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Abstract. Let (Xn) be a sequence of i.i.d random variables and let ηr,n denote
the rth maxima of (Xn−an , Xn−an+1, . . . Xn), where (an) is a non-decreasing se-
quence such that 0 ≤ an ≤ n and an

n
∼ bn , (bn) is non-increasing. In this

paper we obtain the law of the iterated logarithm for ηr,n, properly normalized.
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1 Introduction

Let {Xn} be a sequence of independent and identically distributed (i.i.d) ran-
dom variables (r.v.s) defined over a probability space (Ω,F, P ) and let F denote
the common distribution function(d.f). Suppose that F is continuous. Then
the rth maxima and rth moving maxima are defined as follows.

Definition 1.1 Let X1,n ≤ X2,n ≤ . . . ≤ Xn−r+1,n ≤ . . . ≤ Xn,n denote
the ordered arrangement of X1, X2, . . . , Xn. Then Xn−r+1,n is called the rth

maxima, as it is the rth highest member among X1, X2, . . . , Xn. It is denoted
by Mr,n. In particular, when r = 1, M1,n = max(X1, X2, . . . , Xn) is the partial
maxima; when r = n, Mn,n = min(X1, X2, . . . , Xn), is the partial minima.

Definition 1.2 Let (an) be a non-decreasing sequence of integers with 0 ≤
an < n. Consider the r.v.s Xn−an , Xn−an+1, . . . , Xn from X1, X2, . . . , Xn and
arrange them in the increasing order as Yn−an,n ≤ Yn−an+1,n ≤ . . . ≤ Yn−r+1,n...
≤ Yn,n. Then Yn−r+1,n is the rth highest member among Xn−an , . . . , Xn−an+1, ...
, Xn. It is denoted by ηr,n. In particular, when r = 1, η1,n = maxn−an≤j≤nXj,
is well known as the moving maxima. In the same spirit, ηr,n is called rth

moving maxima.
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The study of moving maxima has gained importance like that of the delayed
sums, since in the process of realization of a phenomenon, some of the initial
observations may be missing. In this paper, we obtain the law of the iterated
logarithm (L.I.L) for (ηr,n) when the d.f F (.) has (i) exponentially fast right
tail (ii) regularly varying right tail and (iii) finite right extremity. In particular
when the d.f F is Uniform over (0, 1), we denote the rth moving maxima by
η∗r,n and rth maxima by M∗

r,n, n ≥ 1. Throughout the paper we introduce a
smoothness condition that (an) is non-decreasing and an

n
∼ bn, where (bn) is

non-increasing.

Barndorff-Nielson (1961) has shown that

lim sup
n
(
1−M∗

1,n

)
log log n

= 1 a.s. (1.1)

Rothmann-Russo (1991) have extended the result in (1.1) to moving maxima
for certain classes of (an). Under the setup of this paper, Vasudeva(1999) has
shown that

lim sup
an
(
1− η∗1,n

)
βn

= 1 a.s. (1.2)

where βn = log n
an

+ log log n. For sequences in (1.1) and (1.2), limit inferior
trivially follows to be zero. Since F is Uniform (0, 1) , one can show that
n
(
1−M∗

1,n

)
or an

(
1− η∗1,n

)
converge to an exponential distribution. As such,

for any sequence θn tending to ∞, one can show that

n(1−M∗1,n)

θn
→ 0

(
an(1−η∗1,n)

θn
→ 0

)
in probability or

lim inf
n(1−M∗

1,n)

θn
= lim inf

an(1− η∗1,n)

θn
= 0 a.s.

A precise lower bound for (1 − M∗
r,n) can be obtained from Kiefer (1971).

Note that Mn,n = min(X1, X2, . . . Xn), n ≥ 1. Then Kiefer established that
(Theorem 6)

lim inf
log(nMn,n)

log log n
= −1 a.s. (1.3)

The fact that X is Uniform (0, 1) implies that Y = 1−X will again be Uniform
(0, 1). Consequently Mn,n = 1−M∗

1,n and (1.3) implies that

lim inf
log(n(1−M∗

1,n))

log log n
= −1 a.s.

which can be equivalently written as

lim inf(n(1−M∗
1,n))

1
log logn = e−1 a.s. (1.4)

When (Xn) is a sequence of i.i.d symmetric stable r.v.s with exponent α,
0 < α < 2, Chover (1966) obtained the L.I.L for partial sum Sn =

∑n
j=1Xj,



80 Vasudeva.R and Srilakshminarayana.G

n ≥ 1, by taking (log log n)−1 in the power. To be precise, he established that

lim sup | Sn
n

1
α

|
1

log logn= e
1
α a.s.

