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1 Introduction

The role of the concepts of failure rate and mean residual life in reliability
theory and several other disciplines such as actuarial science, survival analysis,
economics etc are well known. Recently reliability functions similar to these
two, but reversed in time, have been introduced in the form of reversed hazard
rate (RHR) defined as

r(x) = f(x)/F (x) (1.1)

and the reversed mean residual life (RMRL)

m(x) = [F (x)]−1

∫ x

0

F (t) dt (1.2)

= E(x−X|X ≤ x)

where X is a continuous random variable defined over (0,∞), representing the
life time of a unit, with distribution function F (x) and density function f(x).
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The RHR has been used in characterizing probability distributions (Block et.al
(1998)), ordering life distributions (Gupta and Nanda (2001)), analysing sur-
vival data (Gupta and Han (2001)), measurement of uncertainty (Di Crescenzo
and Longobardi (2002)) and in stochastic processes (Bloch-Mercier (2001)).
The definition and properties of RMRL are given in Finkelstein (2002) and
Nanda et.al (2003), in which the former interprets m(x) as the mean waiting
time since the failure of a unit conditioned on its failure in the time inter-
val [0, x]. Since the properties of the usual mean residual life and the RMRL
are radically different (for example, there is no life distribution in (0,∞) with
decreasing or constant RMRL) enabling each to be used in different data sit-
uations, there is scope for a separate study of RMRL in the univariate and
multivariate cases. Although the theoretical discussions or RMRL are similar
to those of mean residual life, the models arising from the two under similar
functional forms are different. This makes the study of characterizations based
on properties of RMRL important. While mean residual life is discussed ex-
tensively in the multivariate case, there appears no similar study of RMRL
in higher dimensions. The present paper attempts a study of RMRL in the
bivariate case.

The contents of the rest of the paper is as follows. In Section 2 the definition
and properties of bivariate reversed mean residual life (BRMRL) are discussed.
This is followed by an investigation of the relationship between BRMRL and
the bivariate reversed hazard rate (BRHR) and a characterization theorem is
taken up in Section 3. In Section 4 proportional BRMRL models are stud-
ied and some extensions of the important results to the multivariate case are
indicated in Section 5.

2 Bivariate reversed mean residual life.

Consider a random vector X = (X1, X2) in the two dimensional space R2 with
joint distribution function F (x1, x2) and marginal distribution functions Fi(xi)
of Xi, i = 1, 2. Let a = (a1, a2) and b = (b1, b2) be vectors of real numbers
satisfying ai = inf(x|Fi(x) > 0) and bi = sup(x|Fi(x) < 1). Assume further
that E(X) <∞.

We define the vector valued BRMRL of X as the B-measurable function

m(x) = (E(x−X|X ≤ x), (2.1)

= (m1(x),m2(x))

for all x > a, where the ordering of the vectors is done component wise.



bivariate reversed mean residual life 3

From (2.1) we can write

mi(x) =
1

F (x)

∫ xi

ai

F (xi, t) dt, i = 1, 2 (2.2)

where (xi, t) stands for the vector x = (x1, x2) in which xi is replaced by t.
Equation (2.2) enables the determination of m(x) from the distribution of X.

We now examine the converse problem of identifying F (x) using the form
of m(x). Differentiating

mi(x)F (x) =

∫ xi

ai

F (xi, t)

with respect to xi

∂mi(x)

∂xi
F (x) +mi(x)

∂F (x)

∂xi
= F (x).

For i = 1, this gives

1

F (x)

∂F (x)

∂x1

=
1

m1(x)
(1− ∂m1(x)

∂x1

)

and integrating over (x1, b1),

F (x) = F2(x2) exp[−
∫ b1

x1

1

m1(t, x2)
(1− ∂m1(t, x2)

∂t
)dt]. (2.3a)

Similarly for i = 2,

F (x) = F1(x1) exp[−
∫ b2

x2

1

m2(x1, t)
(1− ∂m2(x1, t)

∂t
)dt]. (2.3b)

Allowing x2 to tend to b2 in (2.3a)

F1(x1) = exp[−
∫ b1

x1

1

m1(t, b2)
(1− ∂m1(t, b2)

∂t
)dt].

