu).

Suppose the estimates are
ˆ̂
d,

ˆ̂
β1,

ˆ̂
β2, .......,

ˆ̂
βn. Hence, the scheme for

calculations which can be followed is given hereunder.
(i) Considering the observational equations in (3.1), we get the BLUE of ξ

as

ξ̂ = (X ′X)
−1

(X ′Y) .
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Using the estimate of “d” as in (3.11), we get ξ̂1 = β̂1 − ˆ̂
dν, or β̂1 = ξ̂1 +

ˆ̂
dν,

β̂2 = ξ̂2, . . . , β̂n = ξ̂n.

(ii) Calculate S(
ˆ̂
d, β̂) =

∑N
u=1(yu +

ˆ̂
d ν − β̂1x1u− β̂2x2u− ........− β̂nxnu)2,

and S(
ˆ̂
d,

ˆ̂
β) =

∑N
u=1(yu +

ˆ̂
d ν − ˆ̂

β1x1u − ˆ̂
β2x2u − ........ − ˆ̂

βnxnu)
2.

It is seen from numerical computation (with simulated data) that S(
ˆ̂
d, β̂)

< S(
ˆ̂
d,

ˆ̂
β).

(iii) Unbiased estimate of σ2 can be obtained from (3.7) as

σ̂2 = [
1

2

(Z′W−1Z)− η̂′(S ′W−1S)η̂

(N − 1)− (n− 1)
− ˆ̂
d

2π2

6
] = σ̂2

1, say. (3.13)

Also an unbiased estimate of σ2 can be obtained from (3.10) as

σ̂2 = [
Y′Y − ξ̂

′
X ′Y

(N − n)
− ˆ̂
d

2π2

6
] = σ̂2

2, say. (3.14)

It is seen from numerical computation (with simulated data) that σ̂2
1
∼= σ̂2

2.
(iv) Better estimate of ‘d’, say, ‘d̂0’ can be obtained from

N∑
u=1

e
1
d

(yu− ξ̂1 − dν−
∑n

i=2 β̂ixiu) = N,

by computer programming, where ξ̂1, β̂i; i = 2, 3, ...., n are as in the scheme
(i).

Final estimates are obtained by searching through computer programme.
Final estimate of “d” can be obtained from scheme (iv) by iterative method
and the final estimates of β1, β2, ....., βn, can be obtained from the scheme (i),
and also the estimate of σ2 can be obtained from (3.14), using the estimate of
d, say ‘d̂0’ as in the scheme (iv). Here the estimates of β2, β3, ....., βn are the
BLUEs. Also it is seen from numerical computation (with simulated data) that

S(d̂0, β̂) < S(
ˆ̂
d, β̂) < S(

ˆ̂
d,

ˆ̂
β), where S(d̂0, β̂) =

∑N
u=1(yu + d̂0 ν − β̂1x1u −

β̂2x2u − ........ − β̂nxnu)
2. This method of estimation as developed herein

gives better estimates of unknown regression parameters and error variance
than the classical likelihood method of estimation which is not relevant in this
situation.
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4. ANALYSIS OF TWO EXAMPLES

Example 4.1. The example (with simulated data) considered is the per-
formance or quality of metalized glass plates which involves various factors.
Main factors (i.e. explanatory variables) taken may be designated as x1 =
Argon sputter pressure, x2 = Target current, x3 = Back ground pressure, x4 =
Plate cool-down time, x5 = Glow discharge time. Let ‘T ’ be the performance
or quality or thickness of metalized glass plates in some convenient unit. The
study conducted is to estimate the unknown parameters involved in the mean
response function of ‘T ’ and error variance and to locate the levels of the pa-
rameters so as to reduce the unevenness and imperfections in the metalized
glass plates. Five factors as above are considered for this experiment.

Appropriate change of origin and scale is used for each exploratory variable
so that it lies between −1 and +1 (the range within which the experimentation
is conducted). We assume

y = ln T = β0 + β1x1 + β2x2 + β3x3 + β4x4 + β5x5 + dh+ e, (4.1)

Regression coefficients β = (β0, β1, β2, β3, β4, β5), ξ = (ξ0, ξ1, ξ2, ξ3, ξ4,
ξ5) and η = (η1, η2, η3, η4, η5)

′. In the absence of real life data we generate
observations according to the formula (4.1) with β0 = 65.0, β1 = 4.2, β2 = 3.8,
β3 = −2.2, β4 = −5.2, β5 = 4.6, d = 2 and σ2 = Var( e ) = 2.25, i.e. σ = 1.5,
using the design matrix ‘X’ as given below. The observations so obtained are
given as the column vector ‘Y’, where Y = (73.952779, 57.775263, 68.831522,
43.436004, 63.606459, 78.075309, 69.508753, 69.784374, 69.704526, 51.007922,
65.249739, 45.417056, 71.548210, 77.622893, 69.810310, 61.420423)′.

X =



1 1 1 1 1 1
1 −1 1 −1 1 −1
1 1 −1 −1 1 1
1 −1 −1 1 1 −1
1 1 1 1 −1 −1
1 −1 1 −1 −1 1
1 1 −1 −1 −1 −1
1 −1 −1 1 −1 1
1 1 1 1 1 1
1 −1 1 −1 1 −1
1 1 −1 −1 1 1
1 −1 −1 1 1 −1
1 1 1 1 −1 −1
1 −1 1 −1 −1 1
1 1 −1 −1 −1 −1
1 −1 −1 1 −1 1
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With the observation vector ‘Y’ and the corresponding design matrix ‘X’
assumed to be given and the model assumed as (4.1), the method of estimation
explained in Section 3 is applied to the simulated data, the final estimates
obtained are as follows:

For Case I:
σ = 1.5 (known) , d̂ = 2.016580, β̂0 = 65.960939, β̂1 = 4.229565, β̂2 =

3.114698,
β̂3 = −2.438243, β̂4 = −5.375120, β̂5 = 5.783224, S(d̂, β̂) = 125.325965.