As such, we call the L.I.L results established in this paper, as Chover’s form
of the L.I.L.

When (Xn) is Uniform (0, 1) one gets for any c > 0,

P

(
log(n(1−Xn))

log log n
< −c

)
= P

(
n(1−Xn) <

1

(log n)c

)
= P

(
1−Xn <

1

n(log n)c

)
=

1

n(log n)c
.

From the fact that
∑

1
n(logn)c

<∞ if c > 1, =∞ if c ≤ 1, by Borel-Cantelli

lemma one can show that

lim inf
log(n(1−Xn))

log log n
= −1 a.s.

or
lim inf(n(1−Xn))

1
log logn = e−1 a.s. (1.5)

From the relation Xn ≤ η∗1,n ≤M∗
1,n, and from (1.4) and (1.5) one can get the

L.I.L

lim inf(n(1− η∗1,n))
1

log logn = e−1 a.s. (1.6)

In section 2, we show that when an = [np], 0 < p < 1,

lim sup(n(1− η∗1,n))
1

log logn =∞ a.s.

Consequently, when an = [np], 0 < p < 1, the norming in (1.6) fails to give
a precise upper bound. We establish that (lemma 2.2) for any r ≥ 1, if

ξ∗r,n = (an(1 − η∗r,n))
1
βn , where βn = log

(
n
an

log n
)

then lim inf ξ∗r,n = e
−1
r a.s.

and lim sup ξ∗r,n = 1 a.s. In sections 3 and 4, we establish L.I.L for (ηr,n)
when the right tail of the d.f F is exponentially fast and regularly varying. In
the next section we give the L.I.L for (ηr,n) when F has finite right extremity
ie., ω(F ) = sup{x : F (x) < 1}. The associated boundary crossing results are
studied in the last section. For any x > 0, [x] means the greatest integer ≤ x,
c and k (integer) with or without a suffix, stand for generic constants.

2 Lemmas

Lemma 2.1 When an = [np], 0 < p < 1,

lim sup(n(1− η∗1,n))
1

log logn =∞ a.s.
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Proof The lemma is proved once we show that for any M > 0, however large
it may be,

P
(

(n(1− η∗1,n))
1

log logn > eM i.o
)

= 1.

Note that
(

(n(1− η∗1,n))
1

log logn > eM
)

=
(
η∗1,n < 1− (logn)M

n

)
.

Define An =
(
η∗1,n < 1− (logn)M

n

)
. Then we have P (An) =

(
1− (logn)M

n

)an
.

Since
(

1− (logn)M

n

) n

(logn)M → e−1 as n → ∞, for a given δ > 0, one can find

a N0 such that for all n ≥ N0,
(

1− (logn)M

n

) n

(logn)M

> e−(1+δ). Recalling that

an = [np], 0 < p < 1, for all n ≥ N0, one gets P (An) ≥ e−(1+δ)
an(logn)M

n , where
an(logn)M

n
→ 0 as n → ∞. Consequently, P (An) → 1 as n → ∞. We have

P (An i.o) = P (
⋂∞
n=1

⋃∞
m=nAm) = limn→∞ P (

⋃∞
m=nAm) ≥ limn→∞ P (An) =

1, which completes the proof of the lemma. �

In Vasudeva (1999), Barndorff-Nielson’s form of the L.I.L. has been extended
to the moving maxima, by considering (an) in place of (n) and(
βn = log

(
n
an

log n
))

in place of (log log n). In the literature, L.I.L have been

obtained for the delayed sums, with normalizing sequences (an) and (βn). As
such, for rth moving maxima also, it is natural to expect that the L.I.L holds
with (an) in place of (n) and (βn) in place of (log log n). In lemmas 2.2 and
2.3 we show that the assertion is true.

