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Abstract. Repairable systems are those systems which in the event of a failure
can be repaired, for example, by replacing a component or by repairing a com-
ponent etc. In some cases, the reliability of a system, after a repair, returns to
the same state as before the failure. Thus, models for repairable systems must
be able to describe the occurrence of events in time, and are inherently dif-
ferent from models for non-repairable systems. The non-homogeneous Poisson
process (NHPP) and the renewal process (RP) are the commonly used models
for repairable systems. The other point process models to describe repairable
systems are modulated renewal process of Cox (1972) inhomogeneous gamma
process (IGP) and modulated gamma process (MGP) introduced by Berman
(1981), the modulated power law process (MPLP) by Lakey and Rigdon (1992),
trend renewal process (TRP) by Lindqvist et al (2003), exponentiated power
law process (EPLP) by Muralidharan and Shah (2006a) etc. We review various
point process models exclusively in parametric set up and provide the meth-
ods and applications of this models under different repairable policies. Some
examples are also discussed.
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Keywords. Intensity function; Repairable systems; Reliability; Predictive
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1 Introduction

A system is a collection of two or more parts witch is designed to perform one
or more functions. A system can be either non-repairable or repairable. A
non-repairable system (electric bulbs, thermometer etc) in the event of failure
can not be brought back to working condition as it is discarded for the first
time it ceases to perform satisfactorily. Arjas (1981) and Greenwood (1981)
consider non-repairable systems with redundant non-repairable subsystems,
using point process techniques. A repairable system (machines, industrial
plants, software etc.) is a system which, after failing to perform one or more



Repairable Systems and · · · 27

of its functions satisfactorily, can be restored to fully satisfactory performance
by any method, other than replacement of the entire system. In some cases,
the reliability of a system, after a repair, returns to the same state as before
the failure. Thus, models for repairable systems must be able to describe the
occurrence of events in time, and are inherently different from models for non-
repairable components. Once a system experiences a failure, different repair
strategies have different influences on the system reliability, usually defined as
the probability of no failures in time intervals.

The models which have been applied to repairable systems are stochas-
tic point processes and differential equations. A stochastic point process is a
mathematical model for a physical phenomenon characterized by highly local-
ized events (failure) distributed randomly in continuum (time). The homoge-
neous Poisson process (HPP), non-homogeneous Poisson process (NHPP) and
the renewal process (RP), the superimposed renewal process (SRP) are the
commonly used models for repairable systems. For an NHPP, the probability
of a failure in a small time interval depends on the system, and not on the
previous pattern of failures. For a RP, the times between failures are i.i.d.
The other point process models to describe repairable systems are modulated
renewal process (MRP) of Cox (1972) inhomogeneous gamma process (IGP)
introduced by Berman (1981), the modulated power law process (MPLP) by
Lakey and Rigdon (1992), trend renewal process (TRP) by Lindqvist et.al.
(2003), exponentiated power law process (EPLP) by Muralidharan and Shah
(2006a) etc. For a class of point process models based on differential equations,
one may refer to Ruggeri (2006). We stress on stochastic point process models
in this review article.

In section 2, we describe some useful characteristics and definitions of re-
pairable systems. Section 3 reviews some existing point process models and
their applications in repairable systems. The tests for trend and their statisti-
cal significance are discussed in section 4. Some examples and their choices of
models are discussed in the last section.

2 Repairable System Characteristics

It is observed that a repairable system might be subject to many repair and
adjustments including well directed kicks. If X is a random variable denoted
as the time between successive failures of a part and f(x) as its corresponding
probability law, then the mean time to failure (MTTF) is E(x). The corre-
sponding mean residual life (MRL) is E[X −x|X > x]. Let N(s, t) denote the
number of failures in the interval (s, t] and N(t) is the number of failures in
(0, t]. We now define some important properties of repairable systems.

Definition 2.1 Independent increments: A counting process {N(t), t ≥ 0}
is said to have independent increments if for all t0 < t1 < · · · < tk, k =
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2, 3, . . . , N(t1) −N(t0), N(tk) −N(tk−1) are independent random variables.

Definition 2.2 Stationary increments: A counting process {N(t), t ≥ 0}
is said to have stationary increments if for any two points 0 ≤ s ≤ t, and any
δ > 0, the random variables N(t)−N(s) and N(t+δ)−N(s+δ) are identically
distributed.

Definition 2.3 Stationarity of a point process: A point process is said to
be stationary if it has stationary increments.

In general, a stationary point process does not have a stationary sequence
of interarrival times. For example, a renewal process is defined as a sequence
of independent and identically distributed inter-arrival times.

Definition 2.4 Rate of occurrence of failures (ROCOF): It is the reciprocal
of the mean time between failures. i.e. v(t) = 1

E(X)
.

Remark: Under some conditions, the ROCOF of a Poisson process is asymp-
totically proportional to the reciprocal of the mean forward recurrence time
wt.

