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Abstract. Robustness of Doubly Balanced Incomplete Block Design is
investigated when two blocks are lost, in terms of efficiency of the residual
design. In a Doubly Balanced Incomplete Block Design when » > 7 and
2 < k < 8, the efficiencies of 32 Doubly Balanced Incomplete Block Designs
were worked out. For all, the design satisfies e(s) > 0.90. The investigation
shows that Doubly Balanced Incomplete Block Designs are fairly robust in
terms of efficiency. As a special case, we can also show the robustness of
Doubly Balanced Incomplete Block Design when two blocks are lost.

Keywords. Doubly Balanced Incomplete Block Design, Efficiency of resid-
ual design, Youden Square Design and Latin Square Design.

1. Introduction

Yates (1936) introduced Balanced Incomplete Block Design (BIBD) in agri-
culture experiments. Bose (1939) developed the construction of Balanced In-
complete Block Design and its properties. Consequently several authors dis-
cussed various properties from the point of view of application. There is no
reason to exclude the possibility that a BIBD would contain repeated blocks.
Indeed the statistical optimality of BIBD is unaffected by the presence of
repeated blocks. A Balanced Incomplete Block Design is defined as an ar-
rangement of v treatments satisfying the following conditions.

1. The blocks shall be of a constant size, k,

2. All v treatments shall be replicated an equal number of times, r,
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3. No treatment shall occur more than once in any block n;; =1 or 0 and

4. FEach pair of treatments shall occur together in the ¢ blocks and equal
number of times .
The conditions defined above is, the usual condition for Balanced Design.
Calvin (1954) has introduced one more condition on the arrangement.

5. Each triplet of treatments occurs together in a block p times.

Calvin has named such a class of BIBD as Doubly Balanced Incomplete
Block Design (DBIBD) because of the restrictions on the balancing the pairs
as well as triplets. He has also given the analysis of such designs (Ponnuswamy
and Srinivasan, 1991).

Das and Kageyama (1992) showed that Balanced Incomplete Block Designs
and extended Balanced Incomplete Block Designs are fairly robust against the
unavailability of s(s < k) observations in any block. Youden Square design
and Latin Square design are found to be fairly robust against the loss of any
one column.

This study looks into the robustness of Doubly Balanced Incomplete Block
Design when two blocks are lost from design. C* matrix and its non-zero
eigenvalues are computed with its corresponding multiplicity and its efficiency.
It shows that Doubly Balanced Incomplete Block Design is fairly robust against
loss of two blocks from same treatment and from a different treatment. Here,
the efficiencies of 32 Doubly Balanced Incomplete Block Designs are worked
out. In fact, all design satisfies e(s) > 0.90. Thus, it shows that design is fairly
robust against loss of two blocks.

The robustness criteria against the unavailability of data are: (i) to get the
connectedness of the residual design; (ii) to have the variance balance of the
residual design; (iii) to consider the A-efficiency of residual design.

This investigation considers a Doubly Balanced Incomplete Block Design
d. Let D* be the residual design obtained when two blocks be lost and assume
D* to be connected. In this case, the criterion of robustness against the un-
availability of two blocks in Doubly Balanced Incomplete Block Design is the
overall A-efficiency of the residual design D*, which is given by,

e(s)

Sum of reciprocals of non-zero eigenvalues of C'

~ Sum of reciprocals of non-zero eigenvalues of C*
a(s)

e(s) =
(s) o1(5)

(1.1)

2. Robustness of Doubly Balanced Incomplete Block De-
signs against Unavailability of Two Blocks

Consider a Doubly Balanced Incomplete Block Design d having parameters
v=mp b r k, A §. Suppose two blocks of a Doubly Balanced Incomplete
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Block Design with two blocks are lost. Under this situation, the following three
cases will occur:

Case i: Unavailability of two blocks where the number of common
treatments between two blocks are zero.

Case ii: Unavailability of two blocks where the number of common
treatments between two blocks are one.

Case iii: Unavailability of two blocks where the number of common
treatments between two blocks are two.

For all three cases when two blocks are lost from Doubly Balanced Incom-
plete Block Design, efficiency factor is depending upon the common number
of treatments between two lost blocks. The efficiency for all three cases when
common number of treatments between two lost blocks are 0,1,2,3,..., (k —
1), k respectively are studied. Here, the robustness criterion of Doubly Bal-
anced Incomplete Block Design was further discussed for the different value of
common number of treatments between two blocks.