Lemma 2.2

lim inf
(
an
(
1− η∗r,n

)) 1
βn = e

−1
r a.s.

where βn = log
(
n
an

log n
)
, n ≥ 3.

Proof With no loss of generality we prove the result for r = 2 ie., we show
that

lim inf
(
an
(
1− η∗2,n

)) 1
βn = e−

1
2 a.s.

Equivalently we establish that for εε(0, 1)

P
((
an
(
1− η∗2,n

)) 1
βn < e

−1+ε
2 i.o

)
= 1 (2.1)

and

P
((
an
(
1− η∗2,n

)) 1
βn < e

−1−ε
2 i.o

)
= 0 (2.2)

Let n1 be the smallest integer such that an1 > 1.
Define nk+1 = min{n : n− an > nk}. Note that

nk+1 − ank+1 > nk and nk+1 − 1− a(nk+1−1) ≤ nk
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and hence nk+1 − 1− a(nk+1−1) ≤ nk < nk+1 − ank+1
or

1− 1

nk+1

−
a(nk+1−1)

nk+1

≤ nk
nk+1

< 1−
ank+1

nk+1

(2.3)

Since an
n
∼ bn, where (bn) is non-increasing, one can find a ρ, 0 ≤ ρ ≤ 1 such

that lim an
n

= ρ.

Case 1: 0 ≤ ρ < 1.
To prove (2.2), let un = 1− 1

an( n
an

logn)
1+ε
2

. Note that

P
((
an
(
1− η∗2,n

)) 1
log logn < e

−1−ε
2

)
= P

(
η∗2,n > un

)
.

Define An =
(
η∗2,n > un

)
, Bk =

(
secondmaxnk≤n≤nk+1

η∗2,n > unk
)
,

Ck =
(
secondmaxnk−ank≤j≤nk+1

Xj > unk
)
, and observe that

(An i.o) ⊆ (Bk i.o) ⊆ (Ck i.o).
We have

P (Ck) = P

(
second max

nk−ank≤j≤nk+1

Xj > unk

)
= 1−F nk+1−nk+ank (unk)+(nk+1−nk+ank)(1−unk)F nk+1−nk+ank−1 (unk)

' (nk+1−nk+ank)
2

2a2
nk

(
nk
ank

lognk

)1+ε =
(
nk+1−nk
ank

+ 1
)2

1

2

(
nk
ank

lognk

)1+ε .

From (2.3) one gets, lim nk
nk+1

= 1 − ρ or lim nk+1

nk
= (1 − ρ)−1. From the

definition of (nk) and from the relation

nk+1 − nk
ank

≤
ank+1

ank
≤ nk+1

nk
,

one gets for nk large,

P (Ck) ≤ c1
a1+ε
nk

(nk log nk)
1+ε ≤ c1

(nk − nk−1)
1+ε

n1+ε
k (log nk)1+ε

= c1

(
nk − nk−1

nk

)ε
nk − nk−1

nk(log nk)1+ε
≤ c2(nk − nk−1)

nk(log nk)1+ε
.

Note that

∞ >

∫
dx

x(log x)1+ε
=
∑
k

∫ nk

nk−1

dx

x(log x)1+ε
≥
∑
k

∫ nk

nk−1

1

nk (log nk)
1+ε

=
∑
k

nk − nk−1

nk (log nk)
1+ε .
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Using this and Borel-Cantelli lemma, one gets P (Ck i.o) = 0 which implies
that P (An i.o) = 0. Hence (2.2) is established.
To prove (2.1), let vn = 1− 1

an( n
an

logn)
1−ε
2

. Then

P
((
an
(
1− η∗2,n

)) 1
βn < e

−1+ε
2

)
= P

(
η∗2,n > vn

)
.

Define A∗n = {η∗2,n > vn} and D∗k = {secondmaxnk−ank≤j≤nk Xj > vnk}. Note
that (A∗n i.o) ⊇ (D∗k i.o) and that (D∗k) are mutually independent. Also,

P (D∗k) = 1−
(
F ank (vnk) + ank(1− vnk)F ank−1 (vnk)

)
' c3(

nk
ank

log nk

)1−ε ≥
c4ank

nk(log nk)1−ε

and

(nk − 1)− a(nk−1) < nk−1 ⇒ nk − nk−1 < a(nk−1) + 1 < ank + 1 < 2ank .

