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Abstract. Inliers in a data set are observations which appear to be too small
compared to the remaining observations in the usual life testing experiments
with failure time distribution (FTD), F(x,0), x > 0, 6 € Q. These inconsistent
observations may be the resultant of the occurrences of instantaneous failures
or early failures in life testing experiments. To accommodate such instances
the failure time distributions (FTD) are modified by defining early failures
as those observations which are very small compared to the other positive
observations and are called inliers. We propose various inlier prone models
and their statistical significances. The maximum likelihood estimates (MLE)
are obtained for parameter 6 of the target distribution F' and also ¢ of the
contaminating population G. Assuming that there are k inliers, we obtained
the MLE of k& and proposed tests of hypothesis for & = 0 (no inliers) when
target population is exponential with mean life . We present different methods
of detecting inliers when k unknown and provide test statistics of one and
multiple inliers.

Keywords. failure time distribution; instantaneous failures; early failures;
exchangeable inliers model; labeled slippage inliers model; order statistics;
outliers.

1 Introduction

The occurrence of instantaneous or early failures in life testing experiment is
observed in electronic parts as well as in clinical trials. These occurrences
may be due to inferior quality or faulty construction or due to no response
to the treatments. These situations can be modeled by modifying commonly
used parametric models such as exponential, gamma, Weibull and lognormal
distribution among others. The modified model is then a non-standard mixture
of distribution by mixing a singular distribution at zero to accommodate such
failures.

Consider the data on Schedule 2 of Experiment 3 conducted by [19] on
drying of woods (for more details see the numerical example section). Out of
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37 observations, there are seventeen instantaneous failures and twenty positive
observations. Further from inspection, it is seen that the first five observations
among the positive observations are very nominal and closed to zeroes. The
observations corresponds to instantaneous failures together with early failures
may be termed as inliers here. We can contemplate similar situations in the
following examples also: (a) in auditing, the procedure is to determine fraudu-
lent claims of higher value than the actual expenses incurred. The receipts are
classified as correct and suspicious. The correct receipts are like instantaneous
failures and given value X = 0 and the suspect receipts are measured according
to size of the fraud X, (b). In the mass production of technological components
of hardware, intended to function over a period of time, some components may
fail on installation and therefore have zero life lengths. A component that does
not fail on installation will have a life length that is a positive random vari-
able whose distribution may take different forms, (c¢). Consider measurements
of physical performance scores of patients with a debilitating disease such as
multiple sclerosis. There will be frequent zero measurements from those giv-
ing no performance and many observations with graded positive performance,
(d). In a study of tooth decay, the numbers of surfaces in a mouth which are
filled, missing or decayed are scored to produce a decay index. Healthy teeth
are scored 0 for no evidence of decay and is therefore a mixture of a mass
point at 0 and a nontrivial continuous distribution of decay score, (e). Time
until remission is of interest in studies of drug effectiveness for treatment of
certain diseases. Some patients respond and some do not. The distribution
is a mixture of a mass point at 0, which corresponds to instantaneous remis-
sion and a nontrivial continuous distribution of positive remission times, (f).
The rainfall measurement at a place recorded during a season is modeled as
a continuous distribution with a nonsingular distribution at zero, where zero
measures those days having no rainfall etc. For more such examples see Sta-
tistical models and analysis in Auditing: Panel on nonstandard mixtures of
distributions, Statistical science, 1989.