Case (i): Unavailability of two blocks where the number of com-
mon treatments between two blocks are zero

Consider a Doubly Balanced Incomplete Block Design D with parameters
v=mp, b, r, k, A\, 0. It follows that C' matrix of design D is always given by
Cc=0\1I,- ﬁ), where 6 = Av/k is the eigenvalues of C' matrix of design
D with multiplicity (v — 1).

Let two blocks be lost. Call this design as a residual design assuming a
residual design D* is a connected design. Let the blocks be b; and b;, let their
zero treatment be common between two lost blocks i.e. n(b; Nb;) = 0. Each
treatment that is present in the two lost blocks will be replicated (r —1) times.
All remaining treatment will be replicated r times in design.

Let C* be the information matrix of design D*. For this design D*, the
diagonal element of C* matrix are as follows,

1. Cj; = %, where j denotes those treatments which are present in
both the lost blocks but are distinct.

2. Oy = T(kk_ 1), where [ denotes the remaining treatments.

Similarly, in the residual design, pair of treatments occurs together in fol-
lowing ways, which we say Aj, Ao. Pattern of \;; (i = 1,2) are as follows,

1. Ay = (A — 1), for those treatments, which are present in two lost blocks.

2. Ay = A, for remaining pair of treatments.
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The C* matrix of design D can be written as,

(A=k) I —(A=1)Jkk —AJkk Ak (v—2k)
kC* = —AJgk (Av—k) I —(A—1)Jkk —~ Mg (v—2k)
Ak (v—2k) Ak (v—2k) M (I (y—2k)y =V (y—2k) (v—2k))

The non zero eigenvalues of C* matrix with their corresponding multiplic-
ities are,

(Av—k)
1. O

, with multiplicity 2(k — 1).

2. 3¢, with multiplicity (v — 2k + 1).
Theorem 1. Doubly Balanced Incomplete Block Designs and with parameters
v=mpbk,r,\ 0 are fairly robust against the unavailability of two blocks, where
the number of common treatment between two lost blocks are zero, provided the

overall efficiency of the residual design is given by,

e(s) = (A —=k)(v—1)
(A —=Fk)(v—=2k+1)+2\v(k—-1)

(2.1)

Proof : Without loss of generality, let two blocks be lost from design D
where the number of common treatment between two blocks is zero i.e., matrix
of the residual design is given by,

(Av—k) I —(A—1)Jkk —AJ gk ~ Mg (v—2k)
kC* = Mgk (A—k) I —(A=1)Jkk Ak (v—2k)
Ak (v—2k) Ak (v—2k) My =2k = (w—2k) (v—2k))

The non zero eigenvalues of C* matrix with their corresponding multiplic-
ities are,

1. X8 with multiplicity 2(k — 1).

2. 2%, with multiplicity (v — 2k + 1).

Further, overall A-efficiency is calculated as,

e(s) = b(s)

o1(s)

Where, ¢5(s) = sum of reciprocals of non-zero eigenvalues of C' matrix of

design D and ¢;(s) = sum of reciprocals of non-zero eigenvalues of C* matrix
of design D*.

(2.2)

That is,
$a(s) = % (2.3)
and
b1(5) = k(v —2k+1) N 2(k —1)k) (2.4)

A\v (v —k)
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Finally, A- efficiency is given by,

(A —k)(v—1)
e(s) =
(A —k)(v—2k+1)+2 vk -1k
Example 1: Let D represent the Doubly Balanced Incomplete Block De-
sign with parameters v =p=8, b=14, r=7, k=4, A =3, § = 1. Design
D is given by,

(2.5)

Table 1: 8 Treatments of DBIB Design of Lyle D. Calvin (1954)

Block Treatments
1 1 2 3 6
2 5 6 7 8
3 1 2 7 8
4 3 4 5 6
5 1 3 4 8
6 2 4 5 7
7 1 4 6 7
8 2 3 5 8
9 1 2 5 6
10 3 4 7 8
11 1 3 5 7
12 2 4 6 8
13 1 4 5 8
14 2 3 6 7

Two blocks containing treatments (1 2 7 8) and (3 4 5 6) are lost and
number of treatment common two blocks is zero. C* matrix of the residual
design is given by,

8 -2 -2 -2 -3 -3 -3 -3

4C* =

The non-zero eigenvalues with their corresponding multiplicities are,
20 . e e
1. R with multiplicities 6.