Using this, one gets

P (D∗k) ≥
c4(nk − nk−1)

nk(log nk)1−ε .

Note that

∞ =

∫
dx

x(log x)1−ε =
∑
k

∫ nk

nk−1

dx

x(log x)1−ε ≤
∑
k

nk − nk−1

nk−1(log nk−1)1−ε

≤
∑
k

c5
nk − nk−1

nk(log nk)1−ε .

(lim
nk
nk−1

= (1− ρ)−1 ⇒ nk ≤ nk−1(1− ρ)−1 ⇒ c5
1

nk
≥ 1

nk−1

for k large).

Since (D∗k) are mutually independent, appealing to Borel-Cantelli lemma we
get P (D∗k i.o) = 1, which implies that P (A∗n i.o) = 1.

Case 2: ρ = 1.
When ρ = 1 ie., lim an

n
= 1 one has βn ∼ log log n. Then one gets

P (An) ≤ P

η∗2,n > 1− 1

n (log n)
1+ ε

2
2

 .

Note that η∗2,n ≤M∗
2,n and the fact that

P

(
M∗

2,n > 1− 1

n(log n)
1+ ε

2
2

i.o

)
= 0⇒ P

(
η∗2,n > 1− 1

n(log n)
1+ ε

2
2

i.o

)
= 0.
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This proves (2.2).
To prove (2.1) we proceed as follows:

Let a∗n = [np], 0 < p < 1. Note that a∗n
n
→ p. Define M

′(m)
2,n = maxn−a∗n≤j≤nXj

and observe that M
′(m)
2,n ≤ η∗2,n. Let u∗n = 1 − 1

n(logn)
1−ε
2

. and let (mk) be

sequence such that a∗m1
> 1 and mk+1 = min{n : n− a∗n > mk}.

Then

P
(
M
′(m)
2,mk

> ηnk

)
= 1−

(
F amk (ηnk) + (amk(1− ηnk))F amk−1 (ηnk)

)
' mkp− 1

2mk(logmk)1−ε =
c6

(logmk)1−ε .

Note that

mk+1 − a∗mk+1
> mk and mk+1 − 1− a∗(mk+1−1) ≤ mk

⇒ mk+1 − 1− a∗(mk+1−1) ≤ mk ≤ mk+1 − a∗mk+1

⇒ mk+1 − 1− pmk+1 + 1 ≤ mk ≤ mk+1 − pmk+1

⇒ lim
mk

mk+1

= 1− p⇒ mk ' (1− p)k, for k ≥ k0,

where k0 is some constant. Hence one gets P
(
M
′(m)
2,mk

> ηmk

)
≥ c6

k1−ε , for all

k ≥ k0. Since
∑

1
k1−ε = ∞ and

(
M
′(m)
2,mk

)
are mutually independent, from

Borel-Cantelli lemma one gets P
(
M
′(m)
2,mk

> umk i.o
)

= 1. Since M
′(m)
2,n ≤ η∗2,n,

P

(
η∗2,n > 1− 1

n(logn)
1−ε
2

i.o

)
= 1. Hence the proof. �

Lemma 2.3 Let lim an
logn

=∞. Then

lim sup
(
an
(
1− η∗r,n

)) 1
βn = 1 a.s.

Proof With no loss of generality we prove the result for r = 2.
Equivalently we show that for ε > 0, but small,

P
((
an
(
1− η∗2,n

)) 1
βn > eε i.o

)
= 0 (2.4)

and

P
((
an
(
1− η∗2,n

)) 1
βn > e−ε i.o

)
= 1 (2.5)

Define An =
(

1− η∗2,n > 1
an

(
n
an

log n
)ε)

and note that

log
(
n
an

log n
)

(
n
an

log n
)ε → 0⇒

(
n

an logn

)ε
an

>
c7 log

(
n
an

log n
)

an
.



