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Abstract. A simple von-Mises type sufficient condition is derived for a
distribution function (df) to belong to the max domain of attraction of the
Frechét / Weibull law under power normalization. It is shown that every df in
the max domain of attraction of the Frechét / Weibull law under power nor-
malization is tail equivalent to some df satisfying the von-Mises type condition.
Several examples illustrating the variety of tail behaviours of df’s attracted to
the max domain of attraction of the Frechét law are given.
Mathematics Subject Classification. Primary 60G70; Secondary 60E05,
62G32.
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1 Introduction

Let X1, X2, . . . , be independent identically distributed (iid) random variables
with common df F . A df F is said to belong to the max domain of attraction of
a nondegenerate df H under power normalization, denoted by F ∈ Dp(H),
if

lim
n→∞

P

(∣∣∣∣Mn

αn

∣∣∣∣ 1
βn

sign(Mn) ≤ x

)
= lim

n→∞
F n
(
αn|x|βn sign(x)

)
= H(x)

for all x ∈ C(H), the set of all continuity points of H, for some normalizing
constants αn > 0, βn > 0, n ≥ 1, where Mn = max{X1, X2, . . . , Xn},
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sign(x) = −1, 0 or 1 according as x < 0, = 0, or > 0. The limit laws H are
called p-max stable laws. For the sake of completeness, these are given in the
Appendix along with l-max stable laws, the limit laws of linearly normalized
partial maxima of iid random variables and a couple of other results used in
the article. We refer to Mohan and Ravi (1993), Falk et al.(2004), for details
about F ∈ Dp(H).

In this article, a simple von-Mises type sufficient condition for the df F
to belong to Dp(Φ) is given, where Φ is the Frechét limit law given by

Φ(x) = e−
1
x , x > 0,= 0 otherwise. It is shown that every df in the max domain

of attraction of Φ under power normalization is tail equivalent to some df
satisfying the von-Mises type condition. Similar results for the Weibull law
given by Ψ(x) = ex, x ≤ 0,= 0 otherwise, are stated and proofs are omitted as
they are similar. Several examples illustrating the variety of tail behaviours of
df’s attracted to the max domain of attraction of the Frechèt law are given. The
results obtained here are analogous to results on the max domain of attraction
of the Gumbel law under linear normalization, given in Proposition 1.1 (b) in
Resnick (1987), Proposition 3.3.25 in Embrechts et al. (1997) and Balkema
and de Haan (1972).

The following sufficient condition for F ∈ Dl(Λ) is due to von-Mises
(1936). Let r(F ) = sup{x : F (x) < 1} denote the right extremity of the df
F. Suppose that F is absolutely continuous with f as the probability density
function (pdf). Let f be positive and differentiable on a left neighborhood
of r(F ). If

lim
x↑r(F )

d

dx

(
1− F (x)

f(x)

)
= 0 (1.1)

then F ∈ Dl(Λ). A df F satisfying (1.1) is called a von-Mises function.
von-Mises type function: We will call df F a von-Mises type function if

lim
x↑r(F )

x
d

dx

(
1− F (x)

xf(x)

)
= 0. (1.2)

Representation of von-Mises type function:

Lemma 1.1 A df F is a von-Mises type function if it has the representation:

1− F (x) = c exp

{
−
∫ x

z0

(
1

ug(u)

)
du

}
(1.3)

where c > 0, z0 < r(F ), are constants, g(x) > 0, z0 < x < r(F ), is an
auxiliary function, absolutely continuous on (z0, r(F )) with density g′ and
limu→r(F ) ug

′(u) = 0.
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Proof: Let df F has the representation (1.3). Then its pdf is given by,

f(x) =
c

xg(x)
exp

{
−
∫ x

z0

(
1

ug(u)

)
du

}
.

We have

lim
x→r(F )

x
d

dx

(
1− F (x)

xf(x)

)
= lim

x→r(F )
x
d

dx

 c exp
{
−
∫ x
z0

(
1

ug(u)

)
du
}

x c
xg(x)

exp
{
−
∫ x
z0

(
1

ug(u)

)
du
}


= lim
x→r(F )

xg′(x) = 0.

Therefore F satisfies (1.2) and hence is a von-Mises type function.

