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Abstract. The Marshall-Olkin Extended Uniform (MOEU) distribution is introduced. MOEU distri-
bution is expressed as a mixture distribution with exponential distribution as mixing density. Limiting
distributions of sample maxima and sample minima are derived. Record value properties of the new dis-
tribution are investigated. We develop minification processes and the sample path with MOEU stationary
marginal distribution. Estimates of unknown parameters are obtained and the results are validated using
simulation studies.

1. Introduction

Marshall and Olkin [6] introduced a new family of distributions in an attempt to add a parameter to a
family of distributions. Let F (x) = P (X > x) be the survival function of a random variable X and α > 0
be a parameter. Then

G(x, α) =
αF (x)

1− (1− α)F (x)
, −∞ < x <∞, α > 0, (1)

is a proper survival function. G(x, α) is called Marshall-Olkin family of distributions.

The probability density function (p.d.f.) corresponding to (1) is given by

g(x, α) =
αf(x)

[1− (1− α)F (x)]2
, −∞ < x <∞, α > 0,

where f(x) is the p.d.f. corresponding to F (x). The hazard (failure) rate function is given by

h(x, α) =
r(x)

1− (1− α)F (x)
, where r(x) =

f(x)

F (x)
.

Similar models were considered, for example by Alice and Jose [1, 2]. Ristić and Popović [7] discussed a new
uniform AR(1) time series model.

In this paper, we introduce the Marshall-Olkin extended uniform (MOEU) distribution in Section 2
and various properties are studied. In Section 3, we derive the p.d.f. of nth record value statistics and its
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shape properties are discussed. A recurrence relation for the moments of record values is also developed.
The limiting distribution of sample extremes are derived. In Section 4, we introduce first order stationary
autoregressive processes with uniformly distributed marginals and develop the sample paths for various
values of the parameters p and θ. The estimate of the parameters are obtained and the results are verified
using simulation studies. The extension to kth order is also discussed.

2. Marshall-Olkin Extended Uniform (MOEU) Distribution and Properties

Let X follows U(0, θ) distribution, where θ > 0. Then F (x) = 1 − (x/θ). Substituting in (1) we get a
new distribution denoted by MOEU (α, θ) with survival function

G(x, α, θ) =
α(θ − x)

αθ + (1− α)x
, 0 < x < θ, α > 0.

The corresponding p.d.f. is obtained as

g(x, α, θ) =
αθ

[αθ + (1− α)x]2
, 0 < x < θ, α > 0.

The graphs of p.d.f. and distribution function (d.f.) are drawn in Figures 1 and 2. The shape of the p.d.f.
g(x, α, θ) (1) depends on parameter α. Namely, if α ∈ (0, 1), then the p.d.f. is a decreasing function on (0, θ)
with g(0, α, θ) = 1/(αθ) and g(θ, α, θ) = α/θ. Otherwise, if α > 1, then the p.d.f. is an increasing function
on (0, θ) with g(0, α, θ) = 1/(αθ) and g(θ, α, θ) = α/θ.

Figure 1: Graph of g(x) for θ = 10 and for various values of α.

The hazard rate function of a random variable X with MOEU(α, θ) distribution is

h(x, α, θ) =
θ

[αθ + (1− α)x](θ − x)
.

For α ≤ 0.3 the hazard rate is initially decreasing and there exists an interval where it changes to be IFR.
For α > 0.3 the hazard function is evidently IFR. The graph of hazard rate function is drawn in Figure 3.
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Figure 2: Graph of G(x) for θ = 10 and for various values of α.

2.1. Mean, variance, quantiles

In this section we consider a random variable X with MOEU(α, θ) distribution. Let us first consider the
higher-order moments. We have

E(Xr) =

∫ θ

0

xr
αθ

[αθ + (1− α)x]2
dx =

θr

α(r + 1)

(
−r · 2F1

(
1, r + 1; r + 2;

α− 1

α

)
+ α(r + 1)

)
.