24
2. R with multiplicities 1.
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The overall A- efficiency of the design is, e(s) = 0.853659.
Case (ii): Unavailability of two blocks where the number of com-
mon treatment between two blocks are one.

Consider a Doubly Balanced Incomplete Block Design D with parameters
v=np, b, k, r, A, 8. The C matrix of the design is given by C' = 4 (LJ - %)

Where 6 = (A\v/k) is the eigenvalues of C' matrix of design D with multiplicity
(v—1). Let two blocks be lost. Call this design as a residual design and assume
that the residual design D* is a connected design. Let the blocks be b; and b;,
let one treatment be common between two lost blocks i.e.n(b; Nb;) = 1. Here,
this treatment is repeated (r — 2) times. Similarly, those treatments that are
present in the two lost blocks but are not common will be replicated (r — 1)
times. The remaining treatments will be replicated r times in design.

Let C* be the information matrix of design D*. For this design D*, the

diagonal element of C* matrix are as follows,

1. Oy = %, where ¢ denotes those treatments which are present in
both the lost blocks but are distinct.
2. Cj; = %, where j denotes those treatments which are present in

both the lost blocks but are distinct.

3. Cy = T(k]; 1), where [ denotes the remaining treatments.

Similarly, in the residual design, pair of treatments occurs together in fol-
lowing three ways, which we say A1, Ao, A\3. Pattern of \;(i = 1,2,3) are as
follows,

1. Ay = (A — 1), for those treatments that are present in two lost blocks.
2. Ay = (A — 1), for those treatments that are present in two lost blocks.

3. A3 = A, for remaining treatment.

The C* matrix of design D can be written as,

kC* =
(Av—2k+1)T] —(A—1)J17 —(A=D) 1) —(A=D) 1) “AJ1(v—2k+1)
—(A=1DJy (1) =k 1 =A=1)J (1) (k—1) A (k—1)(k—1) A (k—1)(v—2k+1)
—(A=1Jy k1) A (k—1)(k—1) Av=k) 1 —A=1)J (g _1)(k—1) A (k—1)(v—2k+1)
=AMy (v—2k+1) A (k—1)(v—2k+1) A (k—1)(v—2k+1) ATy kb1 = 5T (v—2k41) (v —2k+1))

The non-zero eigenvalues of C* matrix with their corresponding multiplic-
ities are,

1 (Av—2k+1)

= , with multiplicity 1.

2. A8 with multiplicity 2(k — 2).
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3. 3¢, with multiplicity (v — 2k + 1).

Av—1 . T
4. (k—), with multiplicity 1.
Theorem 2. Doubly Balanced Incomplete Block Designs and with parameters
v=mp, b k, r, N\, § are fairly robust against the unavailability of two blocks,
where the number of common treatment between two blocks is one, provided the
overall efficiency of the residual design is given by
(v =1)(Av —2k)(Av — 1)(Av — 2k + 1)

) = R oW — (0 — 2k T 0w — 2k ) T ) F v — 2k T D@k — 20w — D F w28y 29

Proof : Without loss of generality, let two blocks be lost from design D where
the number of common treatment between two blocks is one i.e., n(b;Nb;) = 1,
C* matrix of the residual design is given by,

kC* =

(Av—2k+1)I1 —(A—1)J11 —(A=1)Jq 1) —(A=DJyk-1) Ay (v —2k+1)
—(A=DJy(k—1) =k 1 =(A=1J (g _1)(k—1) M (k—1)(k—1) M (k—1)(v—2k+1)
—(A=DJy(k—1) M (k—1)(k—1) Av=k) (1) =A=DJ (k1) (k—1) A (k—1)(v—2k+1)
A1 (v—2k+1) A (k—1)(v—2k+1) A (k—1)(v—2k+1) AUy —opt1) =Y Iy 2k 1) (v —2k+1))

The non-zero eigenvalues of their corresponding multiplicities are,

1. Q220 Cwith multiplicity 1.

2. X8 " with multiplicity 2(k — 2).

3. 3¢, with multiplicity (v — 2k + 1).