Law of the iterated logarithm for moving maxima .... 85

Let A′n =

(
1− η∗2,n >

c7 log( n
an

logn)
an

)
for c7 > 1, n ≥ 2. Observe that

(A′n i.o) ⊇ (An i.o). We have

P (A′n) = P

(
η∗2,n < 1−

c7 log( n
an

log n)

an

)
= F an

(
1−

c7 log( n
an

log n)

an

)
+c7 log(

n

an
log n)F an−1

(
1−

c7 log( n
an

log n)

an

)

=

(
1−

c7 log( n
an

log n)

an

)an
+ c7 log(

n

an
log n)

(
1−

c7 log( n
an

log n)

an

)an−1

=

(
1−

c7 log( n
an

log n)

an

)an−1(
1−

c7 log( n
an

log n)

an
+ c7 log(

n

an
log n)

)
.

Using the fact that an − 1 ' an, we get for n large and c8, c9 > 0

P (A
′

n) =

(
1−

c7 log( n
an

log n)

an

)an c7 log( n
an

log n)

an

'
(
e−c8 log( n

an
logn)

)(c7 log( n
an

log n)

an

)
≤ c9

(
an

n log n

) c8
2

.

Hence P (A
′
n) → 0 as n → ∞. We now show that P (A′n

⋂
A
′c
n+1 i.o) = 0,

which proves (2.4). We have

P (A′n
⋂

A
′C
n+1) ≤ P (A′n)P

Xn+1 > 1−
c10 log

(
n+1
an+1

log(n+ 1)
)

an+1



= P (A′n)
c10 log

(
n+1
an+1

log(n+ 1)
)

an+1

≤ c11

log
(
n+1
an+1

log(n+ 1)
)

an+1

(
an

n log n

)c12
≤ c13

(
an

n log n

)c12 (n+ 1)ε

aεn+1

(log(n+ 1))ε
1

an
≤ c14

(
an

n log n

)c12 nε
aεn

(log n)ε
1

an

≤ c15

n(log n)c12−ε
,

where c12 > 1 is such that c12 − ε > 1. Since
∑

1
n(logn)c12−ε

<∞, using Borel-

Cantelli lemma, we get P (A′n
⋂
A
′C
n+1 i.o) = 0 which implies P (A′n i.o) = 0

and in turn P (An i.o) = 0.
With no loss of generality we show (2.5) for r = 2.

Define Bn =
(

1− η∗2,n > 1
an

(
an

n(logn)

)ε)
. Now

P (Bn) = P

(
η∗2,n < 1− 1

an

(
an

n log n

)ε)
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=

(
1− 1

an

(
an

n log n

)ε)an
+

(
an

n log n

)ε(
1− 1

an

(
an

n log n

)ε)an−1

Using the fact that an − 1 ' an for n large, we get

P (Bn) =

(
1− 1

an

(
an

n log n

)ε)an (
1 +

(
an

n log n

)ε)
∼ e−

an
n logn ,

which tends to 1 as n→∞.
Hence P (Bn i.o) = 1 and the result is proved. �

Remark 2.1 When an = [np], 0 < p < 1, βn ∼ log log n. Hence from the
above two lemmas one can get

lim inf(n(1− η∗r,n))
1

log logn = e
−1
r a.s.

and
lim sup(n(1− η∗r,n))

1
log logn = 1 a.s.

3 L.I.L for distributions with exponentially fast tails.

Peter Hall(1976) obtained Kiefer’s results for a class of distributions which in-
clude those with tail 1−F (x) ' e−x

γL(x), γ > 0, where L(.) is a slowly varying.
In this section, we present L.I.L for (ηr,n) under the setup of Hall(1976).
Define U(x) = − log(1 − F (x)) and denote its inverse function by V . As in
Peter Hall(1976), suppose that for all functions a(.) with 0 6= a(x) → 0 as
x→∞

V (x(1 + a(x)))− V (x)

a(x)V (x)
→ γ−1 as x→∞ (3.1)

which implies that V is continuous for all large x, and regularly varying with
exponent γ−1. If V is eventually differentiable, then the condition above is
equivalent to x d

dx
log(V (x))→ γ−1 as x→∞ or alternatively, to

x
d

dx
log log(1− F (x))−1 → γ as x→∞.

Hence d.f s with 1 − F (x) ' exp (−xγL(x)), where γ > 0 and L is slowly
varying at ∞ belong to this class. Let (Xn) be i.i.d with d.f F of this class
and let ηr,n be the rth moving maxima. We have the following theorem.