Hence the distribution of X is uniquely determined as

F (x) = exp[−
∫ b1

x1

1

m1(t, b2)
(1− ∂m1(t, b2)

∂t
)dt

−
∫ b2

x2

1

m2(x1, t)
(1− ∂m2(x1, t)

∂t
)dt]

=
m1(b1, b2)

m1(x1, b2)

m2(x1, b2)

m2(x1, x2)

exp[−
∫ b1

x1

dt

m1(t, b2)
−
∫ b2

x2

dt

m2(x1, t)
] (2.4)
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or equivalently from (2.3b) as

F (x) = exp[−
∫ b1

x1

1

m1(t, x2)
(1− ∂m1(t, x2)

∂t
)dt

−
∫ b2

x2

1

m2(b1, t)
(1− ∂m2(b1, t)

∂t
)dt]

=
m1(b1, x2)

m1(x1, x2)

m2(b1, b2)

m2(b1, x2)

e
−

∫ b1
x1

dt
m1(t,x2)

−
∫ b2
x2

dt
m2(b1,t) (2.5)

We observe that the random variables X1 and X2 are independent if and
only if

mi(x) = mi(xj, bj),

for every x > a; that is when the components of BRMRL are respectively
equal to the reversed mean residual life of the component variables. Notice
that m1 and m2 satisfy the relationship

∂

∂x2

(1− ∂m1

∂x1

m1(x)

)
=

∂

∂x1

(1− ∂m2

∂x2

m2(x)

)
.

One important application of BRMRL is to identify the distribution based
on an assumed functional form of BRMRL. We establish some characteriza-
tions based on certain general forms for the BRMRL.

Theorem 2.1 If X is a random vector in the support (0, b1) × (0, b2),
bi < ∞, i = 1, 2 with absolutely continuous distribution function F (x) and
E(X) <∞, then

mi(x) = ci(xj)xi , i, j = 1, 2 i 6= j (2.6)

for some non negative functions ci(·) if and only if X has bivariate power
distribution

F (x1, x2) =
(x1

b1

)c1(x2

b2

)c2+θ log(
x1
b1

)

, θ ≤ 0 (2.7)

where ci = [ci(bj)]
−1 − 1.

Proof The distribution function (2.7) verifies that

mi(x) =
xi

1 + ci + θ log(xj/bj)
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so that (2.6) holds. Now assuming (2.6), we get from (2.4) and (2.5) that

F (x1, x2) =
b1
x1

b2
x2

(x2

b2

)1/c2(b1)(x1

b1

)1/c1(x2)

,

=
b1
x1

b2
x2

(x1

b1

)1/c1(b2)(x2

b2

)1/c2(x1)

.

Hence
c2(x1)c2(b1)

c2(b1)− c2(x1)
log
(x1

b1

)
=

c1(x2)c1(b2)

c1(b2)− c1(x2)
log
(x2

b2

)
. (2.8)

Since (2.8) holds for all x1, x2, the expressions on the right and left sides must
be a constant, say k, or

cj(xi)cj(bi)

cj(bi)− cj(xi)
log
(xi
bi

)
= k.

Solving

[cj(xi)]
−1 = [cj(bi)]

−1 + θ log
(xi
bi

)
which leads to (2.7).
Remark: The ith component of BRMRL is linear in xi, and also that it is
proportional to the respective univariate reversed mean residual life derived
from the marginals of Xi.

We now illustrate the case when ai is −∞ and bi is +∞ with another
characterization.

Theorem 2.2 If X is a random vector in the support R2 with absolutely
continuous distribution function F (x) and E(X) <∞, then X follows bivari-
ate logistic distribution

F (x) = (1 + e−x1 + e−x2)−1 −∞ < x1, x2 <∞ (2.9)

if and only if for all x in R2

mi(x) =
1 + e−x1 + e−x2

1 + e−xj
log
(1 + e−x1 + e−x2

e−xi

)
, i, j = 1, 2; i 6= j. (2.10)

Proof Assuming the distribution to be (2.9), we have∫ xi

−∞
F (xi, t) dt = (1 + e−xj)−1 log

(1 + e−x1 + e−x2

e−xi

)
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from which (2.10) follows. Now to prove the converse, we note that from (2.10)

∂mi(x)

∂xi
= 1− e−xi

1 + e−xj
log

1 + e−x1 + e−x2

e−xi
(2.11)

so that
1

mi

(1− ∂mi

∂xi
) =

e−xi

1 + e−x1 + e−x2
. (2.12)

Using (2.10) and (2.12) in (2.5), we recover (2.9).

