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Abstract. Max-autoregressive models for time series data are useful when
we want to make inference about rare events, mainly in areas like hydrol-
ogy, geophysics and finance. Here we present a power max-autoregressive
(pARMAX) process, {Xi}i∈Z

, defined in such a way that the asymptotic tail
dependence coefficient of Ledford and Tawn, computed for observations lag m
apart (ηm), exhibits a power decay with m for larger values of c, the main
parameter of the process, namely, ηm = cm, c ∈ (1/2, 1). We also look at the
threshold-dependent form of the extremal index, which is an important func-
tional when extending discussions of extreme values from independent and
identically distributed (i.i.d.) sequences to stationary ones. We state an ap-
proach for this functional as well as its connection with the coefficient η for
the pARMAX process.
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tions, Auto-asymptotic-tail-dependence function, Tail index, Extremal index.

1 Introduction

Extreme Value Theory (EVT) became widely used by many researchers in ap-
plied sciences when faced with modeling high values of certain phenomena, e.g.,
ocean wave modeling, wind engineering, thermodynamics of earthquakes or
risk assessment on financial markets. The first results were developed consid-
ering independent observations but, more recently, models for extreme values
have been constructed under the more realistic assumption of temporal depen-
dence. Among these models, stationary Markov chains are very interesting,
specially because they may have a somewhat simple treatment in what con-
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cerns extremal properties. The max-autoregressive moving average processes
MARMA (Davis and Resnick 1989), and also the particular case MAR(1) or
ARMAX, given by,

Xi = k Xi−1 ∨ Wi, (1.1)

with 0 < k < 1 and {Wi}i∈Z
i.i.d. (Alpuim 1989; Canto e Castro 1992; Ancona-

Navarrete and Tawn 2000; Lebedev 2008) are some examples. Here we present
the power max-autoregressive process (in short, pARMAX), defined as

Xi = Xc
i−1 ∨ Zi , 0 < c < 1, i ∈ Z,

with {Zi}i∈Z
i.i.d.. Heavy tailed pARMAX and AR(1) have quite similar sam-

ple paths (see Figure 1), indicating that pARMAX can be thought as an al-
ternative model, even because its finite-dimensional distributions can easily be
written explicitly. Observe that the ARMAX process obtained from the loga-
rithm of heavy tail pARMAX is Gumbel tailed, a less interesting and applica-
ble case within these processes in what concerns extreme value analysis. The
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Figure 1: 5000 realizations of pARMAX, Xi = Xc
i−1

∨ Zi, on the left, and
of AR(1), Xi = c Xi−1 + Zi, on the right, with c = 0.8 and with marginals
Pareto(0.7)

pARMAX process has very easily derived extremal features. Actually, these
are all straightforward for the more general and further applicable pRARMAX
process (Ferreira and Canto e Castro, 2010), which includes random coefficients
Ui (with support in [0, 1]),

Xi = Ui Xc
i−1 ∨ Zi , 0 < c < 1, i ∈ Z, (1.2)
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(Ui = 1 leads to pARMAX). We shall see that the pARMAX power parameter c
is related with Ledford and Tawn coefficient η. Hence, based on the estimation
of η, we will present estimators for parameter c and prove consistency and
asymptotical normality using Drees conditions (Drees 2003) stated below.

1.1 Tail dependence: Ledford and Tawn approach

In the classical multivariate EVT we cannot distinguish asymptotically be-
tween exact independence of the components of a random vector and a mod-
erate dependence which vanishes as the observations go more extreme. If we
take, for instance, a bivariate normal random vector with correlation ρ < 1,
we verify that it has the same limit distribution for the standardized maxima
of the components independently of the value of ρ. In order to overcome this
problem, Ledford and Tawn (1996) proposed a model, where the penultimate
tail dependence is characterized by the so-called coefficient of tail dependence,
η ∈ (0, 1], which measures the dependence between the marginal tails.

