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Abstract. In the classical limit theory for normalized sums of independent
random variables we change the operation ”sum” by the operation “maxi-
mum”. How does it change the classical structure of the limit probability laws?
The max-model enriches Probability Theory with interesting non-classical phe-
nomena. Several of them will be discussed here. As an example for charac-
terizing a limit class of probability distributions we consider the class of max-
semistable df’s. It is interesting to observe that the max-semistability property
is a characteristic property of the univariate distributions of semi-selfsimilar
extremal processes with stationary max-increments.
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1 Introduction

Below I expose my talk at CEAUL (Centre for Statistics and its Applications
at the University of Lisboa), given on 10.07.2008. The talk is based on my
former papers [5], [1], [6] and [7].

In Section 2 we discuss the so called max-model (the model of extreme
values) in which one deals with the properties and the asymptotic behavior of
maxima of independent random variables (rv’s). The characteristic features
of the operation maximum essentially impact phenomena of the classical limit
theory for sum of independent rv’s (cf [9]). Especially the norming mappings,
proper to the max-operation, appear to be monotone rather than linear.

In Section 3 we characterize a max-semistable distribution function (df) in
three different ways: a) by a certain functional equation; b) as limit distri-
bution in a particular max-model; c) by its explicit form. At the end several
examples are given.

Section 4 is devoted to the semi-selfsimilar extremal processes (SSEP’s).
Here we recall briefly the notion of an extremal process and particularly of a
G-extremal process. We state the characteristic functional equation and the
properties of SSEP’s. It turns out that a G-extremal process is semi-selfsimilar
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with respect to (w.r.t.) a time-space change η(t, x) = (τ(t), L(x)) if and only
if G(.) is max-semistable w.r.t. [1/τ(1), L(.)]. Under time-space change we
understand a mapping η : (0,∞)2 → (0,∞)2, η(0) = 0 strictly increasing and
continuous in both coordinates.

2 The max-model

B. Vl. Gnedenko’s (1943) paper ”Sur la Distribution Limite du Terme Max-
imum d’une Serie Aleatoire” marked the beginning of a new branch in the
modern Stochastics, the Extreme Value Theory (EVT). During my partici-
pation at the Saturday-seminars of Gnedenko at MSU I was introduced to
this fascinating field and I have remained faithful to it till today. Especially
analogies and differences between both max- and sum-model have occupied
my mind.

Sure you know the old lithography where three whales support the earth
ball. The three whales of the Probability theory are: the notion of indepen-
dence, the law of large numbers and the central limit theorem. What would
happen if one changed the operation sum (+) by the operation maximum (∨)
in these celebrated theorems? In fact, this intriguing question led the stochas-
ticians in developing the modern EVT.

Let χ be the set of all independent rv’s in R := (−∞, +∞) and let F
be the corresponding set of their df’s. Below we denote by ”∗” the operation
convolution between df’s and by ”.” the multiplication. The sum-model (χ, +),
respectively (resp.) (F , ∗), is a semigroup with unit element the zero, resp.
the degenerated at zero distribution δ0, as X + 0 = X. For given X and
Z, the relation X + Y = Z determines uniquely (in a certain sense) Y =
Z − X. In the max-model the point {−∞} plays the role of unit element, as
X∨{−∞} = X. Let χ̄ := χ∪{−∞} and let F̄ denote the enlarged set F with
all distributions assuming mass at {−∞}. Now the max-model (χ̄,∨), resp.
(F̄ , .) is a semigroup with unit element {−∞}, resp. δ−∞. Unfortunately, in
the max-model (χ̄,∨) there is no inverse operation to ”∨” and for given X
and Z the relation X ∨ Y = Z does not determine uniquely Y . The intrinsic
difficulty in the max-model is the non-uniqueness of the max-components in
any decomposition Z = Z1 ∨ Z2 ∨ ... ∨ Zn. This phenomenon, called Blotting,
is discussed in [1].