Thus inliers in a data set are a subset of observations not necessarily all
zeroes, which are relatively small as compared with rest of the observations and
appear to be inconsistent with the remaining data. In all the above examples,
inliers is a natural occurrence and the model Z = {F(z,0),z > 0,6 € Q} where
F(z,0) is a continuous failure time distribution function (df) with F(0) = 0
is to be suitably modified to account inliers. In some of the above examples
say (d), (f) and the example based on [19] etc. we see that the inliers are
desirable sometimes. [9] have first introduced the term inliers in connection
with the estimation of parameters of early failure model with modified failure
time distribution (FTD) being an exponential distribution with mean 6 and
the number of inliers known. [17] discuss various methods of inliers model
when the number of inliers are unknown. In the following sections we provide
some inlier prone models and their analysis and practical importance.
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2 Instantaneous failure models

The occurrence of instantaneous failures when some items put on test giving
X; = 0 is quite common in electronic component and some other situations.
Note that because of the limited accuracy of measuring failure time it is pos-
sible that we record X; = 0 for some units although P[X; = 0/¢] = 0. To
accommodate such instantaneous failures, the model Z is modified to G =
{G(z,0,a),x > 0,q € Q,0 < a < 1} by using a mixture in the proportion
1 — a and « respectively of a singular random variable Z at zero and with a
random variable X with df F' € Z. Thus the modified failure time distribution
is given by

1— =0
G(z,0,a) = “ ! (2.1)
l—a+aF(zx,0) >0
and the corresponding density function as
11—« r=0
x,0,a) = ’ 2.2
9l ) {ozf(x,@) x>0 (22)

Some of the references which treat the above situation are [2, 6, 12, 19, 14, 15, 9]
and references contained therein. [20] and [16] considered the case where F is a
two-parameter Gamma distribution with shape parameter 3 and scale param-
eter . The above model is easy to analyze and provide a general formulation
for instantaneous failures.

3 Early failure models

To accommodate early failures defined as those units X; with observed failure
times X; < J, we consider the mixture of Z with a known FTD H(z) with
H(0) = 1, where ¢ is sufficiently small and assumed known. If early failures
are reported nominally as a class with X; = ¢ then the mixed distribution is

0 r <9
g(x,a,0) =1 —a+aF(0,0), z=9¢ (3.1)
af(x,0), x>0

A basic result due to the above formulation is that, if Z is m-dimensional
Cramer family then the modified family G is also a (m + 1) dimensional
Cramer family. If further & is an exponential family of dimension m then
G is (m + 1) dimensional exponential family admitting minimal complete suf-
ficient statistic (ng, T1, T, . . ., T;,) where ng is the number of observations < ¢
and T, = 3 _ske(ri), 7 =1,2,...,m where (ki(x), ka(z),..., kpn(z)) is min-

imal complete sufficient statistics for the family . Similarly, if & is Cramer
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family so is the modified family given by (3.1). Some of the references, which
treat early failure analysis with exponential distributions, are [8, 9], wherein
they treat early failures as inliers using the sample configurations. [17, 18]
considered the early failure analysis for Weibull distribution. The above two
models are further studied exclusively in respect of inliers by [10, 11]. The
authors describe various test procedures and the masking effect for testing
number of inliers as the loss of power due to presence of more than anticipated
discordant observations in the sample.

The early failures are thus defined normatively as those units which fail be-
fore d assumed known. However, early failures can also be defined by the con-
figuration of observed data. i.e. those observations which are very small com-
pared to the other observations. Note that observations are all non-negative
and those observations which belong to the left tail of the distribution are to
be regarded as early failures. Thus the problem of early failures is akin to the
problem of outliers where observations which are very large as compared to
the other observations are suspected as outliers. A very important distinction
between inliers and outliers is that the inliers form a group of observations and
are not excluded from further analysis. For the outlier generating models we
refer to the text of [3] and a review by [5].

4 Nearly instantaneous failure models

It is seen that the models (2.2) and (3.1) are represented as a mixture of a
singular distribution at zero and a suitable FTD, & in different proportion.
Because of the singular nature of the distribution, it is unable to define the
failure rate function meaningfully. [13] have integrated the above two models
to a single model as a mixture of two continuous distributions. This modifi-
cation allows establishing and studying the failure rate function via mixture
distribution.

Let F(z) and R(z) = 1— F(z) denote the cumulative distribution function
and the survival function of the mixture, respectively. We assume that F
is continuous and its density be given by f(z) = F’(z). The component
distribution functions and their survival functions are Fj(z) and R;(z) =1 —
F;(x), respectively, i = 1,2. The failure rate of a lifetime distribution is defined

as h(x) = {2((?) provided the density exists.

