Chover's form of the Law of the ITERATED LOGARITHM FOR $r^{\text {th }}$ MOVING MAXIMA

R.Vasudeva and Srilakshminarayana.G
Department of Studies in Statistics
University Of Mysore
Manasagangotri
Mysore-570006, India

e-mail: vasudeva.rasbagh@gmail.com, lakshminarayana.gs123@gmail.com

Paper received on 09 April 2009; revised, 07 May 2009; accepted, 19 May 2009.
Abstract. Let $\left(X_{n}\right)$ be a sequence of i.i.d random variables and let $\eta_{r, n}$ denote the $r^{\text {th }}$ maxima of $\left(X_{n-a_{n}}, X_{n-a_{n}+1}, \ldots X_{n}\right)$, where $\left(a_{n}\right)$ is a non-decreasing sequence such that $0 \leq a_{n} \leq n$ and $\frac{a_{n}}{n} \sim b_{n},\left(b_{n}\right)$ is non-increasing. In this paper we obtain the law of the iterated logarithm for $\eta_{r, n}$, properly normalized.

Mathematics Subject Classification. 60F15.
Keywords. Law of the iterated logarithm, moving maxima, regularly varying functions.

1 Introduction

Let $\left\{X_{n}\right\}$ be a sequence of independent and identically distributed (i.i.d) random variables (r.v.s) defined over a probability space (Ω, F, P) and let F denote the common distribution function(d.f). Suppose that F is continuous. Then the $r^{t h}$ maxima and $r^{\text {th }}$ moving maxima are defined as follows.

Definition 1.1 Let $X_{1, n} \leq X_{2, n} \leq \ldots \leq X_{n-r+1, n} \leq \ldots \leq X_{n, n}$ denote the ordered arrangement of $X_{1}, X_{2}, \ldots, X_{n}$. Then $X_{n-r+1, n}$ is called the $r^{\text {th }}$ maxima, as it is the $r^{\text {th }}$ highest member among $X_{1}, X_{2}, \ldots, X_{n}$. It is denoted by $M_{r, n}$. In particular, when $r=1, M_{1, n}=\max \left(X_{1}, X_{2}, \ldots, X_{n}\right)$ is the partial maxima; when $r=n, M_{n, n}=\min \left(X_{1}, X_{2}, \ldots, X_{n}\right)$, is the partial minima.

Definition 1.2 Let $\left(a_{n}\right)$ be a non-decreasing sequence of integers with $0 \leq$ $a_{n}<n$. Consider the r.v.s $X_{n-a_{n}}, X_{n-a_{n}+1}, \ldots, X_{n}$ from $X_{1}, X_{2}, \ldots, X_{n}$ and arrange them in the increasing order as $Y_{n-a_{n}, n} \leq Y_{n-a_{n}+1, n} \leq \ldots \leq Y_{n-r+1, n} \ldots$ $\leq Y_{n, n}$. Then $Y_{n-r+1, n}$ is the $r^{\text {th }}$ highest member among $X_{n-a_{n}}, \ldots, X_{n-a_{n}+1}, \ldots$, X_{n}. It is denoted by $\eta_{r, n}$. In particular, when $r=1, \eta_{1, n}=\max _{n-a_{n} \leq j \leq n} X_{j}$, is well known as the moving maxima. In the same spirit, $\eta_{r, n}$ is called $r^{t h}$ moving maxima.

The study of moving maxima has gained importance like that of the delayed sums, since in the process of realization of a phenomenon, some of the initial observations may be missing. In this paper, we obtain the law of the iterated logarithm (L.I.L) for $\left(\eta_{r, n}\right)$ when the $d . f F($.$) has (i)$ exponentially fast right tail (ii) regularly varying right tail and (iii) finite right extremity. In particular when the d.f F is Uniform over $(0,1)$, we denote the $r^{\text {th }}$ moving maxima by $\eta_{r, n}^{*}$ and $r^{t h}$ maxima by $M_{r, n}^{*}, n \geq 1$. Throughout the paper we introduce a smoothness condition that $\left(a_{n}\right)$ is non-decreasing and $\frac{a_{n}}{n} \sim b_{n}$, where $\left(b_{n}\right)$ is non-increasing.

Barndorff-Nielson (1961) has shown that

$$
\begin{equation*}
\limsup \frac{n\left(1-M_{1, n}^{*}\right)}{\log \log n}=1 \quad \text { a.s. } \tag{1.1}
\end{equation*}
$$

Rothmann-Russo (1991) have extended the result in (1.1) to moving maxima for certain classes of $\left(a_{n}\right)$. Under the setup of this paper, Vasudeva(1999) has shown that

$$
\begin{equation*}
\limsup \frac{a_{n}\left(1-\eta_{1, n}^{*}\right)}{\beta_{n}}=1 \quad \text { a.s. } \tag{1.2}
\end{equation*}
$$

where $\beta_{n}=\log \frac{n}{a_{n}}+\log \log n$. For sequences in (1.1) and (1.2), limit inferior trivially follows to be zero. Since F is Uniform $(0,1)$, one can show that $n\left(1-M_{1, n}^{*}\right)$ or $a_{n}\left(1-\eta_{1, n}^{*}\right)$ converge to an exponential distribution. As such, for any sequence θ_{n} tending to ∞, one can show that

$$
\begin{aligned}
\frac{n\left(1-M_{1, n}^{*}\right)}{\theta_{n}} \rightarrow 0 & \left(\frac{a_{n}\left(1-\eta_{1, n}^{*}\right)}{\theta_{n}} \rightarrow 0\right) \text { in probability or } \\
& \liminf \frac{n\left(1-M_{1, n}^{*}\right)}{\theta_{n}}=\liminf \frac{a_{n}\left(1-\eta_{1, n}^{*}\right)}{\theta_{n}}=0 \quad \text { a.s. }
\end{aligned}
$$

A precise lower bound for ($1-M_{r, n}^{*}$) can be obtained from Kiefer (1971). Note that $M_{n, n}=\min \left(X_{1}, X_{2}, \ldots X_{n}\right), n \geq 1$. Then Kiefer established that (Theorem 6)

$$
\begin{equation*}
\lim \inf \frac{\log \left(n M_{n, n}\right)}{\log \log n}=-1 \quad \text { a.s. } \tag{1.3}
\end{equation*}
$$

The fact that X is Uniform $(0,1)$ implies that $Y=1-X$ will again be Uniform $(0,1)$. Consequently $M_{n, n}=1-M_{1, n}^{*}$ and (1.3) implies that

$$
\lim \inf \frac{\log \left(n\left(1-M_{1, n}^{*}\right)\right)}{\log \log n}=-1 \quad \text { a.s. }
$$

which can be equivalently written as

$$
\begin{equation*}
\lim \inf \left(n\left(1-M_{1, n}^{*}\right)\right)^{\frac{1}{\log \log n}}=e^{-1} \quad \text { a.s. } \tag{1.4}
\end{equation*}
$$

When $\left(X_{n}\right)$ is a sequence of i.i.d symmetric stable r.v.s with exponent α, $0<\alpha<2$, Chover (1966) obtained the L.I.L for partial sum $S_{n}=\sum_{j=1}^{n} X_{j}$,
$n \geq 1$, by taking $(\log \log n)^{-1}$ in the power. To be precise, he established that

$$
\lim \sup \left|\frac{S_{n}}{n^{\frac{1}{\alpha}}}\right|^{\frac{1}{\log \log n}}=e^{\frac{1}{\alpha}} \quad \text { a.s. }
$$

As such, we call the L.I.L results established in this paper, as Chover's form of the L.I.L.