There is a full analogy in characterizing classes of distributions in both
models (χ, +) and (χ̄,∨). Let us mention only the class ID of the infinitely
divisible df’s and the class S of the stable df’s. Recall, a rv X with df F is
id (infinitely divisible) if for all n ≥ 2, X can be decomposed in n iid sum-

components X
d
= Xn1 + ... + Xnn, i.e. F = F ∗n

n . Here Fn is df of Xn1. In the
same way a rv X is max-id if for all n ≥ 2, X can be decomposed in n iid

max-components X
d
= Xn1 ∨ ... ∨ Xnn, i.e. F = F n

n . Recall, the stable df’s
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are characterized by the functional equation F (x) = F ∗n(anx + bn) ∀n and
with norming sequences an > 0, bn ∈ R, whereas the max-stable df’s satisfy
F (x) = F n(anx + bn) ∀n.

Just here one can put the heretical question: Do the norming mappings in
(χ̄,∨) have to be linear like in (χ, +) ? Our definite answer is ”not” and we
choose max-automorphisms L : R ↔ R as norming mappings (see the discus-
sion in [5]). The max-automorphisms are strictly increasing and continuous,
so they preserve the max-operation, i.e. L(X∨Y ) = L(X)∨L(Y ), there exists
the inverse mapping L−1 and they form a group w.r.t. the composition ”◦” .
We denote it by GMA.

The new norming mappings call for a new understanding of the notion
type(F ) and a new formulation of the convergence to type theorem (CTT).
We say G belongs to type(F ) if there exists T ∈ GMA such that G = F ◦T . A
convergence to type takes place if both convergences Fn

w
→ F and Fn ◦Tn

w
→ G

imply G ∈ type(F ), where Tn ∈ GMA. Using here max-automorphisms we are
confronted with similar difficulties as if we were working in a space of infinite
dimension. Let R be a subset of GMA closed w.r.t. the pointwise convergence
τ . Take {Tn} ⊂ R. Then the new CTT claims: The τ -compactness of the
sequence {Tn} is necessary and sufficient for a convergence to type.

CTT is the main tool for limit theorems for cumulative sums and extremes.
Its new formulation in the max-model makes it difficult for application. In
order to overcome it, we RESTRICT our investigation to REGULAR norming
sequences only.

Definition 2.1 A sequence {Ln} ⊂ GMA is called regular if there exists
a continuous one-parameter group (c.o.g.) {Lt : t > 0} , i.e. Ls ◦ Lt =
Lst ∀s, t > 0 and the correspondence t → Lt(x) is continuous ∀x ∈ R, such
that pointwise

L−1
[nt] ◦ Ln(x) → Lt(x) (2.1)

uniformly on compact subsets of {t > 0}. Further, {Ln} is called semi-regular
if it can be embedded into a regular sequence.

The main advantage of restricting to (semi)regular norming sequences is
that instead of using the CTT we use the continuity of the composition to
obtain a limit max-(semi)stable distribution.

Here and further on we consider only non-degenerated limit df’s. We denote
by SuppG (resp. SuppX) the support of a df G (resp. X).

Theorem 2.1 The following statements are equivalent and characterize the
max-stable distributions on R.
a) G satisfies the functional equation

Gt(x) = G(Lt(x)), x ∈ R, (2.2)
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w.r.t. a c.o.g. L = {Lt : t > 0} ⊂ GMA.

b) There exists a strictly increasing continuous mapping h : SuppG ↔ R such
that

G(x) = exp{−e−h(x)} (2.3)

and Lt(x) = h−1(h(x) − log t).

c) There are iid rv’s X1, X2, ... with df F and a regular norming sequence {Ln}
satisfying (2.1) such that

F n(Ln(x))
w
→ G(x), x ∈ R.

In case c) we say that F belongs to the generalized max-domain of attrac-
tion of G w.r.t. L, briefly F ∈ GDAL(G). Clearly GDAL(G) ⊆ GDA(G) for
every subgroup L ⊆ GMA. Here ”generalized” stays for reminding that we
use non-linear mappings for normalization. Let us note also that, in view of
expression (2.3), any continuous strictly increasing df is max-stable.

We like to underline here that representation (2.3) can be expressed also
in the parametric form

G(x) = exp{−ae−bh1(x)}

for aiming a parametrization of the class MS of the max-stable df’s. Indeed,
since h(x) = bh1(x) − log a, then Lt(x) = h−1(h(x) − log t) = h−1

1 (h1(x) −
1
b
log t).