Instead of assuming an instant or an early failure to occur at a particular
time point as in the original model, we now represent this model as a mixture
of a generalized Dirac delta function and a pdf f(z,6). Thus the resulting

modification gives rise to a density function:

f(z) = alAs(z —x9) + (1 — a)f(x,0), 0 < a < 1, (4.1)
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Figure 1:
where
1 <z< J
Aslw —mg)= {3 ToST=T0F (4.2)
0, otherwise

for sufficiently small §. We note that
At —tg) = lim As(t = to)

where A(-) is the Dirac delta function that is well known in mathematical
analysis. We may view the Dirac delta function as a normal distribution
having a zero mean and standard deviation that tends to 0. For a fixed value
of 0, equation (4.2) denotes a uniform distribution over an interval [zg,z¢ +
] so the modified model is now effectively a mixture of a Weibull with a
uniform distribution. For xy = 0, it corresponds to the case with instantaneous
failures and for (small) xy # 0 it corresponds to the case with early failures.
Noting from (4.1) and (4.2), we see that the mixture density function is not
continuous at xy and xg + 0. However, both the distribution and survival
functions are continuous. A typical survival function and density function for
the above model is presented in figures 1(a) and 1(b) respectively. For different
characterizations and properties of this model with f(z, #) being Weibull (6, 3),

we refer to the authors’ paper.
5 M, inliers models and L, inliers models

Suppose that n units are put on test and ny units fail instantaneously and
(n—nyg) failure times are available. Out of these positive observations we have
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to determine which are inliers or early failures. Before the start of the ex-
periment we do not know which units will fail instantaneously or will pro-
duce inliers. These experimental conditions are to be modeled in M} inlier
model for given k. Let us relable failure times of these (n —mng) units as
(X1, Xo, -+, Xp_ny). Then in M inlier model, we assume that (n — ng — k)
are from target population with pdf f € & and k are from the inlier population
g € G. Thus the joint pdf of (X1, Xs, -+, X,,_,,,) can be written as

L(x1, @2, nngl [, 9,0) = {] [ o) H] [ f(2:.0)}, f€S,9€G, ver
i€V i€v

(5.1)

where v is the new parameter representing set of inliers and ranges over v, the

set of integers (i, s, ...,4) chosen out of (1,2,...,(n —ng)) with cardinality

(”;"0) This is so far similar to the model M}, for k outliers. The main difference

in M}, inlier model is that i (z) = g—g = % is assumed to be strictly decreasing
function of z. The following theorem will help us to write the likelihood

function under M, and L.

Theorem 5.1 Let X1y < Xy < -+ < X(u_p,) be the order statistics
and (Ry, Ry, ..., R,_n,) be the corresponding rank order statistics, then Max
o(ri,re, ..., re) = ¢(1,2,...,k) and (@), 2(2), ..., Twk)) have the mazimum
probability of being inliers.

For proof, we refer to [11]. As a consequence of this theorem, v = k and
therefore, the likelihood under M}, inlier model is

k n—ngo
L(zlg, f,9) = [[9xa) T] f(ze), feS g€ (5.2)
=1 i=k+1

But L(z|g, f,v) is likelihood and not the joint pdf of (z(1),x(2),- .., Tm-ng))-
Making it a pdf, the model for L inliers is therefore

