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Abstract. The change of the service demand is hard to be controlled for an
enterprise. The customers have to line up when the service capability has been
fulfilled. Therefore, to increase the service rate in the quick service industry
is the best way to keep the enterprise’s competitiveness. To serve customers
directly is the major job of the forefront attendants; whenever lots of customer
waits for service, attendants’ working pressure would be changed, and the pres-
sure will influence the service rate of service from the attendants. The queuing
system under pressure condition is always discussed with infinite queuing ca-
pacity as well as service rate, but it obviously conflicts with the truth. Based
on the above-mentioned reason, this paper tries to construct a service function
with upper limit of service rate, and then applying the “System Dynamic”
model to conduct the simulation. In addition, the relationship between the
changes of the ‘Pressure coefficient’ and the “working efficiency” would be
discussed.
Keywords. Queuing Theory, System Dynamic, Pressure Coefficient, En-
terprise’s Competitiveness and Infinite queuing capacity, Conservation of re-
sources and Salary Reward Policy.
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1 Introduction

How to reduce loss of customer loyalty has become one of the most crucial
issues in business administration [3]. Business turnover is the foundation of
substantial management [1], and customer is an asset for creating business
turnover [2]. As indicated in a report by Forrester Research, the cost of de-
veloping a new customer is five times higher than that of retaining an existing
one. In other words, keeping an old customer brings more profits than winning
many new ones [4, 5]. Providing adequate services and accomplishing a sales
operation in an instant manner before customers run out of their patience and
leave for other competitors is the only solution to win re-patronage of exist-
ing customers and ensure long-term development of the enterprise. Therefore,
appropriate arrangement of the service team can be considered as a core com-
petence of enterprises aiming to enhance their competitiveness.

It is very easy to see people waiting in line at cashiers, gas stations, box of-
fices, bus stops, and highway toll stations [12]. Also, malfunctioning machines
to be repaired, data to be processed by the CPU, and orders to be fulfilled
in the production line are invisible but typical types of queues. The potential
impact of pressure on work performance is one of the primary focuses of many
managers [6, 7, 8]. Service pressure, before reaching to a certain extent, has
positive effect on the increase of service provider’s work performance [9]. The
rapid changes in social structure and economy have posed even greater pres-
sure on the general public, and very few consumers are willing to spend time
on queuing [10]. As a result, issues associated with queuing have become more
important [11].

Enterprises nowadays all attach much importance to increase of service
quality and reduction of customer waiting time. Most of them increase ser-
vice quality by setting up more service facilities. For instance, hypermarkets
increase the number of POS counters, clerks, and cash registers, and factories
set up more equipment to expand the production line. All these methods can
indeed shorten customer waiting time, but they also drastically increase busi-
ness cost and the difficulty of controlling time efficiency. Thus, appropriate
work force arrangement, adequate intensity of service pressure, and proper re-
ward policies are issues that the service industry expects to investigate first to
enhance service quality and decrease queuing cost at the same time.

System dynamics was proposed in 1956 by a MIT research team led by
Professor Jay W. Forrester et al. It is a pioneering science developed by ap-
plying the concept of “information feedback” to business administration. It is
a methodology, an instrument, and also a concept [13]. In his book, ‘Indus-
trial Dynamics’, [14, 15] argued that the universe is in fact a dynamic system
that contains many interacting decision points. The status of a decision point
can lead to motions in a certain form, which further brings changes to status
quo and influences other decision points. In short, the system is comprised of
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factors that act as both the cause and the result.
For service providers who have direct contact with customers, the intensity

of pressure fluctuates with the number of customers in queue, especially when
there are a huge amount of customers waiting to be served by a small number
of service providers. However, very few studies have touched upon the issue
that some employees may perform better under reasonable pressure.

In addition, most studies have explored the influence of pressure with the
assumption that capacity of the waiting area is unlimited, which is unrealistic
and impractical.

For all descriptions above, I hereby summarize the objectives of this study
as below:

1. To use the Queuing Theory’ and construct the Queuing Models’ under
pressure.

2. To deduce and prove the 6 formulas by considering the M/M/s/k of
Pressure Coefficient’.

3. With service pressure considered, apply system dynamics techniques to
construct a service system mode.

2 Research assumptions and limitations

2.1 Case study research assumptions and limitations

Our case study on quick-service restaurant is based on the following conditions
and limitations:

1. Many auxiliary decision variables manipulated in this study, such as ser-
vice speed and scheduling of attendants, are all simulated under normal
distribution. Exceptional circumstances are excluded.