Theorem 2.3 If X is a random vector in the support (−∞, b1)× (−∞, b2)
with bi <∞ possessing absolutely continuous distribution function, then

mi(x) = αi(xj), i, j = 1, 2, i 6= j (2.13)

if and only if

F (x) = exp[c1(x1 − b1) + c2(x2 − b2)
+ c3(x1 − b1)(x2 − b2)], ci > 0 (2.14)

Proof When the distribution has form (2.14), using the formula (2.2),

mi(x) = [ci + c3(xj − bj)]−1

which is independent of xi. Thus proves the if part.
Conversely assuming (2.13), substituting it in (2.4) and (2.5) and equating

the resulting expressions,

b1 − x1

α1(b2)
+
b2 − x2

α2(x1)
=
b1 − x1

α1(x2)
+
b2 − x2

α2(b1)

which is equivalent to

b2 − x2

(α1(b2))−1 − (α1(x2))−1
=

b1 − x1

(α2(b1))−1 − (α2(x1))−1

The last equation holds for all x1, x2 iff either expression is a constant, say θ.
This solves to

[αi(xj)]
−1 = θ(bj − xj)−1 − [αi(bj)]

−1. (2.15)

Substituting (2.4)

F (x1, x2) = exp[c1(x1 − b1) + c2(x2 − b2) + c3(x1 − b1)(x2 − b2)]

where ci = [αi(bj)]
−1 > 0, i = 1, 2 and c3 = θ−1 > 0. This completes the proof.



bivariate reversed mean residual life 7

3 Bivariate reversed hazard rates.

Let X = (X1, X2) be a random vector representing the life times of a two-
component system so that X is defined on R+

2 = {(x, y)|x, y > 0}. We write
H(x) = logF (x) for all x for which F (x) > 0. If the gradient of H(x) is

h(x) = ∇H(x), (3.1)

then h(x) = (h1(x), h2(x)) is called the vector valued reversed hazard rate of
X with components hi(x), where

hi(x) =
∂

∂xi
H(x) =

∂ logF (x)

∂xi
. (3.2)

From (3.2) we find

hi(x) = [mi(x)]−1[1− ∂

∂xi
mi(x)], i = 1, 2 (3.3)

as a fundamental relationship between BRHR and BRMRL. In this connection,
we show that milder conditions on the product of components of BRHR and
BRMRL can characterize lifetime models.

Theorem 3.1 The only absolutely continuous distribution of the random
vector X defined on R+

2 satisfying

hi(x)mi(x) = Ai(xj), i, j = 1, 2 i 6= j (3.4)

is the bivariate power distribution defined in (2.7), where, Ai(xj) in (3.4) is a
positive function independent of xi.

Proof The bivariate power distribution (2.7) verifies

hi(x) = (ci + θ log(xj/bj))x
−1
i

so that from the expression formi(x) derived in Theorem 2.1, the property (3.4)
holds.

Conversely if (3.4) is assumed, using (3.3) we get,

1− ∂

∂xi
mi(x) = Ai(xj)

which on integration gives,

mi(x) = [1− Ai(xj)]xi + ki(xj)

where ki(xj) is a constant of integration. As xi → 0, mi(x) → 0 and hence
ki(xj) = 0. The proof is completed by appealing to Theorem 2.1.
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4 Proportional BRMRL models

Proportional hazard models are well known for their applications in reliability,
epidemiology and survival analysis. As a more flexible alternative to this
model, the notion of proportional mean residual life model in the univariate
case has been introduced by Oakes and Dasu (1990), which was later extended
to higher dimensions. Gupta and Han (2001) considered analysis of survival
data using proportional reversed hazard models (see also Gupta et. al (1998)).
In this section we define bivariate proportional reversed mean residual life
model and study some of its properties.

If X = (X1, X2) represents the random lifetimes of a two - component
system with distribution function F (x), the bivariate proportional mean resid-
ual life model is expressed in terms of a random vector Y whose BRMRL is
proportional to the BRMRL of X. Denoting by m(x) = (m1(x),m2(x)), and
r(x) = (r1(x), r2(x)) the BRMRL’s of X and Y respectively at the time point
x = (x1, x2), our requirement for proportional model is that

r(x) = (c1m1(x), c2m2(x)) (4.1)

for some positive real numbers, c1 and c2. Component-wise (4.1) means that

ri(x) = cimi(x), i = 1, 2. (4.2)

Our primary interest is to express the distribution function K(x) of Y in terms
of the baseline distribution function F (x) and the corresponding
BRMRL.