Consider {(Xi, Yi)}i≥1, a sequence of i.i.d. random pairs with common d.f.
F and marginal d.f.’s F1 and F2. Considering U = 1 − F1(X) and V =
1 − F2(Y ), the basic Ledford and Tawn model assumption can be formulated
as (Draisma et al., 2004),

P
(U

t
< x,

V

t
< y)|U < t, V < t

)
=

P (U < tx, V < ty)

P (U < t, V < t)
−→
t↓0

h(x, y) (1.3)

uniformly on {(x, y)|max(x, y) = 1} for some non-degenerate function h. It is
assumed that the function t 7→ P (U < t, V < t) is regularly varying at 0 with
index 1/η and that l := limt↓0 P (U < t|V < t) exists. Note that we can also
write

P (U < t|V < t) ∼ t1/η−1L(t), as t ↓ 0. (1.4)

We have l = 0 if η < 1 and l > 0 if the marginals are asymptotically dependent
providing that L(t) 6→ 0 as t → ∞. Roughly speaking, four distinct cases can
be considered: η = 1 in case of asymptotic dependence, η ∈ (1/2, 1) and
η ∈ (1/2, 1) if it exists, respectively, positive and negative dependence, both
vanishing asymptotically, and η = 1/2 in case of independence. The function
h is homogeneous of order 1/η, since h(tx, ty) = t1/ηh(x, y).

However, dependence also occurs within a time series framework and η can
be seen as a measure of tail dependence in time. More precisely, we derive
ηm from (1.3) when applied to random pairs (X1, Xm) separated in time by
a lag m. Based on Ledford and Tawn (2003), we shall use the more readily
interpreted quantity,

Λm = 2ηm − 1,
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here denoted ATDF (auto-asymptotic-tail-dependence function), since Λm = 1
corresponds to asymptotic dependence, 0 < Λm < 1 to positive extremal as-
sociation, Λm = 0 to (almost) independence and Λm < 0 to negative extremal
dependence (we will take η1 ≡ η). The ATDF function Λm “provides a mea-
sure of serial dependence between extreme values lag m apart and may be
interpreted in a manner that is broadly similar to the ACF” (Ledford and
Tawn 2003).

The pARMAX process has an easily derived method for model identifica-
tion through the ATDF, as we shall see.

1.2 Drees’ class of tail index estimators

Consider {Xi}i a stationary sequence. Using a weighted approximation of the
tail empirical quantile function (q.f.), Qn(t) := Xn−[knt]:n, where (kn)n≥1 is an
intermediate sequence, i.e., kn → ∞ and kn/n → 0, as n → ∞, Drees (2003)
stated its asymptotic behavior under the following conditions:

• a β-mixing dependence structure:

β(l) := sup
p∈N

E
(

sup
B∈F(Xp+l+1,...)

|P (B|F(X1, ..., Xp)) − P (B)|
)
−→
l→∞

0,

with F(.) denoting the σ−field generated by the indicated random vari-
ables. More precisely, it is assumed that there exists a sequence ln, n ∈ N,
such that

lim
n→∞

β(ln)

ln
n + lnk

−1/2
n log2 kn = 0 (1.5)

• a regularity condition for the joint tail of (X1, X1+m):

lim
n→∞

n

kn

P
(
X1 > F−1

(
1 −

kn

n
x
)
, X1+m > F−1

(
1 −

kn

n
y
))

= cm(x, y),(1.6)

for all m ∈ N, 0 < x, y ≤ 1 + ǫ and F−1 denoting the inverse function of
F .

• a uniform bound on the probability that both X1 and X1+m belong to
an extremal interval:
n

kn
P

(
X1 ∈ In(x, y), X1+m ∈ In(x, y)

)
≤ (y − x)

(
ρ̃(m) + D1

(kn

n

)α)
,(1.7)

with 0 < α ≤ 1, for some constant D1 ≥ 0, a sequence ρ̃(m), m ∈ N,
satisfying

∑∞
m=1 ρ̃(m) < ∞ for all m ∈ N, 0 < x, y ≤ 1 + ǫ and the

extremal interval, In(x, y) =]F−1(1 − ykn/n
)
, F−1(1 − xkn/n)].
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• for the sake of simplicity,
F−1(1 − t) = dt−γ(1 + r(t)) , with |r(t)| < Φ(t) . (1.8)

for some constant d > 0 and a τ -varying function Φ at 0 for some τ > 0,
or τ = 0 and Φ nondecreasing with limt↓0 Φ(t) = 0

• it is assumed that (kn)n≥1 is an intermediate sequence such that

lim
n→∞

k1/2
n Φ(kn/n) = 0 (1.9)

Theorem 1.1 (Drees (2003)) Under the conditions (1.5)-(1.9) with ln =
o((n/kn)α), there exist versions of the tail empirical q.f. Qn and a centered
Gaussian process e with covariance function c̃ given by

c̃(x, y) := x ∧ y +
∞∑

m=1

(cm(x, y) + cm(y, x)) ∈ R , (1.10)

such that

sup
t∈(0,1]

tγ+1/2(1 + | log t|)−1/2
∣∣∣k1/2

n

( Qn(t)

F−1(1 − kn/n)
− t−γ

)
− γt−(γ+1)e(t)

∣∣∣ → 0

in probability.