Definition 2.5 Intensity functions of a stochastic point process: If Ht de-
note the history of the failure process up to, but not including t and if simul-
taneous failures are assumed to be not possible, then the intensity function of
a point process is defined as

λ(t|Ht) = lim
∆t→0

Pr[a failure in the interval (t, t+ ∆t)|Ht]

∆t

∼= lim
∆t→0

Pr[N(t, t+ ∆t) −N(t) ≥ 1]

∆t

Some post data characteristics of the processes are the estimates of the current
intensity function say λ̂(t|Ht), the estimate of the mean value function say
Λ̂(t|Ht) =

∫ t

0
Λ̂(t|Ht)dt and generalized residuals say êi =

∫ t1
ti−1

Λ̂(t|Ht)dt etc.

3 Point Process Models

3.1 Non-homogeneous Poisson Process (NHPP)

A counting process {N(t), t ≥ 0} is said to be an HPP with intensity λ(t) if

(i) N(0) = 0;

(ii) {N(t), t ≥ 0} has independent increments;

(iii) P [N(t, t+ δ) = 1] = λ(t)δ + o(δ),
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(iv) P [N(t, t+ δ) ≥ 2] = o(δ).

The reliability function of the process is R(s, t) = exp[−δ{t − s}]. This relia-
bility could be constant over time. If the intensity function λ(t) is a constant
then the process reduces to a homogeneous Poisson process (HPP). An HPP is
the orderly stochastic point process with stationary, independent increments.
In reliability studies, the HPP has enjoyed some success as a model for re-
pairable system failure over portions of system life, but since the arrival rate is
constant, it cannot be adequate to model wear out or growth of the system or
to set policies for maintenance, overhaul or trade-in. As an application, Cagno
et.al. (1998, 2000) have considered failures in a city network of old case gas
pipes and modeled the failures using an HPP as the pipes were not subject to
ageing.

Note that HPP is a sequence of independent and identically exponentially
distributed Xi’s, whereas under NHPP, Xi’s are neither independent nor iden-
tically distributed. An NHPP is characterized through its cumulative intensity
function Λ(t) =

∫ t

0
λ(x)dx, or by its time derivative λ(t), which gives the in-

stantaneous rate of failures. The shape of λ(t); increasing, decreasing or other-
wise, provides information about the time-dependant nature of the reliability
of the system. The NHPP models are primarily used for modeling and analysis
of failure data for repairable systems, for which repaired units are in exactly
the condition as they were just before the failure (“bad-as-old”). A general
treatment of repairable system reliability is provided in Ascher and Feingold
(1969). Thompson (1988) has studied some point process models with appli-
cations to safety and reliability. Systems are subject to reliability decay or
growth and can alternate between them at some change points. Sequential
detection of bugs in software, without introduction of new ones implies relia-
bility growth all over the testing phase. Conversely, there are systems subject
to many early failures, and then a decrease in them is followed by a long period
of rare failures and by a final period with an increasing number of failures. In
reliability and life testing this phenomenon is often described by bath tub type
models.

Consider a NHPP with intensity function λ(t) and we observe the system
up to time s and let n be the number of failures, occurred at times t1 < t2 <
· · · < tn. Then the likelihood function is given by

L(θ; t) =

n
∏

i=1

λ(ti) exp{−
∫ s

0

λ(t)dt}. (3.1)

The above set up can be studied in two possible ways: observation of the
system up to a given time or until the n-th failure occurs. The former case
is called time truncation, whereas the latter is called failure truncation with
s = tn. Although they are conceptually different, the two experiments lead
to the same estimates in a Bayesian framework, whereas some differences are
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possible following a frequentist approach (See Ruggeri, 2006, for details). The
other forms of NHPP discussed in literature are the log-linear process, the
bounded intensity process, the bathtub-type intensity process and so on. One
may refer to Attardi and Pulcini (2005) and Guida and Pulcini (2006) for more
details.

3.2 Power law process (PLP)

The widely used NHPP is the Power law process (PLP), sometimes called
Weibull process whose intensity is given by

λ(t) = (β/θ)(t/θ)β−1, θ > 0, β > 0, t > 0. (3.2)

For β = 1 the process reduces to a homogeneous Poisson Process (HPP).
Otherwise, a PLP provides a model for a system whose reliability changes as
it ages. If β > 1, it models a deteriorating system and when β < 1, it provides
a model for reliability growth. Crow (1974, 1982) discuss applications of this
model and provide some inference procedures. Finkelstein (1976) discuss the
confidence bounds on the parameters of the Weibull process. Lee and Lee
(1978), Bain and Engelhardt (1980) have discussed the point estimation and
proposed tests for the parameters of (3.2). Rigdon and Basu (1989), Baker
(1996), Jani et.al. (1997) and Muralidharan (1999) have proposed various
tests for Weibull process. Gaudoin et.al. (2003) have proposed goodness-of-fit
test for the Weibull process based on the Duane plot. More recently, Zhao and
Wang (2005) and Gaudoin et.al. (2006) have also studied various inferences on
the parameters of the above process. The papers which discuss inferences based
on Bayesian set up are due to Soland (1969), Calabria and Pulcini (1997), Sen
(2002), Pievatolo and Ruggeri (2004) and references contained therein.