When $\left(X_{n}\right)$ is Uniform $(0,1)$ one gets for any $c>0$,

$$
\begin{aligned}
P\left(\frac{\log \left(n\left(1-X_{n}\right)\right)}{\log \log n}<-c\right) & =P\left(n\left(1-X_{n}\right)<\frac{1}{(\log n)^{c}}\right) \\
& =P\left(1-X_{n}<\frac{1}{n(\log n)^{c}}\right)=\frac{1}{n(\log n)^{c}} .
\end{aligned}
$$

From the fact that $\sum \frac{1}{n(\log n)^{c}}<\infty$ if $c>1,=\infty$ if $c \leq 1$, by Borel-Cantelli lemma one can show that

$$
\lim \inf \frac{\log \left(n\left(1-X_{n}\right)\right)}{\log \log n}=-1 \quad \text { a.s. }
$$

or

$$
\begin{equation*}
\lim \inf \left(n\left(1-X_{n}\right)\right)^{\frac{1}{\log \log n}}=e^{-1} \quad \text { a.s. } \tag{1.5}
\end{equation*}
$$

From the relation $X_{n} \leq \eta_{1, n}^{*} \leq M_{1, n}^{*}$, and from (1.4) and (1.5) one can get the L.I.L

$$
\begin{equation*}
\lim \inf \left(n\left(1-\eta_{1, n}^{*}\right)\right)^{\frac{1}{\log \log n}}=e^{-1} \quad \text { a.s. } \tag{1.6}
\end{equation*}
$$

In section 2 , we show that when $a_{n}=\left[n^{p}\right], 0<p<1$,

$$
\limsup \left(n\left(1-\eta_{1, n}^{*}\right)\right)^{\frac{1}{\log \log n}}=\infty \quad \text { a.s. }
$$

Consequently, when $a_{n}=\left[n^{p}\right], 0<p<1$, the norming in (1.6) fails to give a precise upper bound. We establish that (lemma 2.2) for any $r \geq 1$, if $\xi_{r, n}^{*}=\left(a_{n}\left(1-\eta_{r, n}^{*}\right)\right)^{\frac{1}{\beta_{n}}}$, where $\beta_{n}=\log \left(\frac{n}{a_{n}} \log n\right)$ then $\lim \inf \xi_{r, n}^{*}=e^{\frac{-1}{r}} \quad$ a.s. and $\lim \sup \xi_{r, n}^{*}=1$ a.s. In sections 3 and 4, we establish L.I.L for $\left(\eta_{r, n}\right)$ when the right tail of the d.f F is exponentially fast and regularly varying. In the next section we give the L.I.L for $\left(\eta_{r, n}\right)$ when F has finite right extremity ie., $\omega(F)=\sup \{x: F(x)<1\}$. The associated boundary crossing results are studied in the last section. For any $x>0,[x]$ means the greatest integer $\leq x$, c and k (integer) with or without a suffix, stand for generic constants.

2 Lemmas

Lemma 2.1 When $a_{n}=\left[n^{p}\right], 0<p<1$,

$$
\lim \sup \left(n\left(1-\eta_{1, n}^{*}\right)\right)^{\frac{1}{\log \log n}}=\infty \quad \text { a.s. }
$$

Proof The lemma is proved once we show that for any $M>0$, however large it may be,

$$
P\left(\left(n\left(1-\eta_{1, n}^{*}\right)\right)^{\frac{1}{\log \log n}}>e^{M} \quad \text { i.o }\right)=1 .
$$

Note that $\left(\left(n\left(1-\eta_{1, n}^{*}\right)\right)^{\frac{1}{\log \log n}}>e^{M}\right)=\left(\eta_{1, n}^{*}<1-\frac{(\log n)^{M}}{n}\right)$.
Define $A_{n}=\left(\eta_{1, n}^{*}<1-\frac{(\log n)^{M}}{n}\right)$. Then we have $P\left(A_{n}\right)=\left(1-\frac{(\log n)^{M}}{n}\right)^{a_{n}}$.
Since $\left(1-\frac{(\log n)^{M}}{n}\right)^{\frac{n}{(\log n)^{M}}} \rightarrow e^{-1}$ as $n \rightarrow \infty$, for a given $\delta>0$, one can find a N_{0} such that for all $n \geq N_{0},\left(1-\frac{(\log n)^{M}}{n}\right)^{\frac{n}{(\log n)^{M}}}>e^{-(1+\delta)}$. Recalling that $a_{n}=\left[n^{p}\right], 0<p<1$, for all $n \geq N_{0}$, one gets $P\left(A_{n}\right) \geq e^{-(1+\delta) \frac{a_{n}(\log n)^{M}}{n}}$, where $\frac{a_{n}(\log n)^{M}}{n} \rightarrow 0$ as $n \rightarrow \infty$. Consequently, $P\left(A_{n}\right) \rightarrow 1$ as $n \rightarrow \infty$. We have $P\left(\begin{array}{ll}A_{n} & \text { i.o }\end{array}\right)=P\left(\bigcap_{n=1}^{\infty} \bigcup_{m=n}^{\infty} A_{m}\right)=\lim _{n \rightarrow \infty} P\left(\bigcup_{m=n}^{\infty} A_{m}\right) \geq \lim _{n \rightarrow \infty} P\left(A_{n}\right)=$ 1 , which completes the proof of the lemma.

In Vasudeva (1999), Barndorff-Nielson's form of the L.I.L. has been extended to the moving maxima, by considering $\left(a_{n}\right)$ in place of (n) and $\left(\beta_{n}=\log \left(\frac{n}{a_{n}} \log n\right)\right)$ in place of $(\log \log n)$. In the literature, L.I.L have been obtained for the delayed sums, with normalizing sequences $\left(a_{n}\right)$ and $\left(\beta_{n}\right)$. As such, for $r^{\text {th }}$ moving maxima also, it is natural to expect that the L.I.L holds with $\left(a_{n}\right)$ in place of (n) and $\left(\beta_{n}\right)$ in place of $(\log \log n)$. In lemmas 2.2 and 2.3 we show that the assertion is true.

Lemma 2.2

$$
\liminf \left(a_{n}\left(1-\eta_{r, n}^{*}\right)\right)^{\frac{1}{\beta_{n}}}=e^{\frac{-1}{r}} \quad \text { a.s. }
$$

where $\beta_{n}=\log \left(\frac{n}{a_{n}} \log n\right), n \geq 3$.
Proof With no loss of generality we prove the result for $r=2$ ie., we show that

$$
\liminf \left(a_{n}\left(1-\eta_{2, n}^{*}\right)\right)^{\frac{1}{\beta_{n}}}=e^{-\frac{1}{2}} \quad \text { a.s. }
$$

Equivalently we establish that for $\epsilon \varepsilon(0,1)$

$$
\begin{equation*}
P\left(\left(a_{n}\left(1-\eta_{2, n}^{*}\right)\right)^{\frac{1}{\beta_{n}}}<e^{\frac{-1+\epsilon}{2}} \quad \text { i.o }\right)=1 \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
P\left(\left(a_{n}\left(1-\eta_{2, n}^{*}\right)\right)^{\frac{1}{\beta_{n}}}<e^{\frac{-1-\epsilon}{2}} \quad i .0\right)=0 \tag{2.2}
\end{equation*}
$$