2. Customer arrival rate complies with exponential distribution.

3. Service level is consistent among all attendants; neither individual dif-
ferences nor variations in service proficiency are considered.

4. The capacity of the waiting system may vary with customers’ willingness
to queue up in different time intervals and is thus set as an operational
exogenous variable.

5. Both the interval between customer arriving times and system service
time are in exponential distribution.

6. When an arriving customer realizes the queue is unacceptably long, the
customer will leave the system, causing loss to the enterprise.
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7. “The number of arriving customers in context” is estimated by the
restaurant and hence set as a known exogenous variable.

8. Focused on the domain of social science, this research does not touch
upon the psychology and social interactions of attendants under different
contexts and business strategies.

2.2 The research on service pressure

2.2.1 Notations

We hereby illustrate the symbols of our mathematics models from our graduate
school as the following:
s - Maximum service person number
k - Allowed maximum person(s) of the system capacity
µn - Service rate when there is/are “n” person(s) in the system
n - Number of the customers in the system
αi - Pressure Coefficient’ with i’ service persons, αi = α, for constructing
deduction
λn - Arrival Rate when n’ person(s) in the system

2.2.2 Assumptions

I gave the research an essential hypothesis as the following:

1. There are “s” service persons here, only “k” customer(s) allowed in the
system, and both the interval time of arrival and service time are subject
to the allocation of coefficient.

2. When any customer arrives here and finds the queuing lines occupied
completely, he/she will refuse to enter into the system and withdraws.

3. For the limited system capacity, the average rate of arrival is

λn =

{

λ, n = 0, 1, . . . , k − 1

0, n ≥ k

when there is/are “n” customer(s) in the system.

4. There are “s” service persons in the system, so only “s” customers as a
maximum can enjoy the service simultaneously; when customer numbers
“n” are under “s”, only “n” customers are allowed to be served and the
other (s − n) service person(s) will be in an idle state’.
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In this case, the average service Rate is

µn =

{

nµ, n = 0, 1, . . . , s

[n(s+1)
s(n+1)

]α sµ, n = s + 1, . . . , k

when there is/are “n” customer(s) in the system. α’ means Pressure Coeffi-
cient’.

The reason why we are considering using the function is that it may meet
the following 3 essential conditions:

1. Whenever the number “n” of customer(s) is increasing limitlessly, the
maximum value of the system service rate µn’ is a limited value

(s + 1)αs1+αµ, i.e., lim
n→∞

[
n(s + 1)

s(n + 1)
]αsµ = (s + 1)αµ

2. Whenever the number “n” of customer(s) is equal to the number “s” of
service persons, the system service rate µn’ is the same as ‘sµ’.

3. Whenever α’ of the Pressure Coefficient’ is 0’ (zero), the average service
rate is

µn =

{

nµ, n = 0, 1, . . . , s

sµ, n = s + 1, . . . , k

when there is/are “n” customer(s) in the system.

In other words, Pressure Coefficient’ is not considered for the average ser-
vice rate µn’.

2.2.3 Construction of Queuing Model

We are discussing the limited queuing space here, i.e., the number of the
customers is controlled under some maximum (hereinafter called k’) and the
capacity of queuing line is (k − s). When any customer arrives here and finds
the queuing lines occupied completely, he/she will refuse to enter into the
system and withdraws. By the point of Birth-and-death process’, the average
rate of arrival is

λn =

{

λ, n = 0, 1, . . . , k − 1

0, n ≥ k

when there is/are “n” customer(s) in the system; the average service rate is

µn =

{

nµ n = 0, 1, . . . , s

[n(s+1)
s(n+1)

]∞sµ, n = s + 1, . . . , k
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when there is/are “n” customer(s) in the system; α’ means Pressure Coeffi-
cient’; to simplify the symbols

Cn =
λn−1 · · ·λ0

µn · · ·µ1

, n = 0, 1, 2, . . . , k.

And we may get that

Cn =
λn−1 · · ·λ0

µn · · ·µ1

,

Cn =
λn

{[n(s+1)
s(n+1)

]αsµ}{[ (n−1)(s+1)
sn

]αsµ} · · · {[ (s+1)(s+1)
s(n+2)

]αsµ} · sµ · (s − 1)µ · · ·2µ

=
λn

sn−ss!µn[ (s+1)
s

]α(n−s){ n
n+1

n−1
n

· · · s+1
s+2

}α

=
ρnsα(n−s)(n + 1)α

s(n−s)s!(s + 1)α(n−s+1)
.