For failure truncated sampling, the maximum likelihood estimators of the
parameters are θ̂ = tn

n1/β and β̂ = n
Pn−1

i=1 ln(tn/ti)
. The corresponding estimates

for time truncated sampling at time point T are θ̂ = T
n1/β and β̂ = n

Pn
i=1 ln(T/ti)

.

The estimate of the mean value function is Λ̂(t) = ( t

θ̂
)β̂ and the estimate

of the current intensity λ̂(t) is obtained by substituting the maximum likeli-
hood estimates of the parameters θ̂ and β̂ in λ(t). It is shown that 2nβ

β̂
=

2β
∑n−1

i=1 ln(tn/ti) has chi-square distribution with 2(n − 1) degrees of free-
dom. This important property is used for proposing tests and constructing
confidence intervals for the parameter β. The confidence interval for the other
parameter can be obtained by various methods as suggested by Gaudoin et.al.
(2006). According to the authors, the first order approximation to the esti-
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mated variance-covariance matrix is

Î =









1

nθ̂2β

[

1 +
{

ln(nθ̂β̂)
}2] − β̂

nθ̂
ln(nβ̂)

− β̂

nθ̂
ln(nβ̂)

β̂2

n









A large sample confidence interval for the parameters of the process can be
constructed using the above estimates of variances. For other methods and
approximations, one may refer to Gaudoin et al (2006) for more details.

It is observed that the reliability development of a system often takes place
by testing a system until it fails, then making repairs and design changes and
testing it again. This process continues until a desired level of reliability is
achieved. At various times in the development process it becomes important
to assess and predict system reliability from an available set of data on system
failures. Hence it is necessary to study the reliability inferences of the system
with full or partial realizations of failures. Motivated from this, Muralidharan
(2002a) has studied the reliability inferences of i-th weibull process. In the
reliability growth situation, the failure times t1, t2, . . . , tn may represent current
available data on a system. If testing of the system is planned to end at the (n+
m)th (m may be called future failures/samples) failures then it may be desired
to predict the time tn+m when testing will be complete based on t1, t2, . . . , tn.
The reliability estimation in such a situation enables the experimenter to look
for future course of action even when the system is in operation. Inspired from
this, Muralidharan et.al. (2006) have obtained future reliability estimation of
PLP where the system will be tested under additional time of occurrences of
failures. The detailed estimates and the predictive intervals based on complete
(full likelihood) and predictive likelihood are presented in the above paper.

From applications point of view, Pievatolo et.al. (2003) have considered
failures in 40 underground trains observed over a 8-year period and failures of
doors were recorded. Since the repairs were almost instantaneous and minimal,
a PLP model was chosen to model the failures. Kumar and Klefsjo (1992) have
used this model to study the reliability analysis of hydraulic systems of LHD
machines and concluded the time between failures (TBFs) can be adequately
modeled by the power law assumption. The coal mining disasters data is
another example, which has been extensively used by many authors like Jarret
(1979), Berman (1981), Rudemo (1982) and Raftery and Akman (1986) for
model fitting and other related inferences. The data were recorded from 1851
to 1962 in great Briton with 190 intervals given in days (see Figure 1). The
above authors have suggested that there is some trend existing in the model and
a change point model may be appropriate for modeling the data. Raftery and
Akman (1986) under HPP assumption have concluded the shift is somewhere
around 124th event, which we feel that it is slightly an under estimate of the
shift. Under PLP assumption, Muralidharan and Shah (2006b) have concluded
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Figure 1: The graph of Coal mining disaster data

that the shift is happening somewhere between 125-th to 128-th event.

Note: The presence of covariates: The NHPP described earlier refer to a
unique system with homogeneous characteristics. Sometimes systems can differ
for some features, like the location or in scaling the measures etc. A preliminary
explorative analysis will then help us in deciding the covariance structure of
such prior parameters and their prior distributions. This problem will be
more serious, when different classes of failure times are observed over a period
of time. In this case, independence among classes could be an unrealistic
assumption. A Cox regression model will then be a better approach for such
circumstances. The other alternatives may be considering the parameters of
NHPP as functions of the covariates t (see Ruggeri, 2006). In the subsequent
sections at various places we will address this problem.

A general theory of processes with intensity function λ(t) = ρ exp[β ′z(t)],
where z(t) = (z1(t), z2(t), . . . , zp(t))

′ is a vector of functions that may depend
on both t and the history of failure Ht and β = β1, β2, . . . , βp)

′ is a vector
of unknown parameters was developed by Cox (1972), who called them the
modulated Poisson process (MPP). An important feature of this process is
that, when they are non-stationary, the intervals between successive events
are statistically independent. Thus MPP is a Poisson process with covariates
depending on the operating time t and does not depend on the history of
failures Ht. The complete intensity function λ(t|Ht) of modulated renewal
process (MRP) again introduced by Cox (1972) depends both on the time
from the last failure and on the operating time t.

3.3 Renewal Process (RP)

This is a generalization of HPP. A RP is defined as a sequence of independent,
identically distributed (iid) non-negative random variables X1, X2, . . . . In this
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case, the system after repair will be “good as new” showing a renewal type
behavior. If the system is under perfect repair condition, then the failures are
according to a RP. The special case where their distribution is exponential cor-
responds to the HPP. The RP is a plausible first order model for components or
parts, since complete replacement of a component after failure implies renewal
instead of repair. As described earlier for RP, since the times between failures
are iid, a repaired unit is always brought to a like-new condition. For this
reason, the RP cannot be used to model a system experiencing deterioration
or reliability improvement.