4. AU with multiplicity 1.

Further, overall A-efficiency is calculated as,

e(s) = 0a(s)
¢1(s)
Where, ¢5(s) = sum of reciprocals of non-zero eigenvalues of C' matrix of

design D and ¢;(s) = sum of reciprocals of non-zero eigenvalues of C* matrix
of design D*.

(2.7)

That is,
k(v —1
or(s) = HZL (o)
and
k(v—2k+1) k 2(k —2)k k
= . 2.
“1(s) v Tov—mrn vk Towony @Y
Finally, A- efficiency is given by,
e(s) (v —=1)(Av —2k)(Av — 1)(Av — 2k + 1) (2.10)

= (v —=2k)(Av —1)((r =2k +1)(Av — 2k 4+ 1) + Av) + (Av — 2k + D)Av(2(k — 2)(Av — 1) + (Av — 2k))
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Table 2: 8 Treatments of DBIB Design of Lyle D. Calvin (1954)

Block Treatments
1 1 2 3 6
2 5 6 7 8
3 1 2 7 8
4 3 4 5 6
5 1 3 4 8
6 2 4 5 7
7 1 4 6 7
8 2 3 5 8
9 1 2 5 6
10 3 4 7 8
11 1 3 5 7
12 2 4 6 8
13 1 4 5 8
14 2 3 6 7

Example 2: Let D represent the Doubly Balanced Incomplete Block De-
sign with parameters v =p =8,b=14,r =7,k =4,A=1,0 = 3. Design D
is given by,

Two blocks containing treatments (1 2 3 6) and (5 6 7 8) are lost and
number of treatment common two blocks is one. C* matrix of the residual
design is given by,

4C"

The non-zero eigenvalues with their corresponding multiplicities are,

14

1> with multiplicities 1.

2. 2 with multiplicities 4.

3. 2743, with multiplicities 1.

4. 21 with multiplicities 1.
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The overall A- efficiency of the design is, e(s) = 0.74033.
Case (iii): Unavailability of two blocks where the number of com-
mon treatments between two blocks are two.

Consider a Doubly Balanced Incomplete Block Design D with parameters
v=p, b, k, r, A, 6. The C matrix of the design is given by C = ¢ (Iv _ 1 )

vEyy

Where, 6 = (Av/k) is the eigenvalues of C' matrix of design D with multiplicity
(v —1). When two blocks are lost, call this design as a residual design and
assume that the residual design D* is a connected design. Let the blocks
be b; and b;, let number of common treatment between two blocks be two,
i.e.n(b; Nb;) = 2. Here, these two blocks of the same treatment are repeated
(r — 2) times. Similarly, those treatments which are present in the two lost
blocks but are not common will be replicated (r — 1) times. The remaining
treatments will be replicated r times in design.

Let C* be the information matrix of design D*. For this design D*, the
diagonal element of C* matrix are as follows,

1. Cy = %, where ¢ denotes those treatments which are present in
both the lost blocks but are distinct.

2. Cj; = %, where j denotes those treatments which are present in
both the lost blocks but are distinct.

3. Cy = T(k,; 1), where [ denotes the remaining treatments.

Similarly, in the residual design, pair of treatments occurs together in fol-
lowing three ways, which we say A1, Ao, A\3. Pattern of \;(i = 1,2,3) are as
follows,

1. A\ = (A — 2), for those treatments that are present in two lost blocks.
2. Ay = (A — 1), for those treatments that are present in two lost blocks.

3. A3 = A, for remaining treatment.

The C* matrix of design D can be written as,

(Av—k+1)I2—(X)J22 —(A=1)Jz@—1) —AJa(v—k-1)
kC* = —(A=Ddag—1)y  (AW=2k) 1)~ (A=2)J—1)(k—1) “A(k—1)(v—k—1)
—Ao(y—k—1) A (k1) (v—k—1) M(Ty—k—1) =V k= 1) (v—k—1))

The non-zero eigenvalues of their corresponding multiplicities are,

1 XB D with multiplicity 1.
(Av—2k)
2. A

, with multiplicity (k — 2).
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3 Av—k—1

-, with multiplicity 1.