Let n_{1} be the smallest integer such that $a_{n_{1}}>1$.
Define $n_{k+1}=\min \left\{n: n-a_{n}>n_{k}\right\}$. Note that

$$
n_{k+1}-a_{n_{k}+1}>n_{k} \text { and } n_{k+1}-1-a_{\left(n_{k+1}-1\right)} \leq n_{k}
$$

and hence $n_{k+1}-1-a_{\left(n_{k+1}-1\right)} \leq n_{k}<n_{k+1}-a_{n_{k+1}}$ or

$$
\begin{equation*}
1-\frac{1}{n_{k+1}}-\frac{a_{\left(n_{k+1}-1\right)}}{n_{k+1}} \leq \frac{n_{k}}{n_{k+1}}<1-\frac{a_{n_{k+1}}}{n_{k+1}} \tag{2.3}
\end{equation*}
$$

Since $\frac{a_{n}}{n} \sim b_{n}$, where $\left(b_{n}\right)$ is non-increasing, one can find a $\rho, 0 \leq \rho \leq 1$ such that $\lim \frac{a_{n}}{n}=\rho$.
Case 1: $0 \leq \rho<1$.
To prove (2.2), let $u_{n}=1-\frac{1}{a_{n}\left(\frac{n}{a_{n}} \log n\right)^{\frac{1+\epsilon}{2}}}$. Note that

$$
P\left(\left(a_{n}\left(1-\eta_{2, n}^{*}\right)\right)^{\frac{1}{\log \log n}}<e^{\frac{-1-\epsilon}{2}}\right)=P\left(\eta_{2, n}^{*}>u_{n}\right) .
$$

Define $A_{n}=\left(\eta_{2, n}^{*}>u_{n}\right), B_{k}=\left(\right.$ second $\left.\max _{n_{k} \leq n \leq n_{k+1}} \eta_{2, n}^{*}>u_{n_{k}}\right)$, $C_{k}=\left(\right.$ second $\left.\max _{n_{k}-a_{n_{k}} \leq j \leq n_{k+1}} X_{j}>u_{n_{k}}\right)$, and observe that

$$
\left(\begin{array}{ll}
A_{n} & i . o
\end{array}\right) \subseteq\left(\begin{array}{ll}
B_{k} & i . o
\end{array}\right) \subseteq\left(\begin{array}{ll}
C_{k} & \text { i.o }
\end{array}\right) .
$$

We have

$$
\begin{aligned}
P\left(C_{k}\right) & =P\left(\text { second } \max _{n_{k}-a_{n_{k}} \leq j \leq n_{k+1}} X_{j}>u_{n_{k}}\right) \\
& =1-F^{n_{k+1}-n_{k}+a_{n_{k}}}\left(u_{n_{k}}\right)+\left(n_{k+1}-n_{k}+a_{n_{k}}\right)\left(1-u_{n_{k}}\right) F^{n_{k+1}-n_{k}+a_{n_{k}}-1}\left(u_{n_{k}}\right) \\
& \simeq \frac{\left(n_{k+1}-n_{k}+a_{n_{k}}\right)^{2}}{2 a_{n_{k}}^{2}\left(\frac{n_{k}}{a_{n_{k}}} \log n_{k}\right)^{1+\epsilon}}=\left(\frac{n_{k+1}-n_{k}}{a_{n_{k}}}+1\right)^{2} \frac{1}{2\left(\frac{n_{k}}{a_{n_{k}}} \log n_{k}\right)^{1+\epsilon}} .
\end{aligned}
$$

From (2.3) one gets, $\lim \frac{n_{k}}{n_{k+1}}=1-\rho$ or $\lim \frac{n_{k+1}}{n_{k}}=(1-\rho)^{-1}$. From the definition of $\left(n_{k}\right)$ and from the relation

$$
\frac{n_{k+1}-n_{k}}{a_{n_{k}}} \leq \frac{a_{n_{k+1}}}{a_{n_{k}}} \leq \frac{n_{k+1}}{n_{k}},
$$

one gets for n_{k} large,

$$
\begin{aligned}
P\left(C_{k}\right) & \leq c_{1} \frac{a_{n_{k}}^{1+\epsilon}}{\left(n_{k} \log n_{k}\right)^{1+\epsilon}} \leq c_{1} \frac{\left(n_{k}-n_{k-1}\right)^{1+\epsilon}}{n_{k}^{1+\epsilon}\left(\log n_{k}\right)^{1+\epsilon}} \\
& =c_{1}\left(\frac{n_{k}-n_{k-1}}{n_{k}}\right)^{\epsilon} \frac{n_{k}-n_{k-1}}{n_{k}\left(\log n_{k}\right)^{1+\epsilon}} \leq \frac{c_{2}\left(n_{k}-n_{k-1}\right)}{n_{k}\left(\log n_{k}\right)^{1+\epsilon}} .
\end{aligned}
$$

Note that

$$
\begin{aligned}
\infty>\int \frac{d x}{x(\log x)^{1+\epsilon}}=\sum_{k} \int_{n_{k-1}}^{n_{k}} \frac{d x}{x(\log x)^{1+\epsilon}} & \geq \sum_{k} \int_{n_{k-1}}^{n_{k}} \frac{1}{n_{k}\left(\log n_{k}\right)^{1+\epsilon}} \\
& =\sum_{k} \frac{n_{k}-n_{k-1}}{n_{k}\left(\log n_{k}\right)^{1+\epsilon}} .
\end{aligned}
$$

Using this and Borel-Cantelli lemma, one gets $P\left(C_{k} i . o\right)=0$ which implies that $P\left(A_{n} i . o\right)=0$. Hence (2.2) is established.
To prove (2.1), let $v_{n}=1-\frac{1}{a_{n}\left(\frac{n}{a_{n}} \log n\right)^{\frac{1-\epsilon}{2}}}$. Then

$$
P\left(\left(a_{n}\left(1-\eta_{2, n}^{*}\right)\right)^{\frac{1}{\beta_{n}}}<e^{\frac{-1+\epsilon}{2}}\right)=P\left(\eta_{2, n}^{*}>v_{n}\right) .
$$

Define $A_{n}^{*}=\left\{\eta_{2, n}^{*}>v_{n}\right\}$ and $D_{k}^{*}=\left\{\right.$ second $\left.\max _{n_{k}-a_{n_{k}} \leq j \leq n_{k}} X_{j}>v_{n_{k}}\right\}$. Note that $\left(\begin{array}{ll}A_{n}^{*} & i . o\end{array}\right) \supseteq\left(\begin{array}{ll}D_{k}^{*} & \text { i.o }\end{array}\right)$ and that $\left(D_{k}^{*}\right)$ are mutually independent. Also,

$$
\begin{aligned}
P\left(D_{k}^{*}\right) & =1-\left(F^{a_{n_{k}}}\left(v_{n_{k}}\right)+a_{n_{k}}\left(1-v_{n_{k}}\right) F^{a_{n_{k}}-1}\left(v_{n_{k}}\right)\right) \\
& \simeq \frac{c_{3}}{\left(\frac{n_{k}}{a_{n_{k}}} \log n_{k}\right)^{1-\epsilon}} \geq \frac{c_{4} a_{n_{k}}}{n_{k}\left(\log n_{k}\right)^{1-\epsilon}}
\end{aligned}
$$

and

$$
\left(n_{k}-1\right)-a_{\left(n_{k}-1\right)}<n_{k-1} \Rightarrow n_{k}-n_{k-1}<a_{\left(n_{k}-1\right)}+1<a_{n_{k}}+1<2 a_{n_{k}} .
$$

Using this, one gets

$$
P\left(D_{k}^{*}\right) \geq \frac{c_{4}\left(n_{k}-n_{k-1}\right)}{n_{k}\left(\log n_{k}\right)^{1-\epsilon}} .
$$