2 Main Results

Theorem 2.1 If a df F satisfies the representation (1.3), then F ∈ Dp(Φ)
if r(F ) > 0, otherwise F ∈ Dp(Ψ).

Proof: For fixed t ∈ R and x sufficiently close to r(F ), (1.3) implies that

1− F (x.etg(x))

1− F (x)
= exp

(
−
∫ xetg(x)

x

1

ug(u)
du

)

= exp

(
−
∫ t

0

xesg(x)g(x)

xesg(x)g(xesg(x))
ds

)
= exp

(
−
∫ t

0

g(x)

g(xesg(x))
ds

)
. (2.1)

We show that the integrand converges locally uniformly to 1. For arbitrary
ε > 0, x0 < r(F ), x0 ≤ x close to r(F ), 0 < s < t,

∣∣g(xesg(x))− g(x)
∣∣ =

∣∣∣∣∣
∫ xesg(x)

x

g′(v)dv

∣∣∣∣∣
=

∣∣∣∣∣
∫ sg(x)

0

xetg′(xet)dt

∣∣∣∣∣
≤ εsg(x)

≤ εtg(x)

since xg′(x)→ 0 as x→ r(F ). So∣∣∣∣g(xesg(x))

g(x)
− 1

∣∣∣∣ ≤ εt, ε > 0, x0 ≤ x, 0 < s < t.
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Since ε is arbitrary, we have

lim
x→r(F )

g(x)

g(xesg(x))
= 1,

uniformly on bounded s-intervals. This together with (2.1) yields

lim
x→r(F )

1− F (xetg(x))

1− F (x)
= e−t, t > 0.

Therefore F ∈ Dp(Φ) by Theorem A.1. If r(F ) ≤ 0, then the proof that
F ∈ Dp(Ψ) is similar and is omitted.

Theorem 2.2 If F is a von-Mises type function then F ∈ Dp(Φ) or F ∈
Dp(Ψ) according as r(F ) > 0 or ≤ 0.

Proof: Let r(F ) > 0. Define R(x) = − log(1 − F (x)), 0 < x < r(F ), and

g(x) = 1−F (x)
xf(x)

, 0 < x < r(F ). Then R′(x) = f(x)
1−F (x)

= 1
xg(x)

, 0 < x < r(F )
and

R(x) =

∫ x

z0

du

ug(u)
, 0 < z0 < x.

Since F is a von-Mises type function, using (1.2), we get

lim
x→r(F )

xg′(x) = lim
x→r(F )

x
d

dx

(
1− F (x)

xf(x)

)
= 0.

Also,

1− F (x) = exp (−R(x)) = exp

(
−
∫ x

z0

du

ug(u)

)
, 0 < z0 < x.

Hence F satisfies representation (1.3) and by Theorem 2.1, F ∈ Dp(Φ).
We omit the proof when r(F ) ≤ 0 in which case F ∈ Dp(Ψ), as it is

similar.

For the next result, we need the well known concept of tail equivalence
(see, for example, Resnick (1987)):
Df’s F and G are tail equivalent if r0 = r(F ) = r(G) and for some A > 0,

lim
x↑r0

1− F (x)

1−G(x)
= A. (2.2)

Theorem 2.3 F ∈ Dp(Φ) iff there exists a von-Mises type function F∗
satisfying (1.2) with r(F ) = r(F∗) = r0, r0 > 0, and tail equivalent to F .
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Proof: If F∗ is a von-Mises type function satisfying (1.2) then F∗ ∈ Dp(Φ) by
Theorem 2.2. Further, if F and F∗ are tail equivalent, then by Ravi (1991),
F ∈ Dp(Φ).
Conversely, let F ∈ Dp(Φ) with r(F ) = r0. We will show that there exists a
von-Mises type function F∗ tail equivalent to F. Define the sequence U0, U1, ...
by

U0(x) = 1− F (x), x > 0,

Un+1(x) =

∫ r0

x

Un(t)

t
dt, n = 0, 1, 2, . . . , x > 0.

By Lemma 2.2 in Subramanya (1994), the df Fn defined by Fn(x) =
max (0, 1− Un(x)) belongs to Dp(Φ) if Fn−1 does, n = 1, 2, . . . . In
particular, the integral above converges. So, Fn ∈ Dp(Φ), for n = 0, 1, 2, ...
and by Theorem 2.2 in Subramanya (1994), we have

lim
x→r0

Un−1(x)Un+1(x)

U2
n(x)

= 1. (2.3)

We now define the function U∗ on (0, r0) by

U∗(x) = (U3(x))4(U4(x))−3, x > 0.