4. 2%, with multiplicity (v —k — 1).
Theorem 3. Doubly Balanced Incomplete Block Designs D and with param-
eters v =p, b, k, r, X\, & are fairly robust against the unavailability of two
blocks, where the number of common treatment between two blocks are two,
i.e.n(b; N b;) = 2, provided the overall efficiency of the residual design is given
by,

(v—1\w—=2k)Awv—k+1)(A—k—-1)

AW —k+1)(Mw—k—-1((v—k—1)(Av—2k)+ vk —2)) + 2 v(\v — k)(A\v — 2k)
(2.11)

e(s) =

Proof: Without loss of generality, let two blocks be lost from design D where
the number of common treatment between two blocks is two i.e. n(b;Nb;) =2,
C* matrix of the residual design is given by,

(Av—k+1)I2—(X)J22 —(A=1)Jz@—1) —AJa(v—k-1)
kC* = —(A=DJak—1y  w=2k)j_1)—(A=2)J(k—1)(k—1) A (k—1)(v—k—1)
—Ao(y—k—1) A (k1) (v—k—1) M(Ty—k—1) =V k= 1) (v—k—1))

The non-zero eigenvalues of their corresponding multiplicities are,

1. 22D ith multiplicity 1.
2. A28 with multiplicity (k — 2).
3. %, with multiplicity 1.

4. 2 with multiplicity (v —k — 1).
Further, overall A-efficiency is calculated as,

_ $a(s)
¢1(s)

Where, ¢5(s) = sum of reciprocals of non-zero eigenvalues of C' matrix of
design D and ¢;(s) = sum of reciprocals of non-zero eigenvalues of C* matrix
of design D*.

That is,

e(s) (2.12)

oa() =1 (g
and
k(v —k—1) K (k — 2)k K

) = T S E D T w2 T ow—koy W
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Finally, A- efficiency is given by,

(v—1\w—=2k)Awv—k+1)(Av—k—-1)

) = SR D0w — k= D — k= 0w = 28) + wk —2)) - 2w 0w — F) 0w — 28)
(2.15)
Example 3: Let D represent the Doubly Balanced Incomplete Block De-
sign with parameters v =p =8,b=14,r =7,k =4,6 = 1,\ = 3. Design D
is given by,

Table 3: 8 Treatments of DBIB Design of Lyle D. Calvin (1954)

Block Treatments
1 1 2 3 6
2 5 6 7 8
3 1 2 7 8
4 3 4 5 6
5 1 3 4 8
6 2 4 5 7
7 1 4 6 7
8 2 3 5 8
9 1 2 5 6
10 3 4 7 8
11 1 3 5 7
12 2 4 6 8
13 1 4 5 8
14 2 3 6 7

Two blocks containing treatments (5 6 7 8) and (1 2 7 8) are lost and
number of treatment common two blocks is two. C* matrix of the residual
design is given by,

4C* =

The non-zero eigenvalues with their corresponding multiplicities are,

1. 1749, with multiplicities 1.

2. 1746, with multiplicities 2.
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3. 2, with multiplicities 1.
4. 2 with multiplicities 3.

4

The overall A - efficiency of the design is, e(s) = 0.832737.

Table 4: Efficiency table when two blocks is lost from a Doubly Balanced Incomplete Block
Design when r» > 7 and 2 < k <8