Note that

$$
\begin{aligned}
& \infty=\int \frac{d x}{x(\log x)^{1-\epsilon}}=\sum_{k} \int_{n_{k-1}}^{n_{k}} \frac{d x}{x(\log x)^{1-\epsilon}} \leq \sum_{k} \frac{n_{k}-n_{k-1}}{n_{k-1}\left(\log n_{k-1}\right)^{1-\epsilon}} \\
& \leq \sum_{k} c_{5} \frac{n_{k}-n_{k-1}}{n_{k}\left(\log n_{k}\right)^{1-\epsilon}} . \\
&\left(\lim \frac{n_{k}}{n_{k-1}}=(1-\rho)^{-1} \Rightarrow n_{k} \leq n_{k-1}(1-\rho)^{-1} \Rightarrow c_{5} \frac{1}{n_{k}} \geq \frac{1}{n_{k-1}} \text { for } \text { k large }\right) .
\end{aligned}
$$

Since $\left(D_{k}^{*}\right)$ are mutually independent, appealing to Borel-Cantelli lemma we get $P\left(\begin{array}{ll}D_{k}^{*} & i . o\end{array}\right)=1$, which implies that $P\left(A_{n}^{*} \quad i . o\right)=1$.
Case 2: $\rho=1$.
When $\rho=1$ ie., $\lim \frac{a_{n}}{n}=1$ one has $\beta_{n} \sim \log \log n$. Then one gets

$$
P\left(A_{n}\right) \leq P\left(\eta_{2, n}^{*}>1-\frac{1}{n(\log n)^{\frac{1+\frac{\epsilon}{2}}{2}}}\right) .
$$

Note that $\eta_{2, n}^{*} \leq M_{2, n}^{*}$ and the fact that

$$
P\left(M_{2, n}^{*}>1-\frac{1}{n(\log n)^{\frac{1+\frac{\epsilon}{2}}{2}}} i . o\right)=0 \Rightarrow P\left(\eta_{2, n}^{*}>1-\frac{1}{n(\log n)^{\frac{1+\frac{\epsilon}{2}}{2}}} i . o\right)=0 .
$$

This proves (2.2).
To prove (2.1) we proceed as follows:
Let $a_{n}^{*}=[n p], 0<p<1$. Note that $\frac{a_{n}^{*}}{n} \rightarrow p$. Define $M_{2, n}^{\prime(m)}=\max _{n-a_{n}^{*} \leq j \leq n} X_{j}$ and observe that $M_{2, n}^{\prime(m)} \leq \eta_{2, n}^{*}$. Let $u_{n}^{*}=1-\frac{1}{n(\log n)^{\frac{1-\epsilon}{2}}}$. and let $\left(m_{k}\right)$ be sequence such that $a_{m_{1}}^{*}>1$ and $m_{k+1}=\min \left\{n: n-a_{n}^{*}>m_{k}\right\}$.
Then

$$
\begin{aligned}
P\left(M_{2, m_{k}}^{\prime(m)}>\eta_{n_{k}}\right) & =1-\left(F^{a_{m_{k}}}\left(\eta_{n_{k}}\right)+\left(a_{m_{k}}\left(1-\eta_{n_{k}}\right)\right) F^{a_{m_{k}}-1}\left(\eta_{n_{k}}\right)\right) \\
& \simeq \frac{m_{k} p-1}{2 m_{k}\left(\log m_{k}\right)^{1-\epsilon}}=\frac{c_{6}}{\left(\log m_{k}\right)^{1-\epsilon}} .
\end{aligned}
$$

Note that

$$
\begin{aligned}
& m_{k+1}-a_{m_{k+1}}^{*}>m_{k} \text { and } m_{k+1}-1-a_{\left(m_{k+1}-1\right)}^{*} \leq m_{k} \\
\Rightarrow & m_{k+1}-1-a_{\left(m_{k+1}-1\right)}^{*} \leq m_{k} \leq m_{k+1}-a_{m_{k+1}}^{*} \\
\Rightarrow & m_{k+1}-1-p m_{k+1}+1 \leq m_{k} \leq m_{k+1}-p m_{k+1} \\
\Rightarrow & \lim \frac{m_{k}}{m_{k+1}}=1-p \Rightarrow m_{k} \simeq(1-p)^{k}, \text { for } k \geq k_{0},
\end{aligned}
$$

where k_{0} is some constant. Hence one gets $P\left(M_{2, m_{k}}^{\prime(m)}>\eta_{m_{k}}\right) \geq \frac{c_{6}}{k^{1-\epsilon}}$, for all $k \geq k_{0}$. Since $\sum \frac{1}{k^{1-\epsilon}}=\infty$ and $\left(M_{2, m_{k}}^{\prime(m)}\right)$ are mutually independent, from Borel-Cantelli lemma one gets $P\left(M_{2, m_{k}}^{\prime(m)}>u_{m_{k}} i . o\right)=1$. Since $M_{2, n}^{\prime(m)} \leq \eta_{2, n}^{*}$, $P\left(\eta_{2, n}^{*}>1-\frac{1}{n(\log n)^{\frac{1-\epsilon}{2}}} i .0\right)=1$. Hence the proof.

Lemma 2.3 Let $\lim \frac{a_{n}}{\log n}=\infty$. Then

$$
\lim \sup \left(a_{n}\left(1-\eta_{r, n}^{*}\right)\right)^{\frac{1}{\beta_{n}}}=1 \quad \text { a.s. }
$$

Proof With no loss of generality we prove the result for $r=2$.
Equivalently we show that for $\epsilon>0$, but small,

$$
\begin{equation*}
P\left(\left(a_{n}\left(1-\eta_{2, n}^{*}\right)\right)^{\frac{1}{\beta_{n}}}>e^{\epsilon} \quad i . o\right)=0 \tag{2.4}
\end{equation*}
$$

and

$$
\begin{equation*}
P\left(\left(a_{n}\left(1-\eta_{2, n}^{*}\right)\right)^{\frac{1}{\beta_{n}}}>e^{-\epsilon} \quad i .0\right)=1 \tag{2.5}
\end{equation*}
$$

Define $A_{n}=\left(1-\eta_{2, n}^{*}>\frac{1}{a_{n}}\left(\frac{n}{a_{n}} \log n\right)^{\epsilon}\right)$ and note that

$$
\frac{\log \left(\frac{n}{a_{n}} \log n\right)}{\left(\frac{n}{a_{n}} \log n\right)^{\epsilon}} \rightarrow 0 \Rightarrow \frac{\left(\frac{n}{a_{n} \log n}\right)^{\epsilon}}{a_{n}}>\frac{c_{7} \log \left(\frac{n}{a_{n}} \log n\right)}{a_{n}}
$$