Starting from (4.2), we use the inversion formula (2.4)
for the functions ri(x) to write K(x)

K(x) =
m1(b)m2(x1, b2)

m1(x1, b2)m2(x)

(
exp[−

∫ b1

x1

dt

m1(t, b2)
]
)k1

(
exp[−

∫ b2

x2

dt

m2(x1, t)
]
)k2

, (4.3)

with ki = c−1
i , i = 1, 2. Letting x2 → b2 in (2.4),

exp[−
∫ b1

x1

dt

m1(t, b2)
] =

m1(x1, b2)

m1(b)
F1(x1) (4.4)

and using this relationship again in (2.4),

exp[−
∫ b2

x2

dt

m2(x1, t)
] =

m2(x)

m2(x1, b2)

F (x)

F1(x1)
. (4.5)
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Inserting (4.4) and (4.5) in (4.3), we have the distribution function of the
proportional model

K(x) =
(m1(x1, b2)

m1(b)

)k1−1( m2(x)

m2(x1, b2)

)k2−1F k2(x)F k1
1 (x1)

F k2
1 (x1)

. (4.6)

Another equivalent expression is

K(x) =
(m2(b1, x2)

m2(b)

)k2−1( m1(x)

m1(b1, x2)

)k1−1F k1(x)F k2
2 (x2)

F k1
2 (x2)

. (4.7)

Example 4.1: Let X be distributed as bivariate uniform with

F (x) = x1+θ log x2

1 x2, 0 < x1, x2 < 1,

then Y has bivariate power distribution function,

K(x) = x2k2−1
2 x2k1−1+θ log x2

1 , 0 < x1, x2 < 1.

Since (4.6) is proposed as alternative to the proportional reversed hazard
model it is informative to examine the relationship between the two models
corresponding to the same baseline distribution function F (x) of X. A random
vector Z = (Z1, Z2) with distribution function G(x) and reversed hazard rate

a(x) = (a1(x), a2(x))

is said to be the proportional reversed hazard rate model with respect to X if
there holds the relation

ai(x) = θihi(x), θi > 0, i = 1, 2

or
∂ logG(x)

∂xi
= θi

∂ logF (x)

∂xi
.

Integrating from xi to bi and proceeding as above,

G(x) =
F θi(x)F

θj
j (xj)

F θi
j (xj)

, i, j = 1, 2, i 6= j. (4.8)
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A relationship between the reliability characteristics of X and those of the
proportional RMRL model is sometimes useful in characterization problems.
Taking logarithms and differentiating (4.7) leads to

H1(x) = (k − 1)
m′1
m1

+ k1h1(x1, x2)

=
k −m′1
m1

and similarly

H2(x) =
k −m′2
m2

,

where H1 and H2 are the reversed hazard rate components of proportional
RMRL model. For the uniform distribution cited earlier,

G(x) = xθ22 xθ1+θ θ1 log x2

1

which is different from the corresponding proportional BRMRL model. In
general, the two models give different distributions and therefore it is of interest
to investigate whether there are bivariate distributions for which G(x) and
K(x) are identical. Our next Theorem provides an answer to this question for
a random variable defined on R+

2 .

Theorem 4.1 A necessary and sufficient condition for the proportional re-
versed mean residual and reversed hazard rate models to be identical is that the
baseline distribution has independent marginal power distributions with shape
parameters

(
c1−1

1−c1θ1 ,
c2−1

1−c2θ2

)
.

Proof The distributions of Y and Z are identical if and only if they have the
same reversed hazard rates and this in turn means that

θi
1− ∂mi

∂xi

mi

=
1− ci ∂mi∂xi

cimi

, i = 1, 2

which reduces to

∂mi(x)

∂xi
=

1− ciθi
ci(1− θi)

or

mi(x) =
1− ciθi
ci(1− θi)

xi + Ai(xj), i = 1, 2 i 6= j.
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Using the condition lim
xi→0

mi(x) = 0, Ai(xj) = 0.

From the above expressions for mi(x),

F (x) =
(x1

b1

) c1−1
1−c1θ1

(x2

b2

) c2−1
1−c2θ2 ,

ci − 1

1− ciθi
> 0, 0 < xi < bi, (4.9)

where bi = sup(x|Fi(x) < 1), i = 1, 2. The converse is easily established by
noting that for the distribution (4.9),

mi(x) =
1− ciθi
ci(1− θi)

xi and hi(x) =
ci − 1

(i− ciθi)
xi.