According to Barlow and Proschan (1975), if Xi’s are iid with distribution
function FX(x), then the distribution of Tk = X1 + X2 + · · · + Xk is F (k)(t),
the k-fold convolution of F . If n renewal processes are working independently
of each other, then the process formed by the union of all events is known
as super imposed renewal process (SRP). In general, the SRP will not be a
renewal process. In fact, Cinlar (1975) shows that if the superposition of two
independent renewal process is a renewal process then all three processes must
be HPPs.

3.4 Inhomogeneous gamma process (IGP)

The inhomogeneous gamma process (IGP) proposed by Berman (1981) can be
seen as follows: Suppose that events or shocks occur according to an NHPP
with intensity function λ(t) and suppose that a failure occurs not at every
shock but at every kth shock, where k is a positive number. If t1, t2, . . . , tn are
the times of the first n events observed after the origin, their joint density is

f(t1, t2, . . . , tn) =
1

{√κ}n

n
∏

i=1

λ(ti){Λ(ti) − Λ(ti−1)}κ−1e−Λ(tn) (3.3)

The above likelihood clearly says that the random variables Λ(ti) − Λ(ti−1)
for i = 1, 2, . . . , n are independently and identically distributed according to
the gamma distribution with unit scale parameter and shape parameter κ. If
κ = 1, (3.3) defines an inhomogeneous Poisson process (IPP), while if λ(t) = ρ,
equation (3.3) defines a renewal process with intervals which have a gamma
distribution with scale parameter ρ and shape parameter κ. In this case the
process is called an inhomogeneous gamma process (IGP). It also follows that
Λ(tn) =

∑n
i=1 Λ(ti)−Λ(ti−1) has a gamma distribution with unit scale param-

eter and shape parameter nk. Thus, tn has the density

gn(tn) =
1√
nκ
λ(tn){Λ(tn)}nκ−1e−Λ(tn). (3.4)

For more details on distributional properties and inferences, refer to Berman
(1981).
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3.5 Modulated Gamma process (MGP)

An inhomogeneous gamma process will be called a modulated gamma process
if its rate function is of the form λ(t) = ρeβz(t), where β = (β1, β2, . . . , βk) and
z(t) = (z1(t), z2(t))

′. When κ = 1, this reduces to Coxs modulated Poisson
process. For β = 0 and ρ = κ = 1, the process reduces to HPP and for
β = 0 it reduces to GRP. Here this intensity function clearly expresses a pos-
sible dependence of the occurrence of events on the vector z(·) of explanatory
variables. For instance, the existence of a trend in the data can be examined
simply by including a single term z1(t) = t or z2(t) = t2. Even cyclic varia-
tion can be tested by considering z1(t) = cos(ωt) and z2(t) = sin(ωt). When
β = 0, there is no dependence of the point process on z(·) and then the in-
tervals are independent and identically distributed gamma random variables
with scale parameter ρ and shape parameter κ. According to Berman (1981),
if t1, t2, . . . , tn are the times of the first n events, then from (3.3), the likelihood
is

f(t1, t2, . . . , tn : β, κ, ρ) =
1

{√κ}n
ρneβv

exp
[

− ρ

∫ tn

0

eβz(x)dx
]

n
∏

i=1

[

∫ ti

ti−1

eβZ(x)dx
]κ−1

, (3.5)

where v = (v1, v2, . . . , vp)
′ and vj =

∑n
i=1 zj(ti), j = 1, 2, . . . , p. Here β is the

parameter of interest and κ and ρ are the nuisance parameters. For given β and
κ, tn is sufficient for ρ. Hence the likelihood of the data conditional on (n, tn)
will be independent of ρ. Therefore, one can study the inferences based on
conditional distributions as given in Berman (1981) and Muralidharan (2001).

Since β is the parameter of interest a test of H0 : β = 0 makes sense for
detecting trend in the process. Berman (1981) have used the efficient score
vector and the information matrix to obtain an asymptotic test for the null
hypothesis. The efficient score when β = 0 are

Uj(κ) = [
∂ logL

∂βj
] = Sj + (κ− 1)

n
∑

i=1

Ai−1,i(zj) − (nκ− 1)A0,n(zj), (3.6)

where Sj =
∑n−1

i=1 zj(ti), j = 1, 2, . . . , p and Ai,l(zj) = 1
(tl−ti)

∫ tl
ti
zj(y)dy. The

elements of the information matrix when β = 0 are

Ij,k(κ) = −E(
∂2 logL

∂βj∂βk

)

= (nκ− 1)B0,n(zj , zk) − (κ− 1)

n
∑

i=1

E{Bi−1,i(zj, zk)},
(3.7)
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where Bi,j(zj , zk) = Ai,l(zj , zk)−Ai,l(zj)Ai,l(zk). Then the asymptotic test κ̂c,
the conditional maximum likelihood of κ under H0 is found to be the solution
of

ψ(κ) − ψ(nκ) =
1

n

n
∑

i=1

log(yi),

where ψ(x) = d
dx

log
√
x and yi = ti−ti−1

tn
. For examples on testing for linear

trend, quadratic trend and cyclic trend one may refer to Berman (1981). As
an application the authors consider the Coal mining disasters data of Jarret
(1979) and concluded linear trend in the data.