Theorem 3.1

lim sup
log an
βn

(
ηr,n

V (log an)
− 1

)
=

1

rγ
a.s.

where βn = log
(
n
an

log n
)
, n ≥ 3.
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Proof We need to show that for εε(0, 1),

P

(
rγ

log an
βn

(
ηr,n

V (log an)
− 1

)
> 1 + ε i.o

)
= 0 (3.2)

and

P

(
rγ

log an
βn

(
ηr,n

V (log an)
− 1

)
> 1− ε i.o

)
= 1 (3.3)

From lemma 2.2, we have

P

1− η∗r,n <
1

an

(
n
an

log n
) 1+ε

r

i.o

 = 0 (3.4)

Note that η∗r,n = F (ηr,n). Hence

1−η∗r,n < 1

an( n
an

logn)
1+ε
r
⇔ 1−F (ηr,n) < 1

an( n
an

logn)
1+ε
r
⇔ − log (1− F (ηr,n)) <

− log

(
1

an( n
an

logn)
1+ε
r

)
⇔ U (ηr,n) > log an + log

(
n
an

log n
)

1+ε
r
⇔ ηr,n >

V
(

log an + log
(
n
an

log n
)

1+ε
r

)
⇔

ηr,n − V (log an) > V

(
log an

(
1 +

βn
log an

1 + ε

r

))
− V (log an) (3.5)

From condition (3.1) we have

V

(
log an

(
1 +

βn
log an

1 + ε

r

))
− V (log an) ∼ (1 + ε)

rγ

βnV (log an)

log an
.

Consequently, from (3.5), for n large,

1− η∗r,n <
1

an

(
n
an

log n
) 1+ε

r

⇔ ηr,n − V (log an) >
(1 + ε)

rγ

βnV (log an)

log an

⇔ rγ
log an
βn

(
ηr,n

V (log an)
− 1

)
> 1 + ε.

From (3.4), we hence have (3.2). Again from lemma 2.2, recalling that

P

1− η∗r,n <
1

an

(
n
an

log n
) 1−ε

r

i.o

 = 1

and proceeding on the above lines, (3.3) can be established. The details are
omitted. �

We consider some of the standard distributions and give the form of the V
function and the L.I.L.
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Example 1 When (Xn) is i.i.d unit exponential, one can get V (x) = x.
Then we have

lim sup
log an
βn

(
ηr,n

log an
− 1

)
=

1

r
a.s

Example 2 When (Xn) is i.i.d with common d.f F (x) = e−e
−x
,−∞ < x <

∞.
Note that 1 − F (x) ∼ e−x, as x → ∞. Consequently the L.I.L coincides with
that of L.I.L obtained in case of unit exponential. Hence we have

lim sup
log an
βn

(
ηr,n

log an
− 1

)
=

1

r
a.s

Example 3 When (Xn) is i.i.d standard normal, one gets

V (x) =
√

2x− log x− 2 log
√

2π − log 2 '
√

2x for large x. Then we have

lim sup
log an
βn

(
ηr,n√
2 log n

− 1

)
=

1

r
a.s

4 L.I.L when the distribution has a regularly varying
right tail.

Let (Xn) be i.i.d with d.f F having regularly varying tail and ηr,n denote the
rth moving maxima. Define U∗(x) = 1 − F (x) ∼ x−γL(x), γ > 0, where
L is a slowly varying function. Let V ∗ be the inverse of U∗. Observe that

V ∗(y) = y−
1
γ l
(

1
y

)
, 0 < y ≤ 1, where l is slowly varying . Note that U∗(.)

and V ∗(.) are decreasing functions. From the fact that F (Xn) is a Uniform
(0, 1) r.v, we note that η∗r,n = F (ηr,n), n ≥ 1. Let Ban be a solution of the
equation an(1− F (Ban)) ' 1. When 1− F is regularly varying with index γ,
we know that F belongs to the domain of attraction of Frechet law denoted
by FεDA(H1,γ).