Then U∗ is twice differentiable on a left neighbourhood of r0 and

d

dx
logU∗ = −4

U2

xU3

+ 3
U3

xU4

=
1

x

(
3− 4U2U

−2
3 U4

U4U
−1
3

)
. (2.4)

Then
U4U

−1
3

3− 4U2U
−2
3 U4

=
U∗
xU ′
∗
.

Here, the denominator tends to -1 as x→ r0 using (2.3) and both ( d
dx

)U4U
−1
3

and xU4U
−1
3 ( d

dx
)(3− 4U2U

−2
3 U4) tend to 0 as x→ r0. Hence

lim
x→r0

x
d

dx

(
U∗(x)

xU ′
∗(x)

)
= 0. (2.5)

Observe that

U0 =
U0U2

U2
1

(
U1U3

U2
2

)2(
U2U4

U2
3

)3

U∗.

Hence by (2.3), we obtain

lim
x→r0

U0(x)

U∗(x)
= 1. (2.6)
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Then limx→r0 U∗(x) = 0, and since by (2.4), U∗ is decreasing on a left
neighborhood of r0, there exists a twice differentiable df F∗ which coincides
with 1− U∗ on a left neighborhood of r0 . Now, by (2.5), F∗ satisfies (1.2)
and is a von-Mises type function, and (2.6) shows that F∗ is tail equivalent to
F . Hence the proof.

Now we state a similar result for F ∈ Dp(Ψ) omitting the proof which is
similar.

Theorem 2.4 A df F ∈ Dp(Ψ) iff there exists a von-Mises type function
F∗ with r(F ) = r(F∗) = r0, r0 ≤ 0, tail equivalent to F .

Examples:

• Example of a df F (Galambos (1978)) with r(F ) < ∞ satisfying suffi-
cient conditions (1.1) and (1.2) for Dl(Λ) and Dp(Φ) respectively:

F (x) =


0 if x < 0,

1− exp
( −x

1−x

)
if 0 ≤ x < 1,

1 if 1 < x.

Note that F ∈ Dl(Λ) and F ∈ Dp(Φ), the latter result is also true by
Theorem A.2(b).

• Example of the exponential df satisfying sufficient conditions (1.1) and
(1.2) for Dl(Λ) and Dp(Φ) respectively:

F (x) =

{
0 if x ≤ 0,

1− exp(−x) if x > 0.

Here r(F ) =∞. Note that F ∈ Dl(Λ) and F ∈ Dp(Φ), the latter result
also true by Theorem A.2(a).

• The following df’s (Mohan and Ravi (1993)) satisfy sufficient condition
(1.2) for Dp(Φ) but not (1.1) for Dl(Λ):

F1(x) =

{
0 if x < 1,

1− exp
(
−
√

log x
)

if 1 ≤ x.

F2(x) =

{
0 if x < 1,

1− 1
x

if 1 ≤ x.

F3(x) =

{
0 if x < 1,

1− exp (−(log x)2) if 1 ≤ x.

Here r(F ) =∞ and note that F1 ∈ Dp(Φ), the Pareto df F2 ∈ Dl(Φα) ⊂
Dp(Φ) by Theorem A.2(a) and F3 ∈ Dp(Φ). In fact, the df’s F1 and
F3 do not belong to Dl(Λ).
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• The following df (Galambos (1978)) does not satisfy sufficient conditions
(1.2) and (1.1) for both Dp(Φ) and Dl(Λ):

F4(x) =

{
0 if x < e,

1− 1
log x

if e ≤ x.

Remark 2.5 Dp(Φ) contains df ’s whose tail behaviours are diverse.

• Dl(Φα) ⊂ Dp(Φ) by Theorem A.2(a) and hence Dp(Φ) contains df ’s
whose tails are regularly varying.

• Dl(Λ) ⊂ Dp(Φ) by Theorem A.2(a), (b). Hence Dp(Φ) contains df ’s
with exponential-like light tails.

• Dp(Φ) contains df ’s with slowly varying tails.