Let us end this section with underlining one more difference between (χ, +)
and (χ̄,∨), namely the notion of asymptotic negligibility (AN). Assume {Xnk :
k = 1, 2, ..., kn}, n > 1, kn → ∞ are row-wise independent rv’s. In the sum-
model the condition

(AN) max
k

P (|Xnk| > ǫ) → 0, n → ∞

means an asymptotic closeness to zero (the semigroup unit element). Then the

convergence
∑kn

k=1 Xnk
d
→ Y, n → ∞ implies Y is id. Let l be the left endpoint

of SuppY . In the max-model the convergence
∨kn

k=1 Xnk
d
→ Y together with

the assumption

(max − AN) max
k

P (Xnk > x) → 0, n → ∞, ∀x > l

implies Y is max-id. Thus, we speak here of an asymptotic negligible contri-
bution of the individual Xnk to the limit behavior of their row-wise maxima
rather than of asymptotic negligible size of Xnk.
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3 Max-stability

There are many approaches to characterize a class A of df’s. The most popular
ones are:

(a) to determine arbitrary df G ∈ A as satisfying a certain functional
equation;

(b) to give the explicit form characteristic of arbitrary df G ∈ A;

(c) to obtain arbitrary df G ∈ A as limit distribution in a special max-
model.

In case we succeed in proving (a) ⇐⇒ (b) ⇐⇒ (c) we may then think of A
as being completely characterized. In order to demonstrate this scheme let A
be the class MSS of all max-semistable df’s on R, see [2] and [6].

(a) A df G is referred to as max-semistable (max-ss) if it satisfies the
functional equation

Gα(x) = G(L(x)), x ∈ R, (3.1)

for a pair of parameters [α, L], α ∈ (0, 1], L ∈ GMA.

We write briefly G ∈ MSS([α, L]). Below we observe the most important
consequences of characteristic equation (3.1):

a1) The n-times iteration of (3.1) results in

Gαn

(x) = G(L◦n(x))

for n = 0,±1,±2, ...where L◦0 is the identical mapping, L◦n = L◦L◦(n−1), and
L◦(−n) := (L−1)◦n. Thus, if G ∈ MSS then G can not have mass at the left
(l) and the right (r) endpoints of SuppG.

a2) The set Γ(L) := {L◦n : n = 0,±1,±2, ...} ⊂ GMA forms a cyclic
group w.r.t. the composition and the following boundary condition

(BC) L◦n(x) → r, L◦(−n)(x) → l

is satisfied for n → ∞ and for all continuity points x ∈ {0 < G < 1}.
For known G let us look at (3.1) as an equation for L. Then one can prove

(e.g. [7]) the following property.

a3) The cyclic group Γ(L) can be embedded in a c.o.g. L = {Lt(.) =
h−1(h(.) + c−1 log t) : t > 0} ⊂ GMA, c > 0 so that L◦n(.) = L( 1

α
)n(.) =

h−1(h(.) + n1
c
log 1

α
). Here h : (l, r) ↔ R is continuous and strictly increasing.

So, we may use the notation G ∈ MSS([α, h]) if necessary.

Let us denote the semi-invariant group of G by SIG(G) := {T ∈ GMA :
∃t > 0, Gt(x) = G(T (x))}, and state (cf [5]) the following proposition.

Proposition 3.1 A df G belongs to MSS iff its SIG contains a cyclic
group Γ(L), L ∈ GMA, satisfying (BC).
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a4) Max-semistability is a type-property: G ∈ MSS([α, L]), H = G ◦ T
imply H ∈ MSS([α, T−1 ◦ L ◦ T ]).

a5) Gt ∈ type(G) for countably many t ∈ {αn, n = ±1,±2, ...}.
a6) A max-semistable df G may be discontinuous, see Example 3.1 at the

end of this section. The following statement is easily checked.

Proposition 3.2 If I(a) := {x : G(x) = a} is an interval of constancy of
G, then such are countably many disjoint intervals I(aαn

) = L(I(aαn−1

)).

Let us say some words on the structure of SuppG:
a7) A max-semistable df may be (i) absolutely continuous, or (ii) discrete,

or (iii) singular. For an example in the last case we refer to R.Salem (1943)
who gave an example of a singular df which is strictly increasing. There are
examples for G ∈ MSS having one component of kind (i) and another compo-
nent of kind (ii) as well as one component of kind (i) and another component
of kind (iii) (in I.Grinevich (1994), Ph.D.Thesis).

