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Abstract. Let η1, η2, . . . be independent copies of a random variable η
with distribution concentrated on (0, 1) and not supported by a geometric

sequence. Consider a distributional recursion X1 := a and Xn
d
= X[nη]+1 + 1,

n = 2, 3, . . ., where η is independent of X2, . . . , Xn, a ≥ 0 is given, and [·]
denotes the integer part. We point out a necessary and sufficient condition
which ensures that Xn, properly normalized and centered, possesses a non-
degenerate and proper weak limit. Also we provide the complete description
of possible limiting laws and normalizations leading to them. A key observation
behind the result is that the weak asymptotic behavior of Xn is the same as
that of inf{k ≥ 1 : nη1 · · · ηk ≤ 1}. As a consequence, the renewal theory can
be brought into play.
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1 Introduction and main results

Assume that the marginal distributions of non-negative random variables {Xn :
n ∈ N} are defined recursively by

X1 := a and Xn
d
= XJn + 1, n = 2, 3, . . . , (1.1)

where finite a ≥ 0 is given, for n = 2, 3, . . . the random index Jn is independent
of X2, . . . , Xn and takes values in the set {1, . . . , n}, P{Jn = 1} > 0, P{Jn =

n} < 1, and
d
= denotes the equality of distributions.

Recursions of this type and the like arise in different areas of applied prob-
ability, the most prominent examples being related to coalescents with (si-
multaneous) multiple collisions [10, 11, 12, 13], random trees [3, 12, 16, 17],
random regenerative compositions [2, 4, 6, 7, 8, 9], random walks with a barrier
[13, 14], and absorption times of non-increasing Markov chains [15, 19].
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It seems that the most general description of recursions (1.1), already hinted
at by the latter application, is that, for n = 2, 3, . . ., Xn − a has the same
distribution as the absorption time at point 1 of a non-increasing Markov

chain {R(n)
k : k ∈ N0} with R

(n)
0 = n and R

(n)
1

d
= Jn.

Let η be a random variable with distribution µ concentrated on (0, 1) and
not supported by a geometric sequence (in other words, the distribution of
| log η| is non-lattice). The aim of the paper is to provide the complete infor-
mation about the weak limiting behavior of recursions (1.1) under the assump-
tion

Jn
d
= [nη] + 1, (1.2)

i.e. P{Jn = k} = µ((k − 1)/n, k/n), k = 1, 2, . . . , n. Since the so defined
distribution of Jn satisfies

Jn
n

d→ η as n→∞,

it is natural to call recursion (1.1) satisfying (1.2) a recursion with random
indices of linear growth, hence the title of the paper.

We are ready to state our result.

Theorem 1.1. Let the distribution of Xn satisfy (1.1) and (1.2). The
following assertions are equivalent.

(i) There exist sequences of numbers {an, bn : n ∈ N} with an > 0 and bn ∈ R
such that, as n→∞, (Xn−bn)/an converges weakly to a non-degenerate
and proper probability law.

(ii) Either the distribution of (− log η) belongs to the domain of attraction of
a stable law, or P{− log η > x} slowly varies at ∞.

Set m := E(− log η) and σ2 := var(log η).
(1) If σ2 < ∞, then, with bn := m−1 log n and an := (m−3σ2 log n)1/2, the
limiting law is standard normal.
(2) If σ2 =∞ and ∫ 1

x

log2 y µ(dy) ∼ L(− log x) as x→ 0,

for some L slowly varying at ∞, then, with bn as in (1) and an := m−3/2c[logn],
where cn is any sequence satisfying limn→∞ nc

−2
n L(cn) = 1, the limiting law is

standard normal.
(3) Assume that the relation

µ(0, x) ∼ (− log x)−αL(− log x) as x→ 0, (1.3)

holds with L slowly varying at ∞ and α ∈ [1, 2), and assume that m < ∞ if
α = 1, then, with bn := m−1 log n and an := m−(α+1)/αc[logn], where cn is any
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sequence satisfying limn→∞ nc
−α
n L(cn) = 1, the limiting law is α-stable with

characteristic function

t 7→ exp{−|t|αΓ(1− α)(cos(πα/2) + i sin(πα/2) sgn(t))}, t ∈ R.

(4) Assume that m = ∞ and the relation (1.3) holds with α = 1. Let c be
any positive function satisfying limx→∞ xL(c(x))/c(x) = 1 and set ψ(x) :=

x
∫ 1

exp(−c(x)) µ(0, y)/y dy. Let b be any positive function satisfying b(ψ(x)) ∼
ψ(b(x)) ∼ x. Then, with bn := b(log n) and an := b(log n)c(b(log n))/ log n,
the limiting law is 1-stable with characteristic function

t 7→ exp{−|t|(π/2− i log |t| sgn(t))}, t ∈ R.