3.6 Modulated power law process (MPLP)

Lakey and Rigdon (1992) have proposed the modulated power law process as a
compromise between the NHPP and the renewal process models. This model,
which should be more realistic in nature, is a special case of the inhomoge-
neous gamma process (IGP) introduced by Berman (1981) and described in
the previous sections.

Let X1, X2, . . . , Xn be n iid gamma random variables with shape parameter
κ and unit scale parameter. If Yj =

∑j
i=1Xi, then Yj’s are the event times of a

renewal process in which the times between events are iid gamma. Moreover, if
Yj’s were the actual failure times, then a failed and repaired unit would be in

better condition than it was just before the failure. Now, if Ti = θY
1/β
i ,

i = 1, 2, . . . , n, then the process T1 < T2 < · · · < Tn is an MPLP with
parameters θ, β and κ. Here the parameter κ has special meaning. If for
example κ = 3, then every third shock cause a failure. A failed and repaired
unit would then be better than it was just before the failure, since in order to
cause another failure the required number of shocks must accumulate to three
again. A failed and repaired unit, however, would not necessarily be as good
as a new unit. The larger κ is, the larger the improvement will be. Thus,
κ is a measure of the improvement effected by a failure and repair and β is
a measure of the system improvement or deterioration over the course of the
systems life. When κ = 1, there is a failure at each shock, and so the MPLP
reduces to the power law process. When β = 1, the times between failure are
iid gamma random variables, so the process becomes a GRP. Finally, when
κ = β = 1, the process reduces to the HPP. Thus MPLP is a generalization of
the PLP and the gamma renewal process. If λ(t) is according to (3.2), then
the MPLP will have the likelihood as follows:

L(t|θ, β, κ) =
1

[Γk]n
(
β

θ
)n(

n
∏

i=l

ti
θ

)β−1

n
∏

i=l

[

(
ti
θ

)β − (
ti−1

θ
)β

]κ−1

exp
[

− (
tn
θ

)β
]

.

(3.8)
Black and Rigdon (1996) describe an algorithm for obtaining the ML estimates
of the model parameters. Asymptotic results are used to give approximate
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confidence intervals and hypothesis tests for the parameters. In many cases the
asymptotic confidence intervals have coverage rates that are strictly less than
the nominal level. This process was further studied by Calabria and Pulcini
(1999). Muralidharan (2001) has proposed various tests for the parameters in
the presence of nuisance parameters. The reliability inferences correspond to
process #i of MPLP is studied by Muralidharan (2002b). These papers also
discuss various examples in respect of modeling. Some more discussions on
these are presented in the examples section.

3.7 Trend renewal process (TRP)

A process which incorporates the ordinary renewal process and the HPP is
the Trend Renewal Process (TRP) introduced by Lindqvist et.al. (2003). It is
the time transformed RP with T1, T2, . . . for which the Λ(Ti)−Λ(Ti−1), where
Λ(t) =

∫ t

0
λ(u)du, are iid with any positive distribution F having expected

value equal to unity. The TRP class thus includes both the general NHPP,
obtained if F is the unit exponential distribution and the general renewal pro-
cess, obtained if λ(t) is constant. If F is gamma then TRP includes Berman
(1981) processes. Lindqvist et.al. (2003) considered cases in which several
independent processes are observed simultaneously, for example, failures of
machines of the same type. Models for such situations may need to include
individual effects, for example, caused by the installation of machines in differ-
ent environments. These differences are often realized in the form of observed
covariates. However, there may be individual variation between systems that
is not explained by the available covariates and is commonly modeled as a
random effect. A TRP is formally defined as follows:

Definition 3.1 Let λ(t) be a non-negative function defined for t ≥ 0, sat-
isfying Λ(t) =

∫ t

0
λ(u)du∞ for each t ≥ 0 and Λ(∞) = ∞. Further, let F be

a positive distribution with expected value 1. The process T1, T2, . . . is called
TRP [F, λ(·)] if the time transformed process Λ(T1),Λ(T2), . . . is RP (F ). i.e.
if the Λ(Ti) − Λ(Ti−1), i = 1, 2, . . . are iid with distribution function F .

In the definition, we call F the renewal distribution and λ(·) the trend function
of the TRP. If F is a gamma distribution then the process reduces to inhomo-
geneous gamma process introduced by Berman (1981). The TRP becomes a
MPLP if both F is gamma distribution and simultaneously the intensity of the
shock process is according to (3.2). Another motivation to the TRP model is
that: suppose that failures of a particular system correspond to replacement of
a major part, while the rest of the system is not maintained. Then if the rest
of the system is not subjected to wear then a renewal process would be a plau-
sible model for the observed failure process. In the presence of wear, however,
an increased replacement frequency is to be expected. This is achieved in a
TRP model by accelerating the internal time of the renewal process according
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to a time transformation, λ(t), which represents the cumulative wear. Thus
in this case it would be natural to call λ(·) the wear function rather than the
trend function.