Let $A_{n}^{\prime}=\left(1-\eta_{2, n}^{*}>\frac{c_{7} \log \left(\frac{n}{a_{n}} \log n\right)}{a_{n}}\right)$ for $c_{7}>1, n \geq 2$. Observe that $\left(\begin{array}{ll}A_{n}^{\prime} & i . o\end{array}\right) \supseteq\left(\begin{array}{ll}A_{n} & i . o\end{array}\right)$. We have
$P\left(A_{n}^{\prime}\right)=P\left(\eta_{2, n}^{*}<1-\frac{c_{7} \log \left(\frac{n}{a_{n}} \log n\right)}{a_{n}}\right)$
$=F^{a_{n}}\left(1-\frac{c_{7} \log \left(\frac{n}{a_{n}} \log n\right)}{a_{n}}\right)+c_{7} \log \left(\frac{n}{a_{n}} \log n\right) F^{a_{n}-1}\left(1-\frac{c_{7} \log \left(\frac{n}{a_{n}} \log n\right)}{a_{n}}\right)$
$=\left(1-\frac{c_{7} \log \left(\frac{n}{a_{n}} \log n\right)}{a_{n}}\right)^{a_{n}}+c_{7} \log \left(\frac{n}{a_{n}} \log n\right)\left(1-\frac{c_{7} \log \left(\frac{n}{a_{n}} \log n\right)}{a_{n}}\right)^{a_{n}-1}$
$=\left(1-\frac{c_{7} \log \left(\frac{n}{a_{n}} \log n\right)}{a_{n}}\right)^{a_{n}-1}\left(1-\frac{c_{7} \log \left(\frac{n}{a_{n}} \log n\right)}{a_{n}}+c_{7} \log \left(\frac{n}{a_{n}} \log n\right)\right)$.
Using the fact that $a_{n}-1 \simeq a_{n}$, we get for n large and $c_{8}, c_{9}>0$

$$
\begin{aligned}
P\left(A_{n}^{\prime}\right) & =\left(1-\frac{c_{7} \log \left(\frac{n}{a_{n}} \log n\right)}{a_{n}}\right)^{a_{n}} \frac{c_{7} \log \left(\frac{n}{a_{n}} \log n\right)}{a_{n}} \\
& \simeq\left(e^{-c_{8} \log \left(\frac{n}{a_{n}} \log n\right)}\right)\left(\frac{c_{7} \log \left(\frac{n}{a_{n}} \log n\right)}{a_{n}}\right) \leq c_{9}\left(\frac{a_{n}}{n \log n}\right)^{\frac{c_{8}}{2}}
\end{aligned}
$$

Hence $P\left(A_{n}^{\prime}\right) \rightarrow 0$ as $n \rightarrow \infty$. We now show that $P\left(A_{n}^{\prime} \bigcap A_{n+1}^{\prime c} \quad\right.$ i.o $)=0$, which proves (2.4). We have

$$
\begin{aligned}
& P\left(A_{n}^{\prime} \bigcap A_{n+1}^{\prime C}\right) \leq P\left(A_{n}^{\prime}\right) P\left(X_{n+1}>1-\frac{c_{10} \log \left(\frac{n+1}{a_{n+1}} \log (n+1)\right)}{a_{n+1}}\right) \\
& =P\left(A_{n}^{\prime}\right) \frac{c_{10} \log \left(\frac{n+1}{a_{n+1}} \log (n+1)\right)}{a_{n+1}} \leq c_{11} \frac{\log \left(\frac{n+1}{a_{n+1}} \log (n+1)\right)}{a_{n+1}}\left(\frac{a_{n}}{n \log n}\right)^{c_{12}} \\
& \quad \leq c_{13}\left(\frac{a_{n}}{n \log n}\right)^{c_{12}} \frac{(n+1)^{\epsilon}}{a_{n+1}^{\epsilon}}(\log (n+1))^{\epsilon} \frac{1}{a_{n}} \leq c_{14}\left(\frac{a_{n}}{n \log n}\right)^{c_{12}} \frac{n^{\epsilon}}{a_{n}^{\epsilon}}(\log n)^{\epsilon} \frac{1}{a_{n}} \\
& \quad \leq \frac{c_{15}}{n(\log n)^{c_{12}-\epsilon}},
\end{aligned}
$$

where $c_{12}>1$ is such that $c_{12}-\epsilon>1$. Since $\sum \frac{1}{n(\log n)^{c_{12}-\epsilon}}<\infty$, using BorelCantelli lemma, we get $P\left(A_{n}^{\prime} \bigcap A_{n+1}^{\prime C} \quad i . o\right)=0$ which implies $P\left(\begin{array}{ll}A_{n}^{\prime} & i . o\end{array}\right)=0$ and in turn $P\left(\begin{array}{ll}A_{n} & i . o\end{array}\right)=0$.
With no loss of generality we show (2.5) for $r=2$.
Define $B_{n}=\left(1-\eta_{2, n}^{*}>\frac{1}{a_{n}}\left(\frac{a_{n}}{n(\log n)}\right)^{\epsilon}\right)$. Now

$$
P\left(B_{n}\right)=P\left(\eta_{2, n}^{*}<1-\frac{1}{a_{n}}\left(\frac{a_{n}}{n \log n}\right)^{\epsilon}\right)
$$

$$
=\left(1-\frac{1}{a_{n}}\left(\frac{a_{n}}{n \log n}\right)^{\epsilon}\right)^{a_{n}}+\left(\frac{a_{n}}{n \log n}\right)^{\epsilon}\left(1-\frac{1}{a_{n}}\left(\frac{a_{n}}{n \log n}\right)^{\epsilon}\right)^{a_{n}-1}
$$

Using the fact that $a_{n}-1 \simeq a_{n}$ for n large, we get

$$
P\left(B_{n}\right)=\left(1-\frac{1}{a_{n}}\left(\frac{a_{n}}{n \log n}\right)^{\epsilon}\right)^{a_{n}}\left(1+\left(\frac{a_{n}}{n \log n}\right)^{\epsilon}\right) \sim e^{-\frac{a_{n}}{n \log n}}
$$

which tends to 1 as $n \rightarrow \infty$.
Hence $P\left(\begin{array}{ll}B_{n} & i . o\end{array}\right)=1$ and the result is proved.
Remark 2.1 When $a_{n}=[n p], 0<p<1, \beta_{n} \sim \log \log n$. Hence from the above two lemmas one can get

$$
\lim \inf \left(n\left(1-\eta_{r, n}^{*}\right)\right)^{\frac{1}{\log \log n}}=e^{\frac{-1}{r}} \quad \text { a.s. }
$$

and

$$
\lim \sup \left(n\left(1-\eta_{r, n}^{*}\right)\right)^{\frac{1}{\log \log n}}=1 \text { a.s. }
$$

3 L.I.L for distributions with exponentially fast tails.

Peter Hall(1976) obtained Kiefer's results for a class of distributions which include those with tail $1-F(x) \simeq e^{-x^{\gamma} L(x)}, \gamma>0$, where $L($.$) is a slowly varying.$ In this section, we present L.I.L for $\left(\eta_{r, n}\right)$ under the setup of $\operatorname{Hall}(1976)$.
Define $U(x)=-\log (1-F(x))$ and denote its inverse function by V. As in Peter Hall(1976), suppose that for all functions $a($.$) with 0 \neq a(x) \rightarrow 0$ as $x \rightarrow \infty$

$$
\begin{equation*}
\frac{V(x(1+a(x)))-V(x)}{a(x) V(x)} \rightarrow \gamma^{-1} \text { as } x \rightarrow \infty \tag{3.1}
\end{equation*}
$$

which implies that V is continuous for all large x, and regularly varying with exponent γ^{-1}. If V is eventually differentiable, then the condition above is equivalent to $x \frac{d}{d x} \log (V(x)) \rightarrow \gamma^{-1}$ as $x \rightarrow \infty$ or alternatively, to

$$
x \frac{d}{d x} \log \log (1-F(x))^{-1} \rightarrow \gamma \text { as } x \rightarrow \infty .
$$

Hence d.f s with $1-F(x) \simeq \exp \left(-x^{\gamma} L(x)\right)$, where $\gamma>0$ and L is slowly varying at ∞ belong to this class. Let $\left(X_{n}\right)$ be i.i.d with d.f F of this class and let $\eta_{r, n}$ be the $r^{t h}$ moving maxima. We have the following theorem.

Theorem 3.1

$$
\lim \sup \frac{\log a_{n}}{\beta_{n}}\left(\frac{\eta_{r, n}}{V\left(\log a_{n}\right)}-1\right)=\frac{1}{r \gamma} \text { a.s. }
$$

where $\beta_{n}=\log \left(\frac{n}{a_{n}} \log n\right), n \geq 3$.