Just on place here is the following

Problem 3.1 Give an example for a max-semistable df having components
of all the three kinds.

a8) Any df G satisfying (3.1) is max-id, since G is limiting df for row-wise
maxima in a triangular array of independent rv’s obeying condition (max-AN).
Indeed, put kn := [ 1

α
]n, Ln := L◦n, Xnk := L−1

n (Xk). Here Xk are iid with
df G. Then the characteristic equation (4) reads

G(x) = G
1

αn (L◦n(x)) ∼ Gkn(Ln(x)) = P (Xn1 ∨ ... ∨ Xnkn
< x)

where P (Xnk > x) = P (Xk > Ln(x)) → 0, n → ∞, x > l. Furthermore,
the norming sequence {Ln} satisfies the relation L−1

n ◦ Ln+1 = L, i.e. {Ln} is
semi-regular.

Let us denote the class of all max-id df’s by MID, the class of all max-
semi-selfdecomposable df’s by MSSD, the class of all max-selfdecomposable
df’s by MSD and the class of all max-stable df’s by MS. Figure 1 below gives
roughly the relations among these classes.

(b) The explicit form of a df G ∈ MSS([α, h]) is given by

G(x) = exp{−e−ch(x)pα(h(x))}, c > 0, (3.2)

where pα(.) is a periodic function of period T = 1
c
log 1

α
.

More precisely, (3.2) is the solution of (3.1). To see this we substitute
L(x) = h−1(h(x) + 1

c
log 1

α
) in characteristic equation (3.1) and get

G(x) = G1/α(h−1(h(x) + log φ)), φ > 1, αφc = 1.
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Figure 1: Classes DFs

Put HG(x) := − log G ◦ h−1 and y := h(x). Now (3.1) implies the following
chain of equations

HG(y) =
1

α
HG(y + log φ) = ... =

1

αn
HG(y + log φn).

We multiply all sites by ecy and recall that αn = exp{−cn log φ}. So we get

ecyHG(y) = ec(y+log φ)HG(y + log φ) = ... = ec(y+n log φ)HG(y + n log φ).

Hence the function pα(y) := ecyHG(y) is periodic with a period T = log φ =
1
c
log 1

α
. From here one gets finally (3.2).

The periodic function pα(.) is not arbitrary but possesses the following
properties (P):

p1) pα(y) > 0 ;
p2) cpα(y) ≥ p′α(y) where p′α(y) is the first derivative ;
p3) e−cypα(y) ↓ 0 for y → ∞;
p4) pα(.) is a bounded function.
Expression (3.2) justifies the name ”semistable”, since the double exponent

function characterizes a max-stable df. Denote by P the set of all periodic
functions on R satisfying conditions (P). So we state that the class MSS is
generated in the following way

MSS = {Gp : G ∈ MS, p ∈ P}.

In Figure 1 let us denote A := MSS\MSD, and B := (MSD∩MSS)\MS.
Obviously if pα(.) ≡ constant then G ∈ MS. Let us recall that the characteris-
tic property of a max-selfdecomposable df G w.r.t. a continuous one-parameter
semigroup {Lt : t ∈ (0, 1)} ⊂ GMA, Lt(.) = h−1(h(.)− c log t) is that HG(.) is
a convex function (cf [6]). From here we conclude that the periodic function
pα(.) of a df G ∈ B has to satisfy the inequality:
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c2pα(y) + p′′α(y) ≥ 2cp′α(y). (3.3)

Let us see a few examples of max-ss df’s.

Example 3.1 G(x) = exp{−e−[x]} ∈ A.

Indeed, G(x) = exp{−e−xe{x}}. Here [x] and {x} denote the integer and
the fractional part of x, resp. Hence G is max-ss w.r.t. [α = e−1, L(x) = x+1].
Further c = 1, T = 1, h(x) = x and the characteristic equation (3.1) reads

Gα(x) = exp{−e−[x]e−1} = G(x + 1) = G(L(x)).

Moreover, G is step function, hence G 6∈ MSD.

Example 3.2 G(x) = exp{−x−1(d − sin(log x))} ∈ B, x > 0, d > 2.