Since the conditional density of Ti given T1 = t1, T2 = t2, . . . , Ti−1 = ti−1 is
f [Λ(ti)−Λ(ti−1)] and the probability of no failures in the time interval (Tn(t), t]
given T1, T2, . . . , TN(t) is 1− F [Λ(t)− Λ(TN(t))], then the likelihood of a single
TRP is written as

L =
{

N(t)
∏

i=1

f [Λ(ti) − Λ(ti−1)]λ(Ti)
}

{1 − F [Λ(t) − Λ(TN(t))]} (3.9)

As said earlier, suppose that m systems work independently of each other then
the failure mechanisms may differ due to environmental or operational condi-
tions. The difference between system performances can then be attributed to
an observable covariate vector x. To incorporate the unobserved heterogene-
ity between systems a common way to modify the intensity function for the
j-th system is λj(t) = ajg(xj)λ(t), where aj is called the failure intensity level
(Anderson et.al. 1993, Chap IX) and g is a function of the covariate vector
xj of system j. Thus the presence of aj makes the TRP heterogeneous and
hence it is called heterogeneous trend renewal process (HTRP). For different
choices of F and λ(·) one can obtain the other heterogeneous models of HPP,
RP, NHPP etc.

As an application of these models the authors have considered the air-
conditioner failure data of Proschan (1963), Tractor Engine data of Barlow
and Davis (1977) and Gas compression data of Erlingsen (1989) and concluded
TRP models with suitable choices of F and λ(t). For more details one may
refer to Lindqvist et al (2003).

3.8 Exponentiated power law process (EPLP)

The intensity function of exponentiated power law process (EPLP), introduced
by Muralidharan and Shah (2006 a) is

u(t) = [λ(t)]c, c > 0 (3.10)

where λ(t) as defined in (3.2). The process defined with the intensity in (3.10)
has three parameters where the parameter β is used as a measure of the system
improvement and c as a measure of improvement affected by failure and repair.
Larger the value of c, larger the improvement will be. Some special cases of
interest are: (i). for c = 1, the model reduces to PLP, (ii) for β = 1, it reduces
to a homogeneous Poisson process (HPP) with constant intensity λ = θ−c and
(iii) for β = 1 and c = 1, it reduces to a HPP. For λ(t) = exp(βt), the process
may be called exponentiated Cox process (ECP).
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Consider a Non-Homogeneous Poisson process with rate function λ(t) de-
fined as above. If t1, t2, . . . , tn are the observed failure times of the system and
U(t) =

∫ t

0
u(x)dx, then likelihood function of the system is given by

L =

n
∏

i=1

u(ti)e
−U(tn)

= (
β

θ
)nc

n
∏

i=1

(
ti
θ

)(β−1)c exp
{

−
[

(
β

θβ
)c t

c(β−1)+1
n

{c(β − 1) + 1}
]}

(3.11)

Theorem 3.1 Ht denotes the history of the process through time t, then
the complete intensity is given according to (3.10).

Proof. As in the case of PLP, the distribution of the nth failure depends only
on the time of the (n− 1)st failure, so the complete intensity is

u(t/tn−1) = lim
∆t→0

Pr[t < Tn ≤ t∆t/Tn−1 = tn−1]

∆t
, t > tn−1

=
fn(t/tn−1)

1 − Fn(t/tn−1)

=
[β

θ
(
t

θ
)β−1

]c

. Hence the proof.

Thus u(t|Ht)∆t is approximately the probability of failure in the time interval
[t, t + ∆t], conditional on the experienced failure history before time t. The
corresponding unconditional intensity is called the rate of occurrence of failure
(ROCOF). For more details on estimation and testing procedures we refer to
Muralidharan and Shah (2006 a). A detailed study on the current and future
reliability estimation are also provided in the paper along with few examples.

3.9 Models of systems subject to imperfect repairs

The stochastic point processes able to describe the failure pattern of repairable
systems subject to imperfect repairs are the Proportional Age Reduction mod-
els and the Proportional Intensity Variation models In the age reduction model
by Kijima (1989), each repair modifies the intensity function for a systems
virtual age to some extent at each corrective maintenance action. For these
repairs, the virtual age at any given time is determined by a variety of additive
age reduction factors. Doyen and Gaudoin (2004) extended and analysed this
model. Jack (1998) used the concept of age reduction successfully to model
event data for systems subject to periodic maintenance and corrective main-
tenance. See also Malik (1979) and Shin et.al. (1996) for more details.

The proportional intensity variation models assumes that a system needs
more frequent maintenance with increased age. Hence the introduction of im-
provement factors in a maintenance scheduling problem becomes important.