Figure 3: Graph of h(x) for θ = 10 and for various values of α.

Specially, the mean and the variance of a random variable X with MOEU(α, θ) distribution are, respec-
tively,

µ′1 =
αθ

(1− α)2
(α− logα− 1) ,

µ2 =
αθ2

(1− α)4
[(1− α)2 − α(logα)2].
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The coefficient of variation is

CV =

√
(1− α)2 − α(logα)2√
α(α− logα− 1)

, α > 0,

and it depends only on parameter α.
The qth quantile of a random variable X with MOEU(α, θ) distribution is given by

xq = G−1(q) =
qαθ

1− q(1− α)
, 0 ≤ q ≤ 1,

where G−1(·) is the inverse distribution function. In particular, the median of a random variable with the
MOEU(α, θ) distribution is given by median(X) = αθ/(1 + α).

2.2. Mixtures

Let F (x/λ), −∞ < x <∞, −∞ < λ <∞, be the conditional survival function of a continuous random
variable Λ. Let Λ follows a distribution with probability density function m(λ). A distribution with survival
function

F (x) =

∫ ∞
−∞

F (x/λ)m(λ)dλ, −∞<x <∞,

is called a mixture distribution with mixing density m(λ). The following result shows that MOEU distribu-
tion can be expressed as a mixture.

Theorem 2.1. Let X be a continuous random variable with conditional survival function

F (x/λ) =
θ − x
θ

e−(1−α)λx, 0 < x < θ,

with probability density function m(λ) = αθ e−αθλ, λ > 0. Then the random variable X has the MOEU(α, θ)
distribution.

Proof. Under these assumptions, we obtain that the survival function of the random variable X is

F (x) = α(θ − x)

∫ ∞
0

e−[αθ+(1−α)x]λdλ =
α(θ − x)

αθ + (1− α)x
.

Thus the random variable X has MOEU(α, θ) distribution.

Remark 2.2. We can obtain new parameter families of distributions in terms of existing ones with the help
of mixture distribution.

3. Distributions of order statistics and record values

3.1. Limiting distributions of sample extremes

Let X1, X2, . . . , Xn be a random sample of size n from MOEU(α, θ) distribution. Then the sample
minima and sample maxima are respectively X1:n = min(X1, X2, . . . ,Xn) and Xn:n = max(X1, X2, . . . ,Xn).

Theorem 3.1. Let X1, X2, . . . , Xn be a random sample of size n from MOEU(α, θ) distribution. Then

(i) lim
n→∞

P (X1:n ≤ b∗nt) = 1− e−t, t > 0, where b∗n = αθ/(n− 1 + α) .

(ii) lim
n→∞

P (Xn:n ≤ an + bnt) = e−t, t > 0, where an = θ and bn = αθ(n− 1)/(1 + α(n− 1)) .
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Proof. (i) We use the asymptotic result for X1:n (Arnold, Balakrishnan and Nagaraja [3, pp. 210–214]) by
which

lim
n→∞

P (X1:n ≤ a∗n + b∗nt) = 1− e−t
c

, t > 0, c > 0,

where a∗n = F−1(0) and bn = F−1(1/n)− F−1(0) if and only if F−1(0) is finite and for all t > 0 and c > 0

lim
ε→0+

F (F−1(0) + εt)

F (F−1(0) + ε)
= tc.

For a random variable X with the MOEU(α, θ) distribution we have that G−1(0) = 0 is finite and

lim
ε→0+

G(εt)

G(ε)
= t lim

ε→0+

αθ + (1− α)ε

αθ + (1− α)εt
= t.

Thus we obtain that c = 1, a∗n = 0 and b∗n = αθ/(n− 1 + α) .