DNo v=p k b r A6 Case(i) Case(ii) Case(iii)
e(s) e(s) e(s)
1 8 14 7 4 3 1 0.853659 0.74033 0.832737
2 10 4 30 13 4 1 0.931034 0.879098 0.925551
3 10 5 36 18 8 3 0.944056 0.90031 0.941198
4 10 6 30 18 10 5 0.933775 0.88023 0.930391
D 11 4 1656 60 18 4 0.98778 0.979418 0.987605
6 11 5 33 15 6 2 0.938462 0.889307 0.934559
7T 11 6 33 18 9 4 0.939394 0.889786 0.936242
g8 11 7 165 105 63 35 0.987903 0.977828 0.9878
9 12 4 165 55 15 3 0.987755 0.979336 0.987562
10 12 5 132 55 20 6 0.984762 0.973106 0.984514
11 12 6 22 11 5 2 0.908257 0.830725 0.899944
12 12 7132 77T 42 21 0.984868 0.972231 0.984689
13 12 8§ 165 110 70 42 0.98791 0.977571 0.987811
14 13 4 143 44 11 2 0.985816 0.975963 0.985531
15 13 5 429 165 55 15 0.995327 0.991797 0.995302
16 13 6 286 132 55 20 0.992997 0.987363 0.992949
17 13 7 286 154 77 35 0.993007 0.987167 0.992966
18 13 8§ 429 264 154 84 0.995341 0.991348 0.995325
19 14 4 91 26 6 1 0977444 0.961253 0.976647
20 14 5 182 65 20 5 0.988935 0.980465 0.988781
21 14 6 91 39 15 5 0.977876 0.95977 0.977348
22 14 7T 52 26 12 5 0.961415 0.928641 0.960006
23 14 8§ 91 52 28 14 0.978056 0.959198 0.977664
24 15 5 273 91 26 6 0.992634 0.987022 0.99256
25 15 6 455 182 65 20 0.995597 0.992055 0.995575
26 15 7 195 91 39 15 0.989726 0.981105 0.989622
27 15 8§ 195 104 56 24 0.990476 0.982292 0.990397
28 16 4 140 35 7 1 0.985401 0.975079 0.985021
29 16 5 336 105 28 6 0.994016 0.989464 0.993965
30 16 6 56 21 7 2 0.963636 0.932957 0.961946
31 16 7 80 35 14 5 0.974843 0.953424 0.974159
32 16 8§ 30 15 7 3 0.933014 0.87394 0.92856
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3. Conclusion

There are 32 Doubly Balanced Incomplete Block Designs for different para-
metric values with unavailability of two blocks. The design with parametric
values differ in efficiencies based on

(i) number of common treatments between two blocks is zero
(ii) number of common treatments between two blocks is one and

(iii) number of common treatments between two blocks is two or more.

The efficiency of the residual design D*, e(s) = 238 is obtained for r > 7

and 2 < k < 8. The evaluation reveals that except for the design deriv-
able from a Doubly Balanced Incomplete Block Design (12,22, 11,6, 5,2) with
e(s) = 0.908257, all the designs satisfy e(s) > 0.90, that is, efficiency for case
(ii) and case (iii) will be more than case (i) with the same parameter. The
MATLAB coding for the calculation of efficiency is given in Appendix. It ap-
pears that Doubly Balanced Incomplete Block Designs are fairly robust against
the unavailability of two blocks corresponding to the same test treatment.
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Appendix

%DBIBD Two Block missing

%No treatment common

function [eff1,eff2 eff3] = dbibdtwoblockl(n, la, v, k)

fori= 1in
pl(i) = ((v(i)-1)*(la(i)*v(i)-k(i)));
p2(i) = (((la(i)*v(i)-k(1))*(v(i)-2*k(i)+1))+(2*a(i)*v(i)*(k(i)-1)));

el(i) = pl(i)/p2(i);

%One treatment common
p3(E) =(((v(i)-1)*(la(i) *v(i)-2*K(0)))*(a(i)*v(D)-1)* (a (i) *v(i)-2%K() +1));
p4(i) = ((la(i)*v(i)-2*k(i))*(la(i) *v(i)-1)) *((v(i)-2*k(i)+1)*(la(i) *v(i
la(i)*v(i))+(la(i)*v(i)-2%k(i)+1)*a(i)*v(i)*(2* (k(i)-2)* (la(i) *v(
27k(1)));

3(i) = p3(i)/pA(i);

)
%Two treatment common
)
)

p5(1) = ((v(i)-1)*(la(i)*v(1)-2*k(i))* (la(l) *v(i)-k(i)+1)*(la(i) *v(i)-k(i)-1));
p6(i) = (la(i)*v(i)-k(i)+1)*(la(i)*v(i)-k(i)-1)*((v(i)-k(i)-1)*(la(i)*v(i)-2*k(i))
Ha(i)*v(i)*(k(1)- 2))+2*a(i)*v(i)*((a)*v(i)-k(i)*(a(i) *v(i)-2%k(i)));

e3(i) = pa(i)/pb(i):

effl1(i)=el(i);

eff2(i)=e2(i);

efffl(i):e?)(i);

end



Robustness of DBIBD against Unavailability of Two Blocks

ouTPUT
[effl, eff2, eff3] = dbibdtwoblockl (1, 3, 8, 4)
effl = 0.8537
eff2 = 0.7403
eff3 = 0.8327
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