Proof We need to show that for $\epsilon \varepsilon(0,1)$,

$$
\begin{equation*}
P\left(r \gamma \frac{\log a_{n}}{\beta_{n}}\left(\frac{\eta_{r, n}}{V\left(\log a_{n}\right)}-1\right)>1+\epsilon \quad \text { i.o }\right)=0 \tag{3.2}
\end{equation*}
$$

and

$$
\begin{equation*}
P\left(r \gamma \frac{\log a_{n}}{\beta_{n}}\left(\frac{\eta_{r, n}}{V\left(\log a_{n}\right)}-1\right)>1-\epsilon \quad \text { i.o }\right)=1 \tag{3.3}
\end{equation*}
$$

From lemma 2.2, we have

$$
\begin{equation*}
P\left(1-\eta_{r, n}^{*}<\frac{1}{a_{n}\left(\frac{n}{a_{n}} \log n\right)^{\frac{1+\epsilon}{r}}} i .0\right)=0 \tag{3.4}
\end{equation*}
$$

Note that $\eta_{r, n}^{*}=F\left(\eta_{r, n}\right)$. Hence
$1-\eta_{r, n}^{*}<\frac{1}{a_{n}\left(\frac{n}{a_{n}} \log n\right)^{\frac{1+\epsilon}{r}}} \Leftrightarrow 1-F\left(\eta_{r, n}\right)<\frac{1}{a_{n}\left(\frac{n}{a_{n}} \log n\right)^{\frac{1+\epsilon}{\tau}}} \Leftrightarrow-\log \left(1-F\left(\eta_{r, n}\right)\right)<$
$-\log \left(\frac{1}{a_{n}\left(\frac{n}{a_{n}} \log n\right)^{\frac{1+\epsilon}{r}}}\right) \Leftrightarrow U\left(\eta_{r, n}\right)>\log a_{n}+\log \left(\frac{n}{a_{n}} \log n\right) \frac{1+\epsilon}{r} \Leftrightarrow \eta_{r, n}>$
$V\left(\log a_{n}+\log \left(\frac{n}{a_{n}} \log n\right) \frac{1+\epsilon}{r}\right) \Leftrightarrow$
$\eta_{r, n}-V\left(\log a_{n}\right)>V\left(\log a_{n}\left(1+\frac{\beta_{n}}{\log a_{n}} \frac{1+\epsilon}{r}\right)\right)-V\left(\log a_{n}\right)$
From condition (3.1) we have

$$
V\left(\log a_{n}\left(1+\frac{\beta_{n}}{\log a_{n}} \frac{1+\epsilon}{r}\right)\right)-V\left(\log a_{n}\right) \sim \frac{(1+\epsilon)}{r \gamma} \frac{\beta_{n} V\left(\log a_{n}\right)}{\log a_{n}} .
$$

Consequently, from (3.5), for n large,

$$
\begin{aligned}
& 1-\eta_{r, n}^{*}<\frac{1}{a_{n}\left(\frac{n}{a_{n}} \log n\right)^{\frac{1+\epsilon}{r}}} \Leftrightarrow \eta_{r, n}-V\left(\log a_{n}\right)>\frac{(1+\epsilon)}{r \gamma} \frac{\beta_{n} V\left(\log a_{n}\right)}{\log a_{n}} \\
& \Leftrightarrow r \gamma \frac{\log a_{n}}{\beta_{n}}\left(\frac{\eta_{r, n}}{V\left(\log a_{n}\right)}-1\right)>1+\epsilon .
\end{aligned}
$$

From (3.4), we hence have (3.2). Again from lemma 2.2, recalling that

$$
P\left(1-\eta_{r, n}^{*}<\frac{1}{a_{n}\left(\frac{n}{a_{n}} \log n\right)^{\frac{1-\epsilon}{r}}} \quad i . o\right)=1
$$

and proceeding on the above lines, (3.3) can be established. The details are omitted.

We consider some of the standard distributions and give the form of the V function and the L.I.L.

Example 1 When $\left(X_{n}\right)$ is i.i.d unit exponential, one can get $V(x)=x$. Then we have

$$
\lim \sup \frac{\log a_{n}}{\beta_{n}}\left(\frac{\eta_{r, n}}{\log a_{n}}-1\right)=\frac{1}{r} \quad \text { a.s }
$$

Example 2 When $\left(X_{n}\right)$ is i.i.d with common d.f $F(x)=e^{-e^{-x}},-\infty<x<$ ∞.
Note that $1-F(x) \sim e^{-x}$, as $x \rightarrow \infty$. Consequently the L.I.L coincides with that of L.I.L obtained in case of unit exponential. Hence we have

$$
\limsup \frac{\log a_{n}}{\beta_{n}}\left(\frac{\eta_{r, n}}{\log a_{n}}-1\right)=\frac{1}{r} \text { a.s }
$$

Example 3 When $\left(X_{n}\right)$ is i.i.d standard normal, one gets
$V(x)=\sqrt{2 x-\log x-2 \log \sqrt{2 \pi}-\log 2} \simeq \sqrt{2 x}$ for large x. Then we have

$$
\lim \sup \frac{\log a_{n}}{\beta_{n}}\left(\frac{\eta_{r, n}}{\sqrt{2 \log n}}-1\right)=\frac{1}{r} \quad \text { a.s }
$$

4 L.I.L when the distribution has a regularly varying right tail.

Let $\left(X_{n}\right)$ be i.i.d with d.f F having regularly varying tail and $\eta_{r, n}$ denote the $r^{\text {th }}$ moving maxima. Define $U^{*}(x)=1-F(x) \sim x^{-\gamma} L(x), \gamma>0$, where L is a slowly varying function. Let V^{*} be the inverse of U^{*}. Observe that $V^{*}(y)=y^{-\frac{1}{\gamma}} l\left(\frac{1}{y}\right), 0<y \leq 1$, where l is slowly varying . Note that $U^{*}($. and $V^{*}($.$) are decreasing functions. From the fact that F\left(X_{n}\right)$ is a Uniform $(0,1)$ r.v, we note that $\eta_{r, n}^{*}=F\left(\eta_{r, n}\right), n \geq 1$. Let $B_{a_{n}}$ be a solution of the equation $a_{n}\left(1-F\left(B_{a_{n}}\right)\right) \simeq 1$. When $1-F$ is regularly varying with index γ, we know that F belongs to the domain of attraction of Frechet law denoted by $F \varepsilon D A\left(H_{1, \gamma}\right)$.

Lemma 4.1 If $y_{n} \rightarrow \infty, z_{n} \rightarrow \infty$, one can find $a \delta>0$ such that

$$
\lim z_{n}^{-\delta} \frac{L\left(y_{n} z_{n}\right)}{L\left(y_{n}\right)}=0 \text { and } \lim z_{n}^{\delta} \frac{L\left(y_{n} z_{n}\right)}{L\left(y_{n}\right)}=\infty
$$

Proof For proof, see Seneta(1976).
Theorem 4.1 Let $F \varepsilon D A\left(H_{1, \gamma}\right), \gamma>0$. Then

$$
\lim \sup \left(\frac{\eta_{r, n}}{B_{a_{n}}}\right)^{\frac{1}{\beta_{n}}}=e^{\frac{1}{r \gamma}} \text { a.s }
$$

where $B_{a_{n}}$ is a solution of the equation $a_{n}\left(1-F\left(B_{a_{n}}\right)\right) \simeq 1$.