(ii) For the maximal order statistics Xn:n we have

lim
n→∞

P (Xn:n ≤ an + bnt) = e−(−t)
k

, t > 0, k > 0,

which is Weibull type where an = F−1(1), bn = F−1(1)−F−1 (1− 1/n) if and only if F−1(1) is finite and
there exists a constant k > 0 such that

lim
ε→0+

F
(
F−1(1)− εt

)
F (F−1(1)− ε)

= tk.

For a random variable X with the MOEU(α, θ) distribution G−1(1) = θ is finite and we have

lim
ε→0+

G
(
G−1(1)− εt

)
G (G−1(1)− ε)

= t lim
ε→0+

θ − (1− α)ε

θ − (1− α)εt
= t.

Thus we obtain that k = 1, an = θ and bn = αθ(n− 1)/(1 + α(n− 1)) .

Remark 3.2. (i) If α = 1, i.e. for uniform distribution the norming constants b∗n, bn are respectively
b∗n = θ/n and bn = (n− 1)/(nθ).

(ii) If the limiting distributions of the random variables (X1:n − a∗n)/b∗n and (Xn:n − an)/bn are denoted
by G∗(t) and G(t), then from (Arnold, Balakrishnan and Nagaraja [3, pp. 210–214]) for any finite i > 1,
the limiting distributions of the random variables (Xi:n − a∗n)/b∗n and (Xn−i+1 − an)/bn are, respectively,
given by

lim
n→∞

P (Xi:n ≤ a∗n + b∗nt) = 1−
i−1∑
j=0

(1−G∗(t)) [−log(1−G∗(t))]j

j!

lim
n→∞

P (Xn−i+1:n ≤ an + bnt) =

i−1∑
j=0

G(t)
(− logG(t))

j

j!
.

From Theorem 3.1 it follows that for any finite i > 1 the limiting distributions of the ith and (n − i + 1)th

order statistics from the MOEU distribution respectively are given by

lim
n→∞

P

(
X1:n ≤

αθt

n− 1 + α

)
= 1−

i−1∑
j=0

e−t
tj

j!
= 1− P (Z < i)

lim
n→∞

P

(
Xn−i+1:n ≤ θ +

αθ(n− 1)t

1 + α(n− 1)

)
=

i−1∑
j=0

e−t
tj

j!
= P (Z < i)

where Z follows the Poisson distribution with mean t.
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3.2. Record values

Record values and associated statistics are of greater importance in many real life situations involving
data relating to sports, weather, economics, life testing etc. Balakrishnan and Ahsanullah [5] and Arnold,
Balakrishnan and Nagaraja [4] provide excellent discussions on the theory of record values. Let Xi, i ≥ 1
be a sequence of i.i.d. random variables having an absolutely continuous c.d.f. F (x) and p.d.f. f(x). An
observation Xj will be called an upper record value if its value exceeds that of all previous observations.
Thus Xj is an upper record if Xj ≥ Xi for every i < j. The p.d.f. of nth record value say Rn is given by

fRn
(x) =

f(x)[− log(1− F (x))]n

n!
.

If gRn
(x) denote the density function of nth record value from MOEU(α, θ) we have

gRn
(x) =

αθ

n![αθ + (1− α)x]2

(
− log

α(θ − x)

α θ + (1− α)x

)n
, 0 < x < θ, α > 0. (2)

Let us consider the shapes of the p.d.f. gRn . The first derivative of the function log gRn is

(log gRn
)′ =

H(x)

(αθ + (1− α)x) log αθ+(1−α)x
α(θ−x)

where

H(x) = −2(1− α)(θ − x) log
αθ + (1− α)x

α(θ − x)
+ nθ.

If α ∈ (0, 1) and H(x0) < 0, where x0 is the solution of the equation

log
αθ + (1− α)x

α(θ − x)
=

θ

αθ + (1− α)x
,

then the function H(x) has two roots 0 < x1 < x2 < θ. In this case, the p.d.f. gRn
is an increasing function

on (0, x1)∪ (x2, θ) and a decreasing function on (x1, x2). Otherwise, the p.d.f. gRn
is an increasing function

on (0, θ). In both cases, gRn
(0) = 0 and gRn

(θ) =∞.