n—no)k! Gy

Latelg, ) = L T o) T] few), feSged (3)
e(1,2,... k) -3 ke

where ¢(1,2,...,k) is as defined above and is a norming constant to make

L; a pdf. The model Lj is called as the labeled slippage model and it can
also be derived as model from M, with (Y7,Ys,...,Y)) are iid distributed
as G and (V,Va,...,V,_,,) as iid F' and with the additional condition Max
(Y1,Ys,...,Y) < Min (Vi, Vs, ..., Vin_ny))- The object of the experiment is to
make inferences about the target population F' € & and the parameter v in M,
and parameters of ¢ € G are nuisance parameters. The model M, or L; for
inliers assumes k known. In practice k is not known and is to be estimated from
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the data (z(1), Z(2), ..., T(n—no))- The possible values of k are {0,1,2,...,n —
no} but usually (k + ng) < [n/2] otherwise the conclusions drawn from the
experiment are suspect. Also too large number of instantaneous failures or
early failures may indicate a factor not taken into consideration in modeling
F € &. One can introduce Gy, Ga, - - - € G for inliers but that will increase the
nuisance parameters of G. If we assume g(z) and f(z) are exponential with
respective parameters ¢ and 6 such that ¢ < 6, then the likelihood corresponds
to Mj, inlier model is given by

n—mngp)! x;
L(g,k,@@) = k[(é_no ) ) ¢k9n no—k Xp{ Z Zg} (54)

1€V i¢v

And the likelihood corresponds to L inlier model is given by

kl(n —ng — k) 1 k n—ng
L = _Zi:l 33(7,)/¢ _Zi=k+l :17(1)/9
k;(&‘nmfag) @(1,2,,]{) ¢k9nfnofk€ e

where

90(1,2,...,k):w3(k+1,

(n—no — k)¢
7 g )

0

To estimate the value of k, we recommend that maximize In Ly (z|no, 0,0,9)
for fixed k and then determine Max lnLk(x\no,H $,0) and take k = ko at

which this maximum is attalned

As an example we generated 5 observations from g as exp (0.04) and 10
observations from f as exp (5) thus having n = 15 observations as 0.01339,
0.02679, 0.03442, 0.05519, 0.09459, 0.32254, 0.64367, 1.19427, 3.00276, 3.14612,
3.15643, 3.94635, 5.17659, 9.79405 and 12.52736. The graph of ¢(1,2,... k)
for the above data set is presented in Figure 1(b). The estimates are respec-
tively ¢ = 0.05364, 6 = 4.6411 and k = 5.
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6 Inliers as instantaneous and early failures

In this section we consider the situation where instantaneous (i.e. X = 0)
failures can also occur by mixing a singular distribution at X = 0 with the
above models of inliers. Assuming that the data is usually consisting of ng
instantaneous failures, k early failures as indicated by sample configuration
and the rest n — ng — k observations belong to the target population. In the
identified inliers model with 7 and v known the likelihood of the sample is

L= (7?0) (1-— a)”oa”*"(){ Hg(x”qﬁ) H f(xl,e)} (6.1)

i1=k+1

and the likelihood under the labeled slippage model is

L= (n)(l — a)”Oa”*no{ k'(nl;no _7:))' Hg(x(i), o) H f(x(l.)7 9)} (6.2)

no

where p(1,2,...,k) is as defined earlier.

The above likelihood of the sample assumes that between the experiments
when units are placed on test we do not know which of the units fail instan-
taneously. ie. X;; =0, X =0,...,X;, =0, which fail early, i.e. those units
whose failure time distribution is g(z(;), ¢), with failure rate much larger than
that of the failure time distribution of the target population whose failure rate
is considerably smaller.

Since (1,2,...,k) is a function of ¢ and 6, for simplicity, we assume
©(1,2,...,k) = vr(¢,0) and g and f are exponential with parameters ¢ and
6, then the likelihood equation of the parameters under the model (6.2) are

OlnL ng n—mng
do 1—a+ o =0 (6:3)
OlnL  Olnyk(p,0

= S — iy =0 6.4
¢ oo w @ Z © (64)
OlnL  Olnyi(e,0) (n—no iy
5= = - Z 2 (6.5)

i=k+1

(6.3) can be solved to get the estimate of p as p = "="¢. Solving (6.4) and
(6.5) simultaneously we get the estimate of ¢ and 6. Since