5 Multivariate extensions

The definition of BRMRL can be extended to the multivariate case, by re-
placing X in (2.1) by the vector X = (X1, X2, . . . , Xp) in the p-dimensional
Euclidean space Rp. We define the multivariate reversed mean residual life as
the vector

m(x) = E(x−X|X ≤ x)

= (m1(x),m2(x), . . . ,mp(x))

for all x > a, where a = (a1, a2, . . . , ap) and b = (b1, b2, . . . , bp) are defined by
−∞ ≤ ai < Xi < bi ≤ ∞, i = 1, 2, . . . p. In this case

mi(x) = [F (x)]−1

∫ xi

ai

F (xi, t)dt

and the inversion formula (2.4) generalises to

F (x) = exp[−
∫ b1

x1

1

m1(t, x2,p)
(1− ∂m1(t, x2,p)

∂t
)dt

−
∫ b2

x2

1

m2(b1, t, x3,p)
(1− ∂m2(b1, t, x3,p)

∂t
)dt

−
∫ bp

xp

1

mp(b1,p−1, t)
(1− ∂mp(b1,p−1, t)

∂t
)dt]

(5.1)

or to (p− 1) equivalent expressions for F (x) like (5.1) depending on the order
in which the arguments xi’s in F (x) are allowed to tend to bi in the p basic
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equations for F (x) derived from definition as in the bivariate case. (A single
expression covering all p cases of F (x) like (2.4) in the bivariate case seems

notationally complicated to write.) In (5.1), we have used the notation,

si,j = (si, si+1, . . . sj), i, j = 1, 2, . . . p and j > i.

Defining the multivariate reversed hazard rate for X = (X1, X2, . . . , Xp) as

h(x) = ∇H(x),

where ∇=
(

∂
∂x1
, ∂
∂x2

. . . , ∂
∂xp

)
is the p-dimensional gradient and H(x)=logF (x)

the multivariate counterpart of (3.3) is

hi(x) = [mi(x)]−1[1− ∂

∂xi
mi(x)], i = 1, 2, . . . p

and the characteristic property

hi(x)mi(x) = Ai(x1,i−1, xi+1,p), i = 1, 2, . . . p

holds for all xi > 0 if and only if the distribution function F (x) is given by

logF (x) =

p∑
i=1

θi log
(xi
bi

)
+

p∑
i,j=1
j>i

θij log
(xi
bi

)
log
(xj
bj

)
+ · · ·

+ θ12...p log
(x1

b1

)
· · · log

(xp
bp

)
. (5.2)

Notice that (5.2) is a multivariate power distribution that reduces to (2.7) for
p = 2 and the method of proof is the same as in Theorem 3.1. In a similar
manner, the linearity of mi(x) in xi viz.

mi(x) = Bi(x1,i−1, xi+1,p)xi, i = 1, 2, . . . p

among absolutely continuous distributions in Rp is satisfied only by the mul-
tivariate power distribution (5.2). This generalises the result in Theorem 2.1.
Finally, it is evident from the method of proof in Theorem 4.1 that the multi-
variate proportional reversed mean residual life model defined by

Y(x) = (c1m1(x), c2m2(x), . . . , cpmp(x))

and the corresponding proportional reversed hazard model

a(x) = (θ1h1(x), θ2h2(x), . . . , θphp(x))

will yield identical distributions if and only if the baseline distribution is of
multivariate power type with independent marginals having shape parameters( c1 − 1

1− c1θ1

, . . . ,
cp − 1

1− cpθp

)
.
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6 Conclusion

Our discussions in the preceding sections were centred around the definition
and properties of reversed mean residual life in higher dimensions, a simple re-
lationship with reversed hazard rate that characterizes the power distribution
and some results in connection with proportional reversed mean residual life
models. Although, the definition of the BRMRL is similar to that of the usual
bivariate mean residual life (BMRL), the properties of the former appeared
to differ from the latter, especially in characterizing specific probability dis-
tributions. While characterizations by constancy (bivariate distributions with
independent marginals), local constancy (Gumbel’s distribution) linearity (Lo-
max and beta models) of the BMRL function hold in the entire first octant of
R2, no such results seem to be true in the case of BRMRL except in the finite
range case (see Theorems 2.1 and 2.3). Similarly, the local constancy of the
product of the components of BMRL and bivariate hazard rate characterizes
the Gumbel, Lomax or beta models (Asadi (1999)) where as, there is only the
power distribution that shares analogous property in the reversed case as seen
from Theorem 3.1. The general nature of the results indicated by the present
study and the fact that the concepts in reversed time are more appropriate
than those truncated from below, when the observations are predominantly
from the left tail, point out the relevance and usefulness of studying reversed
hazard rates and reversed mean residual life in the context of modeling and
analysing data.
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