3.2.1. Recurrence relation for moments of record values

Let us derive now the recurrence relation for the moments of records (see Balakrishnan and Ahsanullah
[5]). The recurrence relation can be used to compute all the single moments of record values which is useful
for the inference. For the MOEU(α, θ) distribution with p.d.f. g(x) and d.f. G(x) it is easy to see that

(αθ + (1− α)x)
(

1− x

θ

)
g(x) = 1−G(x),

which implies that for a record Rn we obtain

(αθ + (1− α)x)
(

1− x

θ

)
gRn

(x) =
(1−G(x))(− log(1−G(x)))n

n!
. (3)

This relation will be used to derive a recurrence relation for the moments of record values.

Theorem 3.3. For n ≥ 2 and r = 0, 1, 2, . . . , we have

E
(
Rr+2
n

)
=

θ

(1− α)(r + 1)
[2α− r(1−2α)]E(Rr+1

n )+
αθ2

1− α
E(Rrn)+

θ

(1− α)(r + 1)
E(Rr+1

n−1).



K.K. Jose, E.Krishna / ProbStat Forum, Volume 04, October 2011, Pages 78–88 84

Proof. From (3) we obtain that

αθ2E(Rrn) + θ(1− 2α)E(Rr+1
n )−(1− α)E(Rr+2

n ) =
θ

n!

∫ θ

0

xr(1−G(x)){− log(1−G(x))}ndx

=
θ

r + 1

[
E
(
Rr+1
n

)
− E

(
Rr+1
n−1
)]
.

Finally, the result follows after some simplifications.

4. Applications in Autoregressive Time Series Modeling

Now we discuss some applications of MOEU distribution in autoregressive time series modeling. We
construct a first order autoregressive minification process with structure as follows. Consider an AR(1)
structure

Xn =

{
εn, w.p. p
min(Xn−1, εn), w.p. 1− p, 0 ≤ p ≤ 1, n ≥ 1,

(4)

where {εn} is a sequence of i.i.d. random variables with uniform distribution in (0, θ) and is independent of
{Xn}.

Theorem 4.1. Consider the AR(1) structure given by (4) with X0 distributed as MOEU(p, θ) distribution.
Then {Xn, n ≥ 0} is a stationary Markovian autoregressive model with MOEU(p, θ) marginals if {εn} is
distributed as uniform in (0, θ).

Proof. From (4) it follows that

FXn(x) = pF εn(x) + (1− p)FXn−1(x)F εn(x). (5)

Using the fact that X0 has MOEU(p, θ) distribution and ε1 has U(0, θ) distribution, we obtain that for
n = 1 that

FX1
(x) = [p+ (1− p)FX0

(x)]F ε1(x) =
p(θ − x)

pθ + (1− p)x
,

which means that X1 has MOEU(p, θ) distribution.

Assume that Xn−1
d
= MOEU(p, θ). Then by induction method we can establish that {Xn} is distributed

as MOEU(p, θ). Even if X0 is arbitrary, it is easy to establish that {Xn} is stationary and is asymptotically
marginally distributed as MOEU(p, θ).

Under stationarity equilibrium, from (5) it follows that

FX(x) =
pF ε(x)

1−(1− p)F ε(x)
,

and

F ε(x) =
FX(x)

p+ (1− p)FX(x)
.

If {εn} has U(0, θ) distribution, then {Xn} is distributed as MOEU(p, θ). The converse is also true.

Figures 4, 5 and 6 shows sample paths of MOEU AR(1) process for different values of p and θ.
We consider now the joint survival function of the random variables Xn and Xn−1. We have that

F (x, y) = P (Xn > x,Xn−1 > y) =
(
pFX(y) + (1− p)FX(max(x, y))

)
· F ε(x)

=

{(
pFX(y) + (1− p)FX(x)

)
· F ε(x), 0 < y < x < θ,

FX(y) · F ε(x), 0 < x < y < θ.
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Figure 4: Sample path for θ = 10 and for various values of p = 0.5, 0.2, 0.8.