3 Appendix

A df F is said to belong to the max domain of attraction of a nondegenerate
df G under linear normalization (notation F ∈ Dl(G) ) if there exist constants
an > 0 and bn real, n ≥ 1, such that

lim
n→∞

P

(
Mn − bn
an

≤ x

)
= lim

n→∞
F n(anx+ bn) = G(x)

for all x ∈ C(G), the set of continuity points of G. Then it is known that G
can be one of only three types of extreme value df’s, called l-max stable laws
by Mohan and Ravi (1993), namely,

Φα(x) =

{
0 if x ≤ 0,

exp(−x−α) if 0 < x,

Ψα(x) =

{
exp(−(−x)α) if x ≤ 0,

1 if 0 < x,

Λ(x) = exp(−e−x), −∞ < x <∞,

where α > 0 is a parameter.

The p-Max stable laws: Two df’s F and G are said to be of the same p-type
if F (x) = G(A | x |B sign(x)), x ∈ R, for some positive constants A,B. The
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p-max stable laws are p-types of one of the following six laws.

H1,α(x) =

{
0 if x ≤ 1,

exp{−(log x)−α} if 1 < x;

H2,α(x) =


0 if x < 0,

exp{−(− log x)α} if 0 ≤ x < 1,

1 if 1 ≤ x;

H3,α(x) =


0 if x ≤ −1,

exp{−(− log(−x))−α} if −1 < x < 0,

1 if 0 ≤ x;

H4,α =

{
exp{−(log(−x))α} if x < −1,

1 if −1 ≤ x;

Φ(x) = Φ1(x), −∞ < x <∞;

Ψ(x) = Ψ1(x), −∞ < x <∞;

where α > 0 is a parameter.
Necessary and sufficient conditions for a df F to belong to Dp(Φ)

and Dp(Ψ):
Theorem A.1:(Mohan and Ravi (1993))

• F ∈ Dp(Φ) iff r(F ) > 0 and there exists a positive function g such
that

lim
t↑r(F )

1− F (t. exp(x.g(t)))

1− F (t)
= exp(−x), x > 0.

If this condition holds for some g, then∫ r(F )

a

F̄ (s)

s
ds <∞, 0 < a < r(F ),

and the condition holds with the choice

g(t) =
1

F̄ (t)

∫ r(F )

t

F̄ (s)

s
ds.

In this case, one may take αn = F−
(
1− 1

n

)
= inf

{
x : F (x) ≥ 1− 1

n

}
and βn = g(αn) so that limn→∞ F

n
(
αnx

βn
)

= Φ(x), x ∈ R.

• F ∈ Dp(Ψ) iff r(F ) ≤ 0 and there exists a positive function g such
that

lim
t↑r(F )

1− F (t. exp(x.g(t)))

1− F (t)
= ex, x < 0.
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If this condition holds for some g, then

−
∫ r(F )

a

F̄ (s)

s
ds <∞, a < r(F ),

and the condition holds with the choice

g(t) = −
(

1

F̄ (t)

)∫ r(F )

t

F̄ (s)

s
ds.

In this case, one may take αn = −F−
(
1− 1

n

)
and βn = g(−αn) so

that limn→∞ F
n
(
αn | x |βn sign(x)

)
= Ψ(x), x ∈ R.

Comparison of Max Domains under Linear and Power normalization:
Theorem A.2:(Mohan and Ravi (1993))

(a)
(i)F ∈ Dl(Φα)
(ii)F ∈ Dl(Λ), r(F ) =∞

}
=⇒ F ∈ Dp(Φ);

(b) F ∈ Dl(Λ), 0 < r(F ) <∞⇐⇒ F ∈ Dp(Φ), 0 < r(F ) <∞;

(c) F ∈ Dl(Λ), r(F ) < 0⇐⇒ F ∈ Dp(Ψ), r(F ) < 0;

(d)
(i)F ∈ Dl(Λ), r(F ) = 0
(ii)F ∈ Dl(Ψα), r(F ) = 0

}
=⇒ F ∈ Dp(Ψ);

(e) F ∈ Dl(Ψα), r(F ) > 0⇐⇒ F ∈ Dp(H2,α);

(f) F ∈ Dl(Ψα), r(F ) < 0⇐⇒ F ∈ Dp(H4,α).
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