Repairable Systems and · · · 39

Malik (1979), Chan and Shaw (1993) and Calabria and Pulcini (1996) have
considered such models. Doyen and Gaudoin (2004) used an improvement fac-
tor after each repair in their proposed arithmetic reduction of intensity and
geometric reduction of intensity models for imperfect maintenance, which allow
maintenance actions to lie between good-as-new and bad-asold. Percy et.al.
(1998) considered an extension to the NHPP based on the proportional inten-
sity model of Cox (1972b), wherein the baseline intensity function is amended
at each corrective maintenance to avoid the assumption of minimal repair. This
is further simplified by Percy and Alkali (2006), where the model involves a
multiplicative scaling of the intensity function upon each failure and repair.
The intensity function of this model is λ(t) = λ0(t)

∏N(t)
i=1 si, where si > 0 are

constants representing the intensity scaling factors and λ0(t) is the baseline
intensity function. This model is suitable for systems that are deteriorating
with time and provide a perfect description of the physical situation.

3.10 Models of systems subject to Complex mainte-

nance policy

The other approaches to analysis of recurrent events are observed under com-
plex maintenance policy are the minimal repairs interspersed with perfect pre-
ventive maintenance, imperfect repairs interspersed with perfect preventive
maintenance, minimal repairs interspersed with imperfect preventive mainte-
nance etc. Some such models have been reviewed by Lawless (1995), Lawless
and Nadeau (1995), Baxter et.al. (1996), Dorado et.al. (1997), Bhattacharjee
et.al. (2004) etc and the references contained therein. Lawless and Thia-
garajah (1996) have studied models for recurrent events that incorporate both
time trends and effects of past events, such as renewal-type behavior with
the above intensity function with ρ = 1. Many common models are special
cases of this including Poisson process with intensity functions exp(α+βt) and
αtβ. A recent paper by Syamsundar and Naikan (2007) discusses segmented
point process models for maintained systems. We now provide an algorithm
to generate samples from various NHPP models discussed above.

Algorithm.

Input the value of n, θ, β, κ and c
Generate a uniform sample from (0, 1)
Generate n gamma sample with shape parameter κ, say x1, x2, . . . , xn

Evaluate ti =

[

{c(β − 1) + 1}(θ
β

β
)c

i
∑

j=1

xj

]
1

{c(β−1)+1}

, i = 1, 2, . . . , n

Note: For suitable choice of θ, β, κ and c, one can get samples from corre-
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sponding NHPP. The above algorithm may be modified for exponential and
logarithmic intensities suitably.

4 Test for Trend

It is necessary to verify system improvement or deterioration at some stages
during the process to know the state of the art of repairable system. Under
stationarity, the successive Xi’s has identical marginal distributions but is not
necessarily independent. It is necessary to deal with transient, rather than
stationary processes, when synchronous sampling is done. Therefore, it is
important to test the successive interarrival times for independence. If neither
a trend nor statistical dependence is disclosed there is no evidence that the
Xi’s is not iid and cannot be modeled by a renewal process. The next step
is to see the order statistics of these Xi’s and to determine whether an HPP
is the appropriate model. If this assumption is rejected then one should test
NHPP models with different intensities. Ascher and Feingold (1978b) and
Jewell (1978a, 1978b) have presented a survey and the need of trend testing.
Jani et.al. (1997) considered a broad class of intensities such as logarithmic
and exponential intensities to test trend in the model.

There are a number of procedures used to help determine whether a sys-
tem is improving or deteriorating. Such techniques are particularly useful for
inferring the salient features of the data set. The simplest method is to plot
cumulative failures versus cumulative time graphically. This method will help
to judge whether the inter-arrival times of an improving (deteriorating) system
tend to become larger (smaller), if the cumulative number of failures on the
graph will tend to be concave down (up). Duane (1964) introduced the tech-
nique of plotting t

N(t)
against t on log-log paper. Although plotting on log-log

scale will tend to linearize any function, doe not necessarily indicate that an
NHPP with any intensity function is appropriate. A corrective action will then
be needed to conclude the appropriate model. A method which is relatively
simple is by estimating average ROCOF in successive time periods. The av-
erage ROCOF in the ith subinterval can be estimated as v̂i(t) = Ni(t)−Ni−1(t)

δt
,

(i−1)δt < t < iδt, where Nj(t) is the total number of failures from time zero to
the end of the jth interval and δt is the length of each subinterval. If a system
is improving (deteriorating) there will be a tendency for successive estimates,
v̂i(t), i = 1, 2, . . . to decrease (increase). The number of intervals to consider
is a function of the number of observed failures.

For recurrent events data, the possible presence of time trends in residuals
within the individual system j can be checked using total time test (TTT)
plots introduced by Barlow and Davis (1977). It is expected that under HPP
assumption the plot will be near the diagonal of the unit square. Recently,
Gaudoin et.al. (2003) and Garcia et.al. (2005) have done some goodness-of-fit
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tests to assess the trends in Duane plots.
Specifically, the tests ofH0 : λ(x) is constant againstH1 : λ(x) is monotonic

increasing or decreasing are of interest. The results of such tests would indicate
whether the simple HPP may be adequate or whether a more general NHPP is
required. Bartholomew (1956), Boswell (1966), Ascher and Feingold (1978b),
Bain and Engelhardt (1980), Bain et.al. (1984), and Jani et.al. (1997) have
discussed the tests for H0 verses H1 based on time truncated data. One such
important test is the Laplaces test which is discussed in Cox and Lewis (1966).
Under H0, if T1, T2, . . . , Tn are the first n arrival times, then the test statistics
is of the form