Proof From lemma 2.2 we have

$$
\begin{equation*}
P\left(1-\eta_{r, n}^{*}<\frac{1}{a_{n}\left(\frac{n}{a_{n}} \log n\right)^{\frac{1+\epsilon}{r}}} i .0\right)=0 \tag{4.1}
\end{equation*}
$$

and

$$
\begin{equation*}
P\left(1-\eta_{r, n}^{*}<\frac{1}{a_{n}\left(\frac{n}{a_{n}} \log n\right)^{\frac{1-\epsilon}{r}}} i .0\right)=1 \tag{4.2}
\end{equation*}
$$

Using the relation $\eta_{r, n}^{*}=F\left(\eta_{r, n}\right)$ and $U^{*}(x)=1-F(x) \sim x^{-\gamma} L(x)$, (4.1) can be written as

$$
\begin{equation*}
P\left(U^{*}\left(\eta_{r, n}\right)<\frac{1}{a_{n}\left(\frac{n}{a_{n}} \log n\right)^{\frac{1+\epsilon}{r}}} \text { i.o }\right)=0 \tag{4.3}
\end{equation*}
$$

Note that

$$
\begin{aligned}
U^{*}\left(\eta_{r, n}\right) & <\frac{1}{a_{n}\left(\frac{n}{a_{n}} \log n\right)^{1+\epsilon}} f . o \Leftrightarrow V^{*}\left(U^{*}\left(\eta_{r, n}\right)\right)>V^{*}\left(\frac{1}{a_{n}\left(\frac{n}{a_{n}} \log n\right)^{\frac{1+\epsilon}{r}}}\right) \text { f.o } \\
& \Leftrightarrow \eta_{r, n}>\left(\frac{1}{a_{n}\left(\frac{n}{a_{n}} \log n\right)^{\frac{1+\epsilon}{r}}}\right)^{\frac{-1}{\gamma}} l\left(a_{n}\left(\frac{n}{a_{n}} \log n\right)^{\frac{1+\epsilon}{r}}\right) \text { f.o } \\
& \Leftrightarrow \eta_{r, n}>a_{n}^{\frac{1}{\gamma}}\left(\frac{n}{a_{n}} \log n\right)^{\frac{1+\epsilon}{r \gamma}} l\left(a_{n}\left(\frac{n}{a_{n}} \log n\right)^{\frac{1+\epsilon}{r}}\right) \text { f.o }
\end{aligned}
$$

By lemma 4.1 for any $\delta>0$, we have

$$
\lim \left(\frac{n}{a_{n}} \log n\right)^{\delta l\left(a_{n}\left(\frac{n}{a_{n}} \log n\right)^{\frac{1+\epsilon}{r}}\right)}{l\left(a_{n}\right)}_{l}=\infty
$$

Choosing $\delta=\frac{\epsilon}{2 r \gamma}$, one can find a N_{0} such that for all $n \geq N_{0}$

$$
\begin{equation*}
l\left(a_{n}\left(\frac{n}{a_{n}} \log n\right)^{\frac{1+\epsilon}{r}}\right) \geq \frac{l\left(a_{n}\right)}{\left(\frac{n}{a_{n}} \log n\right)^{\frac{\epsilon}{2 r \gamma}}} . \tag{4.4}
\end{equation*}
$$

Hence for $n \geq N_{0}$,

$$
\eta_{r, n} \geq a_{n}^{\frac{1}{\gamma}}\left(\frac{n}{a_{n}} \log n\right)^{\frac{1+\epsilon}{r \gamma}}\left(\frac{n}{a_{n}} \log n\right)^{\frac{-\epsilon}{2 r \gamma}} l\left(a_{n}\right) \Leftrightarrow \eta_{r, n} \geq B_{a_{n}}\left(\frac{n}{a_{n}} \log n\right)^{\frac{1+\frac{\epsilon}{2}}{r \gamma}}
$$

$\Leftrightarrow\left(\frac{\eta_{r, n}}{B_{a_{n}}}\right)^{\frac{1}{\beta_{n}}} \geq e^{\frac{1+\frac{\epsilon}{2}}{r \gamma}}\left(\right.$ since, $a_{n}\left(1-F\left(B_{a_{n}}\right)\right) \simeq 1$ implies that $\left.B_{a_{n}}=a_{n} \frac{1}{\gamma} l\left(a_{n}\right)\right)$.
Consequently, from (4.3) and (4.4)

$$
\begin{equation*}
P\left(\left(\frac{\eta_{r, n}}{B_{a_{n}}}\right)^{\frac{1}{\beta_{n}}} \geq e^{\frac{1+\frac{\epsilon}{\gamma}}{r \gamma}} \quad i .0\right)=0 . \tag{4.5}
\end{equation*}
$$

From lemma 4.1, Choosing $\delta=\frac{\epsilon}{2 r \gamma}$, one can find a N_{1} such that for all $n \geq N_{1}$

$$
l\left(a_{n}\left(\frac{n}{a_{n}} \log n\right)^{\frac{1-\epsilon}{r}}\right) \geq l\left(a_{n}\right)\left(\frac{n}{a_{n}} \log n\right)^{\frac{\epsilon}{2 r \gamma}} .
$$

Proceeding on lines similar to those used to obtain (4.5), one can get

$$
\begin{equation*}
P\left(\left(\frac{\eta_{r, n}}{B_{a_{n}}}\right)^{\frac{1}{\beta_{n}}} \geq e^{\frac{1-\frac{\varepsilon}{r}}{r \gamma}} \quad i .0\right)=1 . \tag{4.6}
\end{equation*}
$$

From (4.5) and (4.6) we claim the result.

5 L.I.L when the distribution has finite right extremity.

Let $\left(X_{n}\right)$ be i.i.d with common d.f F and let $\omega(F)=\sup \{x: F(x)<1\}$ be finite. In this section we obtain the L.I.L for $\eta_{r, n}$ when $\omega(F)<\infty$ and when F belongs to the domain of attraction of the Weibull law ie., $F \varepsilon D A\left(H_{2, \gamma}\right), \gamma>0$. From the fact that $F\left(X_{n}\right)$ is a $\operatorname{Uniform}(0,1)$, we note that $\eta_{r, n}^{*}=F\left(\eta_{r, n}\right), n \geq$ 1. Let $\eta_{r, n}^{\prime}$ be the $r^{\text {th }}$ maxima of $\left(Y_{n-a_{n}}, Y_{n-a_{n+1}}, \ldots Y_{n}\right)$ where $\left(Y_{n}\right)$ are i.i.d r.v's given by $\frac{1}{\omega(F)-X_{n}}, n \geq 1$. Let F^{*} denote the d.f of $Y_{n}, n \geq 1$. Note that $F^{*} \varepsilon D A\left(H_{1, \gamma}\right)$.