(n—ng—k)p'((k+1)I'(n —ng— k)%)
0 T((n—mno—Fk)% +k+1)

and
Inpr(p,0) =C+1Inf —Inl'(z) —InT'(z+ &k + 1),
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where z = w. Therefore,

0 1 (n—ng—k)
55 (0.0) = =+ V() = W+ k o+ D=
and
B tmou(6.0) = — + [8(z) — w1 4 1) LB
where W(t) = L1ogI'(t). Using [1], we get
\D(z)—\l/(z+k+1):—zzij. (6.6)

Jj=1

Thus the likelihood equations (6.4) and (6.5) can be written as

OlnL k+1 (n—mno—k) LB 1
3¢ = ¢ - 0 ZZ_F],—EZ%(Z‘):O (6.7)
=1

k n—ro

OlmL (n—ny—k—-1) (n—no—k)o 1 1 B
20 0 * 0 Zz+j 0 kzﬂx(“ =0 (68)

Equations (6.7) and (6.8) may be solved simultaneously to get the estimates
of ¢ and 6.

7 Testing of hypothesis about &

Consider the problem of testing Hy : k = 0 (i.e. no inliers) versus Hy : k =1
(i.e one inlier). The joint pdf under Hy is given by My(ng,z|0) and under Hy,
it is given by Mj(ng, z|0, ¢,v). ng in both cases is b(n,1 — «) and

1 1 1 1
M (ng, z|0, ¢,v) = constanta exp{—ax(l)}m exp{—é %U: T}

and
1 n—mno

1
Qn—no exp{ - 5 Z ‘I(Z)}

=1

My(ng,z|0) = constant

The MLE of 8 under M, is
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and
~ N — Ng\n—n,
meaxMo(no,x]@) = M, = ( O) exp(—n — ng).
L(i)
Under Hi, the MLE of v is z; = z(y), b = x(1) and 0 = n_T}O_l ol x(i).
Therefore,

(n —ng — 1)n_n0 1

MaXM1(£707 QZS,U,TL()) - Ml - —
Dico TG (1)

v,01,02

exp{—n — ng}.

. . . . — . —np—1
The likelihood ratio test is equivalent to rejecting Hp if (1 — =)™ ™ 2 <

constant, where 7' = >""" ;. This is equivalent to rejecting Hy if =2 < ¢,
¢ is chosen such that

@)

SupPy, | ——— <c| =a.
01 ’ doict T
But the distribution of anﬁlilo) is independent of 6 under Hy. [11] have called
i=1  T(i)
this test as Cochran’s test as it is analogous to the test based on Z"f%
i=1 (%)

derived by [4] to test the largest of set of variances as a fraction of that total
in analysis of variance problems. [11] have derived distribution of the test
statistic both under Hy and H; and have shown that the test is equivalent

0 g . . .
izl ) > ¢, where ¢ = —2="" — 1. While the determination of ¢

(1) 1-(1—a)m 701
under Hy presented no problem, but the calculation of power was more difficult.
Assuming that x(;) is an inlier, i.e. using L,, it was proved that the power of
the test for one inlier is

to

Cc — (TL — TL()) + 1)(n—n0—1)

Py =1-( c+A

,  Where A\ = —.

In a similar way we can test for M (k inliers) versus no inliers. In this
case the likelihood ratio test is obtained as A(z) ~ (1 — Z)»=m0~1 L1 " where
T, = Zle zg and T = 3" " x(;) and we reject Hy if 24 < C, where C' is

such that SupPy,[%+ < C] = a. In Table 1 we present the simulated values
0

of Pi(\) and Py()) for various values of k£ and A. Each value in Table 3 is
corresponding to 5000 simulations. It is seen that for A = 1, the test attains
the level.