Lemma 4.1 If yn →∞, zn →∞, one can find a δ > 0 such that

lim z−δn
L(ynzn)

L(yn)
= 0 and lim zδn

L(ynzn)

L(yn)
=∞

Proof For proof, see Seneta(1976). �

Theorem 4.1 Let FεDA(H1,γ), γ > 0. Then

lim sup

(
ηr,n
Ban

) 1
βn

= e
1
rγ a.s

where Ban is a solution of the equation an(1− F (Ban)) ' 1.
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Proof From lemma 2.2 we have

P

1− η∗r,n <
1

an

(
n
an

log n
) 1+ε

r

i.o

 = 0 (4.1)

and

P

1− η∗r,n <
1

an

(
n
an

log n
) 1−ε

r

i.o

 = 1 (4.2)

Using the relation η∗r,n = F (ηr,n) and U∗(x) = 1 − F (x) ∼ x−γL(x), (4.1) can
be written as

P

U∗(ηr,n) <
1

an

(
n
an

log n
) 1+ε

r

i.o

 = 0 (4.3)

Note that

U∗(ηr,n) <
1

an

(
n
an

log n
)1+ε f.o⇔ V ∗ (U∗(ηr,n)) > V ∗

 1

an

(
n
an

log n
) 1+ε

r

 f.o

⇔ ηr,n >

 1

an

(
n
an

log n
) 1+ε

r


−1
γ

l

(
an

(
n

an
log n

) 1+ε
r

)
f.o

⇔ ηr,n > a
1
γ
n

(
n

an
log n

) 1+ε
rγ

l

(
an

(
n

an
log n

) 1+ε
r

)
f.o

By lemma 4.1 for any δ > 0, we have

lim

(
n

an
log n

)δ l(an ( n
an

log n
) 1+ε

r

)
l(an)

=∞.

Choosing δ = ε
2rγ

, one can find a N0 such that for all n ≥ N0

l

(
an

(
n

an
log n

) 1+ε
r

)
≥ l(an)(

n
an

log n
) ε

2rγ

. (4.4)

Hence for n ≥ N0,

ηr,n ≥ a
1
γ
n

(
n

an
log n

) 1+ε
rγ
(
n

an
log n

) −ε
2rγ

l(an)⇔ ηr,n ≥ Ban

(
n

an
log n

) 1+ ε
2

rγ
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⇔
(
ηr,n
Ban

) 1
βn

≥ e
1+ ε

2
rγ (since, an(1−F (Ban)) ' 1 implies that Ban = an

1
γ l(an)).

Consequently, from (4.3) and (4.4)

P

((
ηr,n
Ban

) 1
βn

≥ e
1+ ε

2
rγ i.o

)
= 0. (4.5)

From lemma 4.1, Choosing δ = ε
2rγ

, one can find a N1 such that for all n ≥ N1

l

(
an

(
n

an
log n

) 1−ε
r

)
≥ l(an)

(
n

an
log n

) ε
2rγ

.

Proceeding on lines similar to those used to obtain (4.5), one can get

P

((
ηr,n
Ban

) 1
βn

≥ e
1− ε2
rγ i.o

)
= 1. (4.6)

From (4.5) and (4.6) we claim the result. �

5 L.I.L when the distribution has finite right

extremity.

Let (Xn) be i.i.d with common d.f F and let ω(F ) = sup{x : F (x) < 1} be
finite. In this section we obtain the L.I.L for ηr,n when ω(F ) <∞ and when F
belongs to the domain of attraction of the Weibull law ie., FεDA(H2,γ), γ > 0.
From the fact that F (Xn) is a Uniform (0, 1), we note that η∗r,n = F (ηr,n), n ≥
1. Let η

′
r,n be the rth maxima of (Yn−an , Yn−an+1 , . . . Yn) where (Yn) are i.i.d

r.v’s given by 1
ω(F )−Xn , n ≥ 1. Let F ∗ denote the d.f of Yn, n ≥ 1. Note that

F ∗εDA(H1,γ).

Theorem 5.1 Let FεDA(H2,γ), γ > 0. Then

lim inf (Ban (ω(F )− ηr,n))
1
βn = e−

1
rγ a.s.

Proof Let F ∗(y) = F
(
ω(F )− 1

y

)
, y > 0. We know that FεDA(H2,γ) iff

F ∗εDA(H1,γ) ie.,

P (Yn ≤ y) = P (Xn ≤ ω(F )− 1

y
) = P

(
1

ω(F )−Xn

≤ y

)
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for every y which implies that Yn =d 1
ω(F )−Xn . Observe that η

′
r,n = 1

ω(F )−ηr,n .