For Case II:
σ̂ = 1.924180, d̂0 = 2.416580, β̂0= 66.211111, β̂1 = 4.229565, β̂2 = 3.114698, β̂3

= −2.438243, β̂4 = −5.375120, β̂5 = 5.783224, S(d̂, β̂) = 133.163453, ˆ̂σ = 2.301571,
ˆ̂
d = 2.658362, ˆ̂

β0 =66.528643, ˆ̂
β1 =4.636682, ˆ̂

β2 =3.541864, ˆ̂
β3 =−1.970335, ˆ̂

β4

=−5.662045, ˆ̂
β5 =5.931915, S( ˆ̂

d,
ˆ̂
β) = 149.064935.

In this case we have to select the values of x1, x2, and x5 as large as possible,
and the values of x2 and x3 as small as possible to maximize the mean life.

Thus the estimated regression coefficients (under the method developed
herein) are very close to the true values with the help of which the data have
been simulated. The estimates of σ2 and ‘d’ although reasonable are not
found to be so good. However, if we can guess the right value of σ2 = 2.25,
i.e., σ = 1.5, the estimate of d = 2.016580 moves closer to the true value
2.00. However with only 16 observations we do not hope to estimate both ‘d’
and σ2 very accurately.

A real life data are given below.
Example 4.2. The data in Table 4.1 [from Myers and Montgomery(2002), p.
68] show the number of cycles to failure of Worsted gain (t) and three factors
defined as follows:

Length of test specimen (mn): x1 = Length − 300
50

, Amplitude of load cycle
(MM):
x2 = (Length− 9), Load (grams): x3 = Length−300

50
.

Table 4.1. Worsted Yarn Data

RunNumbers : 1 2 3 4 5 6 7 8 9 10
Length, x1 -1 0 1 -1 0 1 -1 0 1 -1

Amplitude, x2 -1 -1 -1 0 0 0 1 1 1 -1
Load, x3 -1 -1 -1 -1 -1 -1 -1 -1 -1 0

Cycles to Failure, t 674 1414 3636 338 1022 1368 170 442 1140 370

RunNumbers : 11 12 13 14 15 16 17 18 19 20
Length, x1 0 1 -1 0 1 -1 0 1 -1 0

Amplitude, x2 -1 -1 0 0 0 1 1 1 -1 -1
Load, x3 0 0 0 0 0 0 0 0 1 1

Cycles to Failure, t 1198 3184 266 620 1070 118 332 884 292 634
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RunNumbers : 21 22 23 24 25 26 27
Length, x1 1 -1 0 1 -1 0 1

Amplitude, x2 -1 0 0 0 1 1 1
Load, x3 1 1 1 1 1 1 1

Cycles to Failure, t 2000 210 438 566 90 220 360

These factors form a 33-factorial experiment. This experiment will support
a complete second order polynomial. Model:

y = β0+β1x1+β2x2+β3x3+β11x
2
1+β22x

2
2+β33x

2
3+β12x1x2+β13x1x3+β23x2x3+dh+e

σ̂ =0.183477, d̂0 =0.143652, β̂0=6.415563, β̂1 = 0.824804, β̂2 =−0.630992, β̂3

=−0.384913, β̂11 =−0.093281, β̂22 =0.039378, β̂33=−0.075034, β̂12=−0.038240,
β̂13=−0.057046, β̂23=−0.020832, S(d̂, β̂) =1.890458, ˆ̂σ = 4.0430468, ˆ̂

d =0.770329,
ˆ̂
β0=7.092225, ˆ̂

β1 = 2.840451, ˆ̂
β2 =0.205108, ˆ̂

β3 =−0.714751, ˆ̂
β11 =−2.420932,

ˆ̂
β22 =−1.047342, ˆ̂

β33=−1.607445, ˆ̂
β12=1.240965, ˆ̂

β13=0.532387, ˆ̂
β23=−0.265243,

S( ˆ̂
d, β̂) = 294.493125.
In this case we have to select the value of x1 as large as possible, and the values of

x2 and x3 as small as possible to maximize the mean life. From these two numerical
examples, it is clear that the estimates obtained by following the new method as
developed herein are better than the estimates of likelihood method.

5. CONCLUDING REMARKS

In this article, we have considered the life distribution of a component or a sys-
tem is Weibull distribution. In general, the mean life time of a component or a
system is a reasonable function of the explanatory variables. The functional form
may be known but the parameters involved in it are unknown. Using the RSM,
the mean life time can be improved due to its optimizing property. Whenever the
RSM is used for improving the mean life, the original distribution of the lifetime
will be changed. As a result some random effects models are introduced. Under
this situation ML method for estimating the unknown parameters is inconsistent.
In this article we have developed a new method of estimation which gives BLUE of
all the regression parameters except the intercept. Mean life time can be efficiently
estimated using the method which is developed herein and as a result the process
parameters can be exactly setup so that the mean lifetime of the component can be
improved. In the process random effects models is introduced in lifetime distribution.
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