8 Numerical computation

Here we present a method of estimating the inliers through various models
described above on [20] data on drying of woods under different experiments
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Table 1: The values of P;(A) and Py (\) for a = 0.05 (Cochran test)
N k A
1 D 10 15 20 30

10 1 .050 .069 .093 .116 .138 .179
2 .050 .052 .079 .093 .105 .148
3 .050 .046 .067 .078 .088 .089
20 1 .050 .059 .072 .083 .095 .118
2 .050 .057 .067 .078 .079 .095
4 .050 .055 .057 .068 .068 .070
6 .050 .052 .054 .054 .057 .066
30 1 .049 .056 .065 .073 .080 .098
2 .049 .055 .060 .065 .077 .082
4 .049 .054 .058 .060 .069 .074
6 .049 .053 .056 .058 .060 .065
8 .049 .0563 .055 .056 .057 .059

Table 2: Estimates and their variances

Schedule & 6 f AV(a)  AV(0) AV(ab)
1 0.6487 4.8686 3.158 0.006159 0.987568 0.23627
2 0.5405 2.8207 1.296 0.006712 0.397847 0.03581

and schedules. We reproduce Vanmann’s data on Experiment 3 on two batches
of 37 boards by using two different schedules.

Schedule 1 xz; = 0, ¢ = 1,2,...,13 and the other 24 positive observations
arranged in increasing order of their magnitude are 0.08, 0.32, 0.38, 0.46, 0.71,
0.82, 1.15,1.23, 1.40, 3.00, 3.23, 4.03, 4.20, 5.04, 5.36, 6.12, 6.79, 7.90, 8.27,
8.62, 9.50, 10.15, 10.58 and 17.49.

Schedule 2 z; = 0, i = 1,2,...,17 and the other 20 positive observations
arranged in increasing order of their magnitude are 0.02, 0.02, 0.02, 0.04, 0.09,
0.23, 0.26, 0.37, 0.93, 0.94, 1.02, 2.23, 2.79, 3.93, 4.47, 5.12, 5.19, 5.39, 6.83
and 8.22.

[11] analyzed the above data using models with instantaneous failures only
and exponential distribution with mean 6. Now E(X) = yu = af and lesser
the value of p better is the process and i = a6 and AV () = & The
estimates and their estimated variances for the two Schedules above are given
in Table 2.

We next consider the M} inliers model. Then In L is given by (5.4) and
MLE’s are & = "=, = %Zle Ty, 0 = P > i1 ). To determine
k we maximize In L(g\no,d,él,é, k) over k. Accordingly we find that for
Schedule 1 k = 9 and for Schedule 2 k = 7. For L;, inliers model also we
obtain similar estimates for k. The other estimates are given in Table 3. We
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Table 3:
Schedule Model & o) 6 AV(a) AV(e) AV(0)
1 M, 0.6487 07278 7.3520 0.0061 0.0589 6.0058
Ly, 0.6487 05881 5.9148 0.00539 0.0565 5.0067
2 M 0.5405 0971 3.6485 0.0067 0.0013 1.9017

Ly, 0.5405 0916 3.0458 0.0064 0.0010 1.8876

Table 4:
Schedule Model & 6 AV(a) AV(9)
1 Early failure 0.5129 5.9520 0.0067 4.8796

Lai et al 0.5673 6.2122 0.0056 4.3890
2 Early failure 0.4187 3.0458 0.0058 1.4567
Lai et al 0.4343 3.7685 0.0057 1.0346

also observe that ng + k is 22 in Schedule 1 and 26 in Schedule 2 indicating
that it is more than [37/2] = 18 and the inferences drawn from the experiment
are suspect. However estimates of both qb and 0 are larger in Schedule 1 than
Schedule 2. Also p = af is estimated at 4.7692 for Schedule 1 which is larger
than 1.972 for Schedule 2 and hence Schedule 2 is preferred.

The estimates correspond to early failures model are & = == exp(g / é) and

0 = n—no 6. For [13] model, we do not have any closed form expressions
for the estimates and are numerically estimated through likelihood procedure.
See the appendix of [13] paper for the R-code for estimation. In table 4 we
present the estimates where a value of 6 = 1.4 is assumed for Schedule 1 and

0 = 0.10 is assumed for Schedule 2.
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