(5) If the relation (1.3) holds with α ∈ [0, 1) then, with bn = 0 and an :=
logα n/L(log n), the limiting law is the scaled Mittag-Leffler distribution θα
(exponential, if α = 0) characterized by moments∫ ∞

0

xnθα(dx) =
n!

Γn(1− α)Γ(1 + nα)
, n ∈ N.

Remark 1.1. Theorem 1.1 is a generalization of the well-known result on
asymptotic behavior of recursions (1.1) satisfying (1.2) with µ being the uni-
form distribution on [0, 1] (this case is covered by part (1) of the theorem).
Under this condition on µ, Xn−1 has the same distribution as the sum of n−1
independent indicators [18]. Therefore, by the Lindeberg-Feller central limit
theorem, as n → ∞, (Xn − log n)/

√
log n weakly converges to the standard

normal law. The distribution of Xn−1 appears in a number of diverse applica-
tions. For example, Xn−1 has the same distribution as (a) the number of upper
records in a sample of size n from a continuous distribution, (b) the number
of cycles in random permutations of n objects, (c) the number of collision
events that take place in the β(3, 1) coalescent restricted to the set {1, 2, . . . , n}
until there is just a single block. Points (a) and (b) along with many other
applications and references can be found in [1], point (c) was remarked in [5].

2 Proof of Theorem 1.1

Replacing Xn by Xn − a we can and do assume that a = 0.
Let η1, η2, . . . be independent copies of η and let {Sn : n ∈ N0} be a zero-

delayed random walk with a step distributed like (− log η). Set

Mn := inf{k ≥ 0 : nη1η2 · · · ηk ≤ 1} = inf{k ≥ 0 : Sk ≥ log n}, n ∈ N.

For fixed k, i ∈ N define the sequence

R0,k(i) := k, Rj,k(i) := [Rj−1,k(i)ηi+j−1] + 1, j = 1, 2, . . . ,
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and set
Uk(i) := inf{j ≥ 0 : Rj,k(i) = 1}.

When i = 1, we will write just Rj,k and Uk. Notice that, for fixed i ∈ N, the
sequences {Uk(i) : k ∈ N} and {Uk : k ∈ N} have the same distribution and
moreover we have

U1 = 0, Un = U[nη1]+1(2) + 1
d
= U[nη]+1 + 1, n = 2, 3, . . . ,

where on the right-hand side η is independent of {Un : n ∈ N}. Thus, we
have managed to provide a pathwise construction of a random sequence the
nth element of which has the same marginal distribution as Xn.

By Proposition 8.1 in [6], the claim of the theorem holds with Xn replaced
by Mn. The idea of the subsequent proof is to show that the weak asymptotic
behavior of Un (equivalently of Xn) coincides with that of Mn. To this end,
notice the following a.s. equality

Un = Mn + URMn,n
(Mn + 1), n ∈ N.

Our idea would be realized if we could show that the sequence {ERMn,n : n ∈
N} was bounded. Indeed, the latter would imply that

lim
n→∞

Un −Mn

yn
= 0 in probability

for any sequence {yn : n ∈ N} such that lim
n→∞

yn = +∞.

With k ∈ N fixed we have R1,k ≤ kη1 + 1 a.s. and

Ri,k ≤ kη1 · · · ηi + 1 +
i∑

j=2

ηjηj+1 · · · ηi, i = 2, 3, . . . a.s.

Therefore, almost surely on the event {Mn ≥ 2}

RMn,n ≤ 2 +
Mn∑
j=2

ηjηj+1 · · · ηMn =: 2 + Θn, n ∈ N.

Furthermore, for k = 2, 3, . . .

Θn1{Mn=k} ≤
1

n

(
eS1 + eS2 + . . .+ eSk−1

)
1{Mn=k} a.s.,

which implies that

Θn1{Mn≥2} ≤
1

n

∞∑
k=1

eSk1{Mn>k} =
1

n

∞∑
k=1

eSk1{Sk<logn} a.s.
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By the key renewal theorem,

lim
n→∞

1

n
E
∞∑
k=0

eSk1{Sk<logn} = lim
n→∞

∫ logn

0

e−(logn−x)

(
∞∑
k=0

P{Sk ∈ dx}

)
=

1

E(− log η)
,

no matters finite or infinite the value of E(− log η) is. Therefore, as n → ∞,
ERMn,n1{Mn≥2} = O(1). Also, lim

n→∞
ERMn,n1{Mn=1} = 0. The last two relations

prove the boundedness of {ERMn,n : n ∈ N}. The proof is complete.
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