Figure 5: Sample path for θ = 1 and for various values of p = 0.5, 0.2, 0.8.

Figure 6: Sample path for θ = 2 and for various values of p = 0.5, 0.2, 0.8.
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Thus the joint p.d.f. of the random variables Xn and Xn−1 is

g(x, y) =

{
p2

(pθ+(1−p)y)2 , 0 < y < x < θ,
p

(pθ+(1−p)y)2 , 0 < x < y < θ.
(6)

The joint distribution of the random variables Xn and Xn−1 is not a continuous since we have

P (Xn = Xn−1) = (1− p)P (εn ≥ Xn−1) = p(1− p)
θ∫

0

θ − x
(pθ + (1− p)x)2

dx =
1− p+ p log p

1− p
> 0. (7)

Now consider the conditional probability P (Xn ≤ x|Xn−1 = y). We have

P (Xn ≤ x|Xn−1 = y) = 1− pθ − x
θ
− (1− p)θ − x

θ
I(y > x)

where I(·) is indicator function. Thus the conditional p.d.f. of Xn on Xn−1 = y is

g(x|y) =

{
1
θ , y > x
p
θ , y < x.

Also, we have P (Xn = Xn−1|Xn−1 = y) = (1− p)(θ − y)/θ. From (6) and (7), we get the conditional
moment as

E(Xn|Xn−1) =
pθ

2
+ (1− p)Xn−1 −

1− p
2θ

X2
n−1.

Now, the product moment of the random variables Xn and Xn−1 is

E(XnXn−1) = E(Xn−1E(Xn|Xn−1)) =
3pθ2(1− p2 + 2p log p)

4(1− p)3
. (8)

From (8) and (2) we obtain that the autocovariance function and the autocorrelation function at lag 1 are
respectively

Cov(Xn, Xn−1) =
pθ2

(
3− 7p+ 5p2 − p3 − 2(1− p)p log p− 4p log2 p

)
4(1− p)4

,

Corr(Xn, Xn−1) =
3− 7p+ 5p2 − p3 − 2(1− p)p log p− 4p log2 p

4(1− 2p+ p2 − p log2 p)
.

The autocorrelation function at lag 1 is a decreasing function on p and lies in (0, 3/4). Thus the autocorre-
lation between the random variables Xn and Xn−1 is positive.

4.1. Estimation of Parameters

Let us consider now the estimation of the unknown parameters p and θ. These estimators can be easily
found by using the equations (2) and (7), i.e. the estimators p̂ and θ̂ are the solutions of the equations

p̂θ̂(p̂− log p̂− 1)

(1− p̂)2
=

1

N

N−1∑
i=0

Xi

1− p̂+ p̂ log p̂

1− p̂
=

1

N − 1

N−1∑
i=1

I(Xi = Xi−1),

where I(·) as before an indicator function and X0, X1, . . . , XN−1 is a realization of AR(1) minification
model with MOEU(p, θ) marginals of size N . In Table 1 we present some results of the estimation. We
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simulated up to 10000 realizations of a Marshall-Olkin extended uniform minification process for some true
values of the parameters p and θ. The simulations are repeated 100 times and for each data set the standard
deviations (SD) of the estimates are computed and given in brackets. The table shows that the standard
deviation of the estimate is lesser for large samples.

Now we develop a kth order autoregressive model. Consider an autoregressive model of order k with
structure as

Xn =


εn, w.p. p0

min(Xn−1, εn), w.p. p1
...

min(Xn−k, εn), w.p. pk,

such that 0 < pi < 1, p1 + p2 + · · · + pk = 1 − p0, where {εn} is a sequence of i.i.d. random variables
following uniform distribution over (0, θ), independent of {Xn−1, Xn−2, . . .}. Then

FXn(x) = p0F εn(x) + p1FXn−1(x)F εn(x) + · · ·+ pkFXn−k
(x)F εn(x).