We can rewrite this expression in the form (3.2) where h(x) = log x, c =
1, T = 2π, pα(y) = d − sin(y). Hence G is max-ss w.r.t. [α = e−2π, L(x) =
x/α]. Let us check inequality (3.3): it is satisfied for d > 2. The same result
we receive if we check directly the convexity of HG(x). One can see that
H ′′

G(x) > 0 for d > 2. Then G ∈ MSD. As far as α 6= 1, G 6∈ MS.

Example 3.3 (see Grinevich (1993))

Let pα(.) be periodic function with a period T = − log q, 0 < q < 1, such that
x−αpα(log x) is non-increasing. Then

G(x) = exp{−(log
r

x
)−αpα(log log

r

x
)}, x ∈ (0, r)

is max-ss w.r.t. [α = − log r
log q

, L(x) = r1−q|x|signx].
Now we go over to the next characterization of a max-ss df.
(c) Any df G ∈ MSS is limiting df in the following max-model: For a

sequence {Xn} of iid rv’s with df F we assume that there exists a sequence
of integers kn → ∞ and a norming sequence {Ln} ⊂ GMA such that the
following conditions (I) are fulfilled:

(i) L−1
n ◦ Ln+1 → L ∈ GMA

(ii) F kn(Ln(x)) = P (L−1
n (X1 ∨ ... ∨ Xkn

) < x)
w
→ G(x).

As direct consequences of conditions (I) we observe the following properties
of G:

c1) G is max-id, since it is limit df for a triangular array of row-wise iid
rv’s {Xnk = L−1

n (Xk), k = 1...kn}, n ≥ 1 which satisfy the max-AN condition,
i.e.

P (Xnk < x) = F (Ln(x)) ∼ G1/kn(x) → 1, n → ∞
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for all continuity points x ∈ {0 < G < 1}.
c2) There exists lim kn

kn+1
=: α ∈ [0, 1].

The case α = 0 implies G is degenerate, α = 1 implies G is max-stable and
kn ∼ n, α ∈ (0, 1) implies that the characteristic functional equation (3.1),
namely Gα = G ◦ L, holds.

Caution: (c2)+(ii) do not in general imply (i), as it is the case when using
linear normalization Ln(x) = anx + bn.

c3) The characteristic asymptotic relations (I) can be read also as ”df F
belongs to the partial general domain of attraction of the max-ss df G w.r.t.
the pair [α, L]”, briefly F ∈ PGDA(G[α, L]).

Here is on place to put the next

Problem 3.2 Find necessary and sufficient conditions for
F ∈ PGDA(G[α, L]) using semi-regular sequences {Ln} ⊂ GMA.

At the end of this section we discuss the normal max-domain of attraction
of a max-ss distribution. As known, any max-ss df belongs to its own PGDA,
i.e. for n → ∞

G(x) = G1/αn

(L◦n(x)) ∼ Gkn(Ln(x))

where kn = [ 1
α
]n, Ln(x) = L◦n(x) = h−1(h(x)+n logφ), αφc = 1. We say that

F belongs to the normal generalized max-domain of attraction of G ∈ MSS,
briefly F ∈ NGDA(G), if F ∈ PGDA(G) w.r.t. the same sequences {kn} and
{Ln} as G itself. The asymptotic relation

F kn(Ln(x)) → G(x) = exp{−e−ch(x)pα(h(x))}

is equivalent to
1 − F (Ln(x)) ∼ k−1

n e−ch(x)pα(h(x))

for n → ∞. We put here y := h(x), z := y + n log φ and get further

1 − F ◦ h−1(z) ∼ k−1
n φcne−czpα(z − n log φ).

Hence we state the following

Proposition 3.3 Let G be max-semistable w.r.t. the pair [α, h]. A df F
belongs to the NGDA(G[α, h]) iff 1 − F ◦ h−1(z) = e−czpα(z)[1 + o(1)].