Drees (2003) observe that almost every estimator γ̂n of the tail index pa-
rameter γ that are based only on the kn + 1 largest order statistics, can be
represented as a smooth functional T (verifying some regularity conditions) ap-
plied to the tail empirical q.f.. Hill estimator, maximum likelihood estimator,
moments estimator, Pickands’ estimator and probability weighted moments es-
timator, are some examples. We shall denote these as Drees’ class of tail index
estimators. Theorem 2.2 in Drees (2002) establishes the asymptotic normality
of these estimators. More precisely,

k1/2
n (γ̂n − γ) −→

n→∞
N (0, σ2

T,γ)

weakly with

σ2
T,γ = γ2

∫

(0,1]

∫

(0,1]

(st)−(γ+1)c̃(s, t)νT,γ(ds)νT,γ(dt), (1.11)

where c̃ is the function defined in (1.10). For instance, considering the Hill
estimator which is defined as

γ̂H
n =

1

kn

kn∑

i=1

log
Xn−i+1:n

Xn−kn:n
, (1.12)

it can be proved that, in a generalized Pareto model, it has signed measure
given by

νH,γ(dt) = tγdt − δ1(dt), (1.13)

where δ1 is the Dirac measure with mass 1 at 1.
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1.3 The pre-asymptotic extremal index

The extremal index, θ (θ ∈ [0, 1]), measures the tendency of extremes to
occur in clusters. A cluster of high levels exceedances is defined to be a set
of observations that exceed a high threshold un within a block of length rn

(rn = o(n)), given that there is at least one exceedance in that block. For a
stationary sequence {Yi}i under some suitable dependence condition,

θ = lim
n→∞

P (Y
i
≤ un, 2 ≤ i ≤ rn|Y1

> un) , (1.14)

where (un)n≥1
is a sequence of normalized levels, i.e., nP (Y1 > un) = O(1)

(O’Brien 1987). (θ = 0 corresponds to “pathological” cases which we do
not intend to consider here). This parameter plays a very important role
when estimating extremal properties of {Yi}i with marginals in the domain of
attraction of an extreme value distribution. More precisely, for certain levels
{un}n≥1, we have,

lim
n→∞

P (
∨

n

i=1
Yi ≤ un) = lim

n→∞

(
P (Y1 ≤ un)

)nθ
. (1.15)

Though processes with i.i.d. margins have θ = 1, the converse is false. This
can be evidenced through the well-known autoregressive Gaussian processes
(regarded as strongly dependent by other measures but with θ = 1). The
pARMAX process is also an example with unit extremal index as we shall see.

An unit extremal index means that asymptotic extreme events tend to
occur singly and makes the result (1.15) no informative about the dependence
of the process. However, it can be possible to observe clustering of exceedances
for levels of practical interest.

Based on O’Brien characterization (1.14) by taking a large finite n and
un ≡ u, Bortot and Tawn (1998) stated the functional

θ(u, r[u]) = 1−P (Y2 > u|Y1 > u)−

r[u]∑

j=3

P
(∨

j−1

i=2
Yi ≤ u, Yj > u|Y1 > u

)
, (1.16)

for which we have θ = limu→∞ θ(u, r[u]). In order to relate this functional
with the tail dependence parameter η, the authors have stated the following
dependence condition:

Definition 1.1 For a stationary process {Xi}i∈Z
and sequences, (un)n≥1

and
(rn)n≥1, such that, nP (X1 > un) = O(1) and rn = o(n), respectively, condition
∆(2)(un, rn) holds if

rn∑

j=3

P (X1 > un, max(X2, ..., Xj−1) ≤ un, Xj > un)

P (X1 > un, X2 > un)
→ 0, as n → ∞. (1.17)
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For rn = 2, which can be chosen for instance in the case of independent series,
condition ∆(2)(un, rn) is automatically satisfied (Bortot and Tawn