Under stationary equilibrium, we have that FX(x) = p0F ε(x)+p1FX(x)F ε(x)+ · · ·+pkFX(x)F ε(x), which
on simplification leads to FX(x) = p0F ε(x)/(1− (1− p0)F ε(x)). Evidently we can extend Theorem 4.1 in
this case also.

Table 1: The results of the estimation of the parameters for some given values: a) p = 0.1, θ = 0.5, b) p = 0.1, θ = 1, c)
p = 0.1, θ = 5, d) p = 0.5, θ = 0.5, e) p = 0.5, θ = 1, f) p = 0.5, θ = 5, g) p = 0.9, θ = 0.5, h) p = 0.9, θ = 1, i) p = 0.9, θ = 5.

Sample size p̂ θ̂ p̂ θ̂ p̂ θ̂

100 0.1028 0.5136 0.1114 0.9907 0.1003 5.1098
(0.0400) (0.0906) (0.0375) (0.1678) (0.0374) (0.8548)

500 0.1010 0.4993 0.1035 0.9860 0.1020 5.0327
(0.0172) (0.0335) (0.0176) (0.0805) (0.0177) (0.3940)

1000 0.1008 0.4999 0.1030 0.9983 0.1003 5.0117
(0.0117) (0.0220) (0.0111) (0.0574) (0.0118) (0.2639)

5000 0.1008 0.4995 0.1001 1.0005 0.1004 4.9907
(0.0054) (0.0104) (0.0050) (0.0229) (0.0049) (0.1160)

10000 0.1008 0.4996 0.1000 0.9985 0.1004 5.0008
(0.0042) (0.0071) (0.0036) (0.0141) (0.0036) (0.0792)

Sample size p̂ θ̂ p̂ θ̂ p̂ θ̂

100 0.4906 0.5020 0.4966 1.0012 0.5105 5.0414
(0.0609) (0.0436) (0.0651) (0.0860) (0.0739) (0.4330)

500 0.4990 0.0.4998 0.4958 0.9999 0.5029 5.0124
(0.0275) (0.0196) (0.0310) (0.0403) (0.0265) (0.1874)

1000 0.4976 0.4989 0.4975 0.9978 0.5056 4.9985
(0.0204) (0.0130) (0.0214) (0.0270) (0.0194) (0.1202)

5000 0.4997 0.4992 0.5002 1.0001 0.5022 5.0012
(0.0087) (0.0066) (0.0095) (0.0114) (0.0088) (0.0604)

10000 0.5006 0.4998 0.5007 1.0012 0.5009 4.9998
(0.0059) (0.0041) (0.0067) (0.0082) (0.0063) (0.0386)

Sample size p̂ θ̂ p̂ θ̂ p̂ θ̂

100 0.9025 0.5059 0.9036 0.9932 0.8987 5.0079
(0.0443) (0.0355) (0.0392) (0.0571) (0.0379) (0.2908)

500 0.8985 0.4998 0.8982 1.0028 0.8974 4.9828
(0.0164) (0.0112) (0.0173) (0.0277) (0.0169) (0.1228)

1000 0.8989 0.5004 0.8986 1.0011 0.8996 4.9828
(0.0124) (0.0090) (0.0123) (0.0200) (0.0119) (0.1058)

5000 0.9009 0.5004 0.9004 1.0004 0.8985 4.9971
(0.0061) (0.0039) (0.0060) (0.0092) (0.0058) (0.0422)

10000 0.9006 0.5004 0.9006 1.0005 0.8992 4.9987
(0.0042) (0.0031) (0.0045) (0.0064) (0.0045) (0.0254)
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