Theorem 5.1 Let $F \varepsilon D A\left(H_{2, \gamma}\right), \gamma>0$. Then

$$
\liminf \left(B_{a_{n}}\left(\omega(F)-\eta_{r, n}\right)\right)^{\frac{1}{\beta_{n}}}=e^{-\frac{1}{r \gamma}} \text { a.s. }
$$

Proof Let $F^{*}(y)=F\left(\omega(F)-\frac{1}{y}\right), y>0$. We know that $F \varepsilon D A\left(H_{2, \gamma}\right)$ iff $F^{*} \varepsilon D A\left(H_{1, \gamma}\right)$ ie.,

$$
P\left(Y_{n} \leq y\right)=P\left(X_{n} \leq \omega(F)-\frac{1}{y}\right)=P\left(\frac{1}{\omega(F)-X_{n}} \leq y\right)
$$

for every y which implies that $Y_{n}={ }^{d} \frac{1}{\omega(F)-X_{n}}$. Observe that $\eta_{r, n}^{\prime}=\frac{1}{\omega(F)-\eta_{r, n}}$. Since $F^{*} \varepsilon D A\left(H_{1, \gamma}\right)$, from Theorem 3.1 we have

$$
\lim \sup \left(\frac{\eta_{r, n}^{\prime}}{B_{a_{n}}}\right)^{\frac{1}{\beta_{n}}}=e^{\frac{1}{r \gamma}} \text { a.s. }
$$

Substituting $\eta_{r, n}^{\prime}=\frac{1}{\omega(F)-\eta_{r, n}}$, one gets the required result.
Example 4 Let F be Weibull with parameter $\gamma>0$. Then

$$
\liminf \left(a_{n}^{\frac{1}{\gamma}}\left(-\eta_{r, n}\right)\right)^{\frac{1}{\beta_{n}}}=e^{\frac{-1}{r \gamma}} \quad \text { a.s. }
$$

Example 5 Let $F(x)=x^{p}, 0 \leq x \leq 1, p>0$. Note that $\omega(F)=1$.
We have the following L.I.L

$$
\liminf \left(a_{n}\left(1-\eta_{r, n}\right)\right)^{\frac{1}{\beta_{n}}}=e^{\frac{p}{r}} \text { a.s. }
$$

6 Boundary crossing problem.

Let $\left(\xi_{n}\right)$ be a sequence of r.v.s and $\left(\alpha_{n}\right)$ be a sequence of real constants such that $\xi_{n} \leq \alpha_{n}$ a.s or $P\left(\xi_{n} \geq \alpha_{n} i . o\right)=0$. Here α_{n} is called a.s upper boundary for $\xi_{n}, n \geq 1$. The number of times $\xi_{n}>\alpha_{n}$ is a proper r.v giving the total number of boundary crossings. Define $Z_{n}=1$ if $\xi_{n}>\alpha_{n},=0$ otherwise and $N=\sum_{n=1}^{\infty} Z_{n}$. Then N is a r.v giving the total number of boundary crossings, which is an infinite sum of dependent, non-identically distributed Bernoulli r.v.s. One of the important measures is $E(N)$, which gives some idea of the precision of α_{n}.

Lemma 6.1 $E(N)<\infty$ or $=\infty$ according to $\sum P\left(Z_{n}=1\right)<\infty$ or $=\infty$.
Proof Define $N_{m}=\sum_{n=1}^{m} Z_{n}, m \geq 1$, and note that $N_{m} \rightarrow N$ as $m \rightarrow \infty$. We have $E\left(N_{m}\right)=\sum_{n=1}^{m} P\left(Z_{n}=1\right)$. Since $N \geq N_{m}, E(N) \geq \lim _{m \rightarrow \infty} E\left(N_{m}\right)=$ $\sum_{n=1}^{\infty} P\left(Z_{n}=1\right)$. Consequently, $E(N)<\infty$ whenever $\sum P\left(Z_{n}=1\right)=\infty$. Since $\left(N_{m}\right)$ is a sequence of non-negative, non-decreasing measurable functions, we have $\liminf E\left(N_{m}\right) \geq E\left(\liminf N_{m}\right)$ or $\liminf \sum_{n=1}^{m} P\left(Z_{n}=1\right) \geq E(N)$, which implies that $E(N) \leq \sum_{n=1}^{\infty} P\left(Z_{n}=1\right)$. In turn, $E(N)<\infty$ whenever $\sum_{n=1}^{m} P\left(Z_{n}=1\right)<\infty$.

Let $\left(X_{n}\right)$ be i.i.d Uniform $(0,1)$. From lemma 2.2 we have for any $\epsilon>0$, $P\left(\eta_{r, n}^{*}>\left(1-\frac{1}{a_{n}}\left(\frac{a_{n}}{n \log n}\right)^{1+\epsilon}\right) i . o\right)=0$. Define $Z_{n}=1$ if $\eta_{r, n}^{*}>\alpha_{n},=0$ otherwise, where $\alpha_{n}=\left(1-\frac{1}{a_{n}}\left(\frac{a_{n}}{n \log n}\right)^{1+\epsilon}\right)$. Then we have the following lemma.

Lemma 6.2 When $\left(X_{n}\right)$ is i.i.d Uniform $(0,1), E(N)<\infty$ if $a_{n}=o\left((\log n)^{\delta}\right)$ for any $\delta>0$ and $E(n)=\infty$ if $\frac{a_{n}}{n^{\delta}} \rightarrow \infty$ for some $\delta>0$.

Proof With no loss of generality, we give the proof when $r=2$. We have
$P\left(\eta_{2, n}^{*}>\alpha_{n}\right)=1-P\left(\eta_{2, n}^{*} \leq \alpha_{n}\right)=1-\alpha_{n}^{a_{n}}-a_{n} \alpha_{n}^{a_{n}-1}\left(1-\alpha_{n}\right) \sim\left(\frac{a_{n}}{n \log n}\right)^{(1+\epsilon)}$.
If $a_{n}=o(\log n)^{\delta}$ for any $\delta>0$, one can show that $\sum\left(\frac{a_{n}}{n(\log n)}\right)^{1+\epsilon}<\infty$. Consequently, $\sum_{n} P\left(Z_{n}=1\right)<\infty$ or $E(N)<\infty$. If $\frac{a_{n}}{n^{\delta}} \rightarrow \infty$ for some $\delta>0$, then $a_{n}>n^{\delta}$ for all n large. Consequently, for n large $\left(\frac{a_{n}}{n \log n}\right)^{1+\epsilon}>$ $\frac{1}{\left(n^{1-\delta} \log n\right)^{1+\epsilon}}$. Whenever $\epsilon<\frac{\delta}{1-\delta}, \sum\left(\frac{a_{n}}{n \log n}\right)=\infty$, which implies that $E(N)=$ ∞.

Remark 6.1 One can similarly discuss the behaviour of $E(N)$ under sections 3, 4 and 5. Recognizing the equivalence of events, one can see that $E(N)<\infty$ whenever $a_{n}=(\log n)^{\delta}$ for any $\delta>0$ and $E(N)=\infty$ when $\frac{a_{n}}{n^{\circ}} \rightarrow \infty$ for some $\delta>0$ in all the cases.

Acknowledgment

Authors thank the referee of the previous version for the suggestions which have contributed to the presentation of the paper.

References

[1] Barndorff-Nielson, O. (1961). On the rate of growth of partial maxima of a sequence of independent identically distributed random variables.Math.Scad, 9, 383-394.
[2] Chover, J. (1967). A law of iterated logarithm for stable summands. Proc.of.Amer.Math Society, 17, No.2. 441-443.
[3] Kiefer,J. (1971). Iterated logarithm analogues for sample quantiles when $p_{n} \downarrow 0$, Proc.sixth Berkeley Symp, 1, 227-244.
[4] Peter Hall. (1979). On the relative stability of large order statistics, Math.Proc.Camb.Phil.Soc , 86, 467-475.
[5] Rothmann, M.D., Russo, P. (1991). Strong limiting bounds for a sequences of moving maxima. Stat.Probab.Letters., 11, 403-410.
[6] Seneta, E. (1976). Regularly Varying Functions, Lecture Notes in Mathematics. 508, Springer. Berlin.
[7] Vasudeva, R. (1999). Law of iterated logarithm for moving maxima, Sankhya. The Indian Journal Of Statistics, 61, series A Pt 2, 166-173.

ProbStat Forum is an e-journal. For details please visit; www.probstat.org.in.