U =
1

n−1

∑n−1
i=1 Ti − Tn

2

Tn

√

1
12(n−1)

(4.1)

has a standard normal variate. Cox and Lewis (1966) showed that Laplaces test
is optimum against the NHPP, with intensity function λ(t) = exp(α0 + α1t).
Bates (1955) showed that the approximation is adequate for n ≥ 4 and is
also optimum against a generalized version of the Jelinski-Moranda (1972)
software reliability growth model, which is not an NHPP model. For testing
null hypothesis of time trends with renewal process Lewis-Robinson (1974) has
modified the Laplace statistics as

LR = U

{

x2

∑n
i=1(xi − x)2/(n− 1)

}

(4.2)

where the xi’s are the times between events. For large class of NHPP models
Zhao and Wang (2005) have also proposed tests based on the Laplace statistics.

Another test which is widely used for checking the presence of trend is
the MILHDBK- 189 (Military Handbook) (1981) test and is based on the test
statistic

M = 2

n−1
∑

i=1

ln [
Tn

Ti
] (4.3)

Under the null hypothesis of an HPP, M is distributed as χ2 with 2(n − 1)
degrees of freedom. Bain et.al. (1984) point out that the above test is optimum
against the NHPP model with intensity λ(t) = θβtβ−1, and recommend its use
for testing the HPP against the broad class of NHPPs with monotonically
increasing failure rates which tends to infinity as t → ∞, but which are of
unknown functional form.

The test statistics of Jani et.al. (1997) has the form

Q1 = 2n(n+ 1)
n−1
∑

i=1

Ti

Tn

[

Ti

Tn

− Ti+1

Tn

]

+ (n2 − 1). (4.4)

Under H0, the mean and variance of Q1 is respectively obtained as E(Q1) =

n − 1 and V (Q1) = 4n2(n−1)
(n+2)(n+3)

. The authors have proposed a similar kind
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of test with transformed variables as ln (T1), ln (T2), . . . , ln (Tn) instead of
T1, T2 . . . , Tn and has the form

Q2 =
n−1
∑

i=1

[1 − (n− i){ln (Tn−i+1) − ln (Tn−i)}]2, (4.5)

which has EH0(Q1) = n − 1 and VH0(Q1) = 24(n − 1). Further, if Vi =
ln (Tn)− ln (Tn−i), i = 1, 2, . . . , n then Ui = (n− i)(Vi − Vi−1) are iid standard
exponential random variables with E(Ui) = 1, then the modified form of the
test statistic Q2 is

Q3 =
n−1
∑

i=1

[Ui − U ]2, (4.6)

where U = 1
n−1

∑n−1
i=1 Ui. The mean and variance of this statistic under HPP

assumption is n− 2 and 2(4n2
−15n+14)
n−1

respectively. The above tests are useful
for testing a broad range of intensities including exponential and logarithmic
intensities.

For testing HPP against non-monotonic trend, we refer to Lewis (1972),
Hollander and Proschan (1974) and Barndorff-Nielson and Cox (1979). Tests
which distinguish between a renewal process and a monotonic trend have been
developed by Mann (1945), Lehman (1975), Srinivasan (1978) and Lawless
and Thiagarajah (1996). Specifically, if the intensity is of the form λ(t) =
exp{α+βt+γg(t)} then the time trend can be tested by considering H0 : β = 0
and the renewal process can be tested by considering H0 : γ = 0 If the test
for renewal is accepted then the process may have inter-arrival distribution
exponential and can be checked by computing the generalized residuals êi.

5 Examples

In addition to the specific examples discussed above, here, we discuss some
more examples and their corresponding choice of models. The first is the fail-
ure times of an aircraft air generator data (n = 14) read from a plot in Duanes
paper by Black and Rigdon (1996), the second example consists of 21 failure
times from the second aircraft air generating unit and the third example con-
sists of the set of 30 failure times of airplane air-conditioning equipment both
from Proschan (1963) and the data consists of the ages at successive failures
(n = 92) of a photocopier in use considered by Baker (1996). It is found that
a PLP model is not adequate to model Duans data, whereas Proschan (1963)
aircraft air generating unit data can be modeled by using a PLP. As far as the
other two sets of data are concerned, a MPLP model is found to be a suit-
able model for representing the failure times. The same conclusions are drawn
by Black and Rigdon (1996), Calabria and Pulcini (1997) and Muralidharan
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(2001) in different contexts. Lawless and Thiagarajah (1996) have used the
Proschan (1963) data in order to illustrate both time trends and renewal type
behavior. On the basis of ML estimation they concluded that there is no evi-
dence of renewal type behavior and there is a strong evidence of a time trend
existing in the data. A best example for EPLP model is the failure times of a
vertical boring machine due to Majumdar (1993). This conclusion is based on
first 27 observations. Another choice for EPLP is the Duans data as the value
of β is very small and c is very large (see Muralidharan and shah, 2006a).
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