When we set n = 0, ρ = (λ/µ) the symbol “n” brings a steady probability as
Pn = CnP0

=

{

ρn

n!
P0, n = 0, 1, . . . , s

ρn(n+1)α

s(1−α)(n−s)s!(s+1)α(n−s+1) p0, n = s + 1, . . . , k

Here

P0 =
1

∑s

n=0
ρn

n!
+

∑k

n=s+1
ρn(n+1)α

s(1−α)(n−s)s!(s+1)α(n−s+1)

We will acquire the steady probability Pn’ and the expected length of Queuing
persons for being served in the system as Lq;

Lq =
k

∑

n=s+1

(n − s)Pn

=

k
∑

n=s+1

(n − s)
ρn(n + 1)α

s(1−α)(n−s)s!(s + 1)α(n−s+1)
P0

=
ρsP0

s!(s + 1)α
{

k
∑

n=s+1

(n − s)
ρ(n−s)[(n − s) + (s + 1)]α

s(1−α)(n−s)(s + 1)α(n−s)
}

=
ρsP0

s!(s + 1)α
{

k−s
∑

i=1

i
ρi(i + s + 1)α

s(1−α)i(s + i)αi
}, let i = n − s

=
ρsP0

s!(s + 1)α

k−s
∑

i=1

i(i + s + 1)α[
ρ

s(1−α)i(s + i)α
]i,

=
ρsP0

s!(s + 1)α

k−s
∑

n=S+1

[(n − s) + (k + 1)]α[
ρ

s(1−α)(s + i)α
](n−s)
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The expected number of customer(s) in the queuing system is

L =
k

∑

n=0

nPn

=

s
∑

n=0

nPn +

k
∑

n=s+1

nPn

=
s

∑

n=0

nPn +
k

∑

n=s+1

(n − s)Pn +
k

∑

n=s+1

sPn

=

s
∑

n=0

nPn + Lq + s(1 −

s
∑

n=0

Pn)

= Lq +

s
∑

n=0

n
ρn

n!
P0 + s(1 −

s
∑

n=0

ρn

n!
P0)

= Lq + P0

s
∑

n=1

ρn

(n − 1)!
+ s − sP0

s
∑

n=0

ρn

n!

= Lq + P0ρ

s−1
∑

n=0

ρn

n!
+ s − sP0

s
∑

n=0

ρn

n!

= Lq + P0ρ(
s

∑

n=0

ρn

n!
−

ρs

s!
) + s − sP0

s
∑

n=0

ρn

n!

= Lq + s + P0(ρ − s)
s

∑

n=0

ρn

n!
− P0

ρs+1

s!

Based on a steady queuing process and the following Little’s formula’

L = λW (2.1)

Lq = λWq (2.2)

We may acquire the time of each customer in the queuing lines of the system
by entering the values of L’ (2.1) and Lq’ (2.2) to the formulas.

W =
L

λ

Wq =
Lq

λ
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3 Construction of a system dynamics simula-

tion model for service system under service

pressure

System simulation with a limited service speed function under customer pres-
sure

Figure 1: The system dynamics simulation model is a service system with
customer pressure

Figure 1 illustrates a system dynamics simulation model for a service system
in which service providers are confronted with customer pressure. The increase
in the number of arriving customers adds pressure to service providers, who
may respond to this situation by acting more quickly to finish serving all the
customers as soon as possible. The result is enhanced service speed, which
can directly increase turnover and profit. However, when waiting customers
exceed the amount that attendants can handle (tolerance under pressure),
attendants may become less motivated, maintaining at normal service speed
or even slowing down. In this case, the enterprise will suffer loss of reputation
and profit.

In Figure 1, number of service counters, tolerance under pressure, service
speed, and the number of arriving customer are all exogenous variables.
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Figure 2: System simulation with a limited service speed function under cus-
tomer pressure

4 Simulation results and implications for busi-

ness administration

Our case study is focused on the service system of quick-service restaurant.
Quick-service restaurant requirement for service speed is that, with service
quality maintained, a customer should spend only 1 minute standing in front
of the counter and 2 minutes waiting in the queue. In total, the entire service
procedure should not exceed 3 minutes.

Thus, it is presumed in our simulation that the number of service counters
in the restaurant is 5 (S = 5), each operating time interval lasts 60 minutes
(min/period). The enterprise’s standard service speed is 0.7 customer/minute.

Data used in the system simulation accord with actual practices of the
restaurant. Findings and implications obtained are discussed below:

Explanation of system simulation with a limited service speed function
under customer pressure.