Since F ∗εDA(H1,γ), from Theorem 3.1 we have

lim sup

(
η
′
r,n

Ban

) 1
βn

= e
1
rγ a.s.

Substituting η
′
r,n = 1

ω(F )−ηr,n , one gets the required result. �

Example 4 Let F be Weibull with parameter γ > 0. Then

lim inf

(
a

1
γ
n (−ηr,n)

) 1
βn

= e
−1
rγ a.s.

Example 5 Let F (x) = xp, 0 ≤ x ≤ 1, p > 0. Note that ω(F ) = 1.

We have the following L.I.L

lim inf (an(1− ηr,n))
1
βn = e

p
r a.s.

6 Boundary crossing problem.

Let (ξn) be a sequence of r.v.s and (αn) be a sequence of real constants such
that ξn ≤ αn a.s or P (ξn ≥ αn i.o) = 0. Here αn is called a.s upper boundary
for ξn, n ≥ 1. The number of times ξn > αn is a proper r.v giving the total
number of boundary crossings. Define Zn = 1 if ξn > αn ,=0 otherwise and
N =

∑∞
n=1 Zn. Then N is a r.v giving the total number of boundary crossings,

which is an infinite sum of dependent, non-identically distributed Bernoulli
r.v.s. One of the important measures is E(N), which gives some idea of the
precision of αn.

Lemma 6.1 E(N) <∞ or =∞ according to
∑
P (Zn = 1) <∞ or =∞.

Proof Define Nm =
∑m

n=1 Zn,m ≥ 1, and note that Nm → N as m→∞. We
have E(Nm) =

∑m
n=1 P (Zn = 1). Since N ≥ Nm, E(N) ≥ limm→∞E(Nm) =∑∞

n=1 P (Zn = 1). Consequently, E(N) < ∞ whenever
∑
P (Zn = 1) = ∞.

Since (Nm) is a sequence of non-negative, non-decreasing measurable functions,
we have lim inf E(Nm) ≥ E(lim inf Nm) or lim inf

∑m
n=1 P (Zn = 1) ≥ E(N),

which implies that E(N) ≤
∑∞

n=1 P (Zn = 1). In turn, E(N) < ∞ whenever∑m
n=1 P (Zn = 1) <∞. �

Let (Xn) be i.i.d Uniform (0, 1). From lemma 2.2 we have for any ε > 0,

P

(
η∗r,n >

(
1− 1

an

(
an

n logn

)1+ε
)
i.o

)
= 0. Define Zn = 1 if η∗r,n > αn, = 0

otherwise, where αn =

(
1− 1

an

(
an

n logn

)1+ε
)

. Then we have the following

lemma.



92 Vasudeva.R and Srilakshminarayana.G

Lemma 6.2 When (Xn) is i.i.d Uniform (0, 1), E(N) <∞ if
an = o((log n)δ) for any δ > 0 and E(n) =∞ if an

nδ
→∞ for some δ > 0.

Proof With no loss of generality, we give the proof when r = 2. We have

P (η∗2,n > αn) = 1−P (η∗2,n ≤ αn) = 1−αann −anαan−1
n (1−αn) ∼

(
an

n log n

)(1+ε)

.

If an = o(log n)δ for any δ > 0, one can show that
∑(

an
n(logn)

)1+ε

< ∞.

Consequently,
∑

n P (Zn = 1) < ∞ or E(N) < ∞. If an
nδ
→ ∞ for some

δ > 0, then an > nδ for all n large. Consequently, for n large
(

an
n logn

)1+ε

>

1
(n1−δ logn)1+ε

. Whenever ε < δ
1−δ ,

∑(
an

n logn

)
=∞, which implies that E(N) =

∞. �

Remark 6.1 One can similarly discuss the behaviour of E(N) under sec-
tions 3, 4 and 5. Recognizing the equivalence of events, one can see that
E(N) < ∞ whenever an = (log n)δ for any δ > 0 and E(N) = ∞ when
an
nδ
→∞ for some δ > 0 in all the cases.
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