4 Semi-selfsimilar extremal processes

Let X = {X(t) : t ≥ 0} be a random process in R. By the celebrated Kol-
mogoroff’s theorem if the family of all finite dimensional distributions (fdd’s)
P (X(t1) ≤ x1, ..., X(tm) ≤ xm) is known, then we may think X known. As-
sume that X has independent additive increments, i.e. if for arbitrary finite
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sequence 0 = t0 < t1 < ... < tm = t we denote here Uk = U(tk−1, tk] :=
X(tk) − X(tk−1), k = 1, 2, ..., m then the rv’s U1, U2, ..., Um are independent
and

(X(t1), X(t2), ..., X(tm))
d
= (U1, U1 + U2, ..., U1 + ... + Um)

Thus, X(t) can be decomposed in sum of independent increments X(t) =∑m
k=1 Uk.
Analogously, random processes with independent max-increments we call

extremal processes.

Definition 4.1 An extremal process Y : [0,∞) → [0,∞) has the properties:
1. the sample paths are right continuous increasing functions,
2. for 0 = t0 < t1 < ... < tm = t there exist independent rv’s U1, ...Um (called
max-increments) such that

(Y (t1), Y (t2), ..., Y (tm))
d
= (U1, U1 ∨ U2, ..., U1 ∨ ... ∨ Um).

Obviously, Y (t) can be decomposed in maximum of independent max-
increments Y (t) =

∨m
k=1 Uk. The multidimensional distributions of an ex-

tremal process are completely determined by the family of df’s {Ft(.)} of the
random variables {Y (t) : t ≥ 0} since these determine the df’s of the max-
increments: for Y (t) = Y (s)∨U(s, t] the df H(.) of U(s, t] is just the quotient
H(.) = Ft(.)/Fs(.). One has to be a little careful if Fs(x) vanishes for certain
x > 0. Hence, define the increasing function C(t) := inf{x ≥ 0 : Ft(x) > 0}.
This is the lower endpoint of the df Ft(.), and the curve C : [0,∞) → [0,∞)
is the so called lower curve of the process Y (.), see [1]. The df of the max-
increment U(s, t] above the lower curve is unique if we impose the condition
U(s, t] ≥ C(t) a.s., for all 0 ≤ s < t. Below we count several distributional
properties (E) of an extremal process Y : [0,∞) → [0,∞).

E1) The df of the process P (Y (t) < x) =: f(t, x) ( for fixed t, f(t, x) =:
Ft(x) ) is increasing and left-continuous in x, decreasing and right-continuous
in t.

E2) The df of the max-increment U(s, t] over a time interval (s, t] is given

by P (U(s, t] < x) = Ft(x)
Fs(x)

for s < t and x > C(t).

E3) For 0 < t1 < ... < tn, 0 < x1 < ... < xn, (tk, xk) ∈ [0, C]c the
multivariate df of the process is determined by

Ft1,...,tn(x1, ..., xn) = Ft1(x1)
Ft2(x2)

Ft1(x2)
...

Ftn(xn)

Ftn−1
(xn)

.

Here [0, C]c is the set of all points x which lie above the lower curve C.
E4) Any real-valued extremal process Y is generated by a Poisson point

process (P.p.p.) N = {(Tk, Xk) : k ≥ 1}, and a lower curve C such that

Y (t) = C(t) ∨ {∨Xk : 0 < Tk ≤ t}.
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There is a simple connection between the df of the extremal process and the
mean measure µ of the generating P.p.p.

Ft(x) = P (Y (t) < x) = P (N ([0, t]× [x,∞)) = 0) = e−µ([0,t]×[x,∞)).

On Figure 2 below one possible sample path of an extremal process is
depicted.

Figure 2: Extremal Process

A particular subclass of extremal processes is the class of the so called
G-extremal processes, introduced in [4]. Let G be a df on R and choose
t1 < ... < tn, x1 < ... < xn. The family of fdd’s

Ft1,...,tn(x1, ..., xn) = Gt1(x1).G
t2−t1(x2)...G

tn−tn−1(xn)

defines an extremal process Y with df f(t, x) = P (Y (t) < x) = Gt(x) where
G(x) = P (Y (1) < x) and with df of the max-increments P (U(s, t] < x) =
Gt−s(x). Hence C(t) ≡ l = inf{G > 0}. The generating p.p. N = {(Tk, Xk)}
is time-homogeneous P.p.p. with mean measure

µ([0, t] × [x,∞)) = tν([x,∞))

where the exponent measure ν of Y (1) is determined by

ν([x,∞)) = − log G(x), x ≥ l.

Another subclass of extremal processes is the class of the semi-selfsimilar
extremal processes (SSEP’s). Here our interest in SSEP’s is caused by their
relation to the max-semistability given in Proposition 4 below. The SSEP’s are
introduced and studied in [7]. Here we give a short overview of their properties.



22 Elisaveta Pancheva

Let Y : [0,∞) → [0,∞) have df g and let η(t, x) = (τ(t), L(x)) be a time-
space change in GMA((0,∞)2) such that its cyclic group Γ(η) = {η◦n : n =
0,±1,±2, ...} satisfies the boundary conditions:

η◦n → (−∞,∞), η◦(−n) → (0, 0), n → ∞ .

We call Y semi-selfsimilar w.r.t. η if

Y (τ(t))
fdd
= L(Y (t)) . (4.1)

Hence, its df satisfies the characteristic functional equation

g(τ(t), x) = g(t, L−1(x)) ∀t > 0 . (4.2)

The n-times iteration in (4.1) leads to Y (τ ◦n(t))
d
= L◦n(Y (t)). Moreover, we

observe that the semi-selfsimilar extremal process Y has the properties:

1. g is invariant w.r.t. Γ(η).

2. Y (0) = C(0) a.s.

3. Γ(η) can be embedded in a c.o.g. {ξs(z) = h−1(h(z) + e. log s) : s >
0}, e = (1, 1), such that η = ξφ for some φ > 1 and η◦n = ξφn.

4. Denote h(t, x) = (h0(t), h1(x)) in the above expression of {ξs(z). Then
the process X(t) := h1 ◦ Y ◦ h−1

0 (t) is periodically stationary, i.e. X(t +

s)
d
= X(t) ∀s ∈ {log φn : n integer}.

5. If additionally Y has stationary max-increments then g(t, x) = [g(1, x)]t

=: Gt(x). We observe that

g(t, x) = g(τ(t), L(x)) = Gτ(t)(L(x)) = Gt(x)

hence (Gt)1/τ(t)(x) = G(L(x)), i.e. all univariate marginals Gt of Y are
max-semistable .

Proposition 4.1 A G-extremal process is semi-selfsimilar w.r.t. Γ(η =
(τ, L)) iff G ∈ MSS([1/τ(1), L]).

6. In view of the n-times iteration of (4.1) we see that any semi-selfsimilar
extremal process Y appears to be limiting for the sequence of extremal pro-
cesses Yn := L◦(−n) ◦ Y ◦ τ ◦n(t). Conversely, let X(t) = C(t) ∨ {∨Xk : tk ≤ t}
be extremal process generated by the p.p. N = {(tk, Xk) : k ≥ 1} with de-
terministic time points 0 < t1 < t2 < ... and {Xk} independent rv’s. Assume
that there exists a sequence of time-space changes {ξn = (τn, Ln)} ⊂ GMA
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satisfying the boundary conditions and such that ξ−1
n ◦ ξn+1 → η = (τ, L).

Suppose further that

Yn(t) := L−1
n ◦ X ◦ τn(t)

= Cn(t) ∨ {∨L−1
n (Xk) : τ−1

n (tk) ≤ t}
d
→ Y (t).

Then the df g of the limiting extremal process Y satisfies the characteristic
equation (4.2), i.e. Y is semi-selfsimilar.

Finally, let us construct examples for SSEP’s :

Example 4.1 g(t, x) = exp{−t.e−[x]} = Gt(x) with G ∈ MSS, α =
e−1, L(x) = x + 1, η(t, x) = ( t

α
, x + 1).

Example 4.2 g(t, x) = exp{− t
x
.{log x}} = Gt(x) with G ∈ MSS, α =

1/φ, L(x) = x.φ, η(t, x) = (tφ, xφ).

Example 4.3 g(t, x) = exp{− t
x
.(d − sin(log x))} = Gt(x) with G ∈ MSS,

α = e−2π, L(x) = x
α
, η(t, x) = (tα, xα).

Example 4.4 Let Y have df g(t, x) = 1 − t
x
, x > t, t > 0. Obviously

Y ∈ SSEP w.r.t. η(t, x) = (τ(t) = at, L(x) = ax) a > 0. This is an example
for a semi-selfsimilar extremal process with nonhomogeneous max-increments.
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