As can be understood from the simulation results in Figure 2 and Table 1,
the system incorporates 5 service counters. The number of customer is on linear
increase. The service speed gradually increases from 0.7 (customer/minute) to
3.5 (customer/minute) and maintains at 3.5 (customer/minute). In practice,
when confronted with customer pressure, service providers at front service
desk tend to unconsciously increase their service speed from 0.7 (customer/
minute) 17.1 (customer/minute), which is the upper limit of their pressure
tolerance. However, when the number of arriving customers exceeds the service
provider’s pressure tolerance, the service speed will drastically drop to 4.1
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Table 1: Date for system simulation with a limited service speed function
under customer pressure

Number of arriv-
ing customer

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Amount of arriv-
ing customers

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Number of ser-
vice counters

1 2 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

Number of cus-
tomers serve by
standard

0.7 1.4 2.1 2.8 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5

Number of cus-
tomers served
under pressure

0.7 1.4 2.1 2.8 3.5 3.6 3.7 3.9 4.0 4.2 4.3 4.5 4.6 4.8 5.0 5.2 5.4 5.6 5.8 6.0 6.2 6.4 6.7 6.9

Number of arriv-
ing customer

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Amount of arriv-
ing customers

25 26 27 28 29 30 31 32 33 34 35 36 36 37 38 39 40 41 42 43 44 45 46 47

Number of ser-
vice counters

5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

Number of cus-
tomers serve by
standard

3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5

Number of cus-
tomers served
under pressure

7.2 7.4 7.7 8.0 8.3 8.6 8.9 9.2 9.6 9.9 10.3 10.7 10.7 11.1 11.5 11.9 12.4 12.8 13.3 13.8 14.3 14.8 15.4 15.9

Number of arriv-
ing customer

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Amount of arriv-
ing customers

48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71

Number of ser-
vice counters

5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

Number of cus-
tomers serve by
standard

3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5

Number of cus-
tomers served
under pressure

16.517.14.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1

(customer/minute).

5 Conclusion

Pressure is considered in the model for average service speed constructed by
Mr. Hiller. Hiller argues that the increase in pressure can lead to higher service
speed nµ. However, this assumption is not reasonably grounded. Increased
number of arriving customers can trigger higher service speed nµ, but the
increase is definitely limited. Hence, we proposed a reasonable model that
recognized the existence of an upper limit. Deduction and reasoning were
performed to obtain a set of more logical formulae that considered the impact
of pressure. Based on these formulae, a system dynamics simulation model for
restaurant service system was developed.

This research report gives you a logical model with existed maximum value.
utilize the Birth-and-death process’ to prove 6 characterized formulas from the
Queuing Model’ as M/M/s/k. After all I have got the following conclusions
through deduction and research of M/M/s/k under service pressure
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1. Probability of no people in the system is

P0 = 1
/

[

s
∑

n=0

ρn

n!
+

k
∑

n=s+1

ρn(n + 1)α

s(1−α)(n−s)s! (s + 1)α(n−s+1)

]

2. Probability with n -n-1-customer(s) in the system is

pn =

{

ρn

n!
P0, n = 1, . . . , s

ρn(n+1)α

s(1−α)(n−s)s!(s+1)α(n−s+1) p0 n = s + 1, . . . , k

3. Number of average person(s) in the queuing line is

Lq =
ρsp0

s!(s + 1)α

k−s
∑

i=1

i(i + s + 1)α

[

ρ

s(1−α)(s + 1)α

]i

4. Number of average person(s) in the system (including served person(s))
is

L = Lq + s + P0(ρ − s)
s

∑

n=0

ρn

n!
− P0

ρs+1

s!

5. Expected queuing time of each customer in the system is

W =
L

λ
=

1

λ
(Lq + s + P0(ρ − s)

s
∑

n=0

ρn

n!
− P0

ρs+1

s!
)

6. Expected queuing time of each customer in the queuing line is

Wq =
Lq

λ
=

1

λ
{

ρsp0

s!(s + 1)α

k−s
∑

i=1

i(i + s + 1)α[
ρ

s(1−α)(s + 1)α
]i}

“Putting the right man in the right place at the right time” is one of the key
principles in human resource arrangement. We proposed a system dynamics
model for service systems under customer pressure to address how customer
pressure could motivate service providers to enhance service speed and conse-
quently improve the enterprise’s turnover and revenue.

It could help optimize task scheduling of employees to avoid customer loss
due to unsatisfactory service efficiency. In short, the proposed model was
constructed with regard to the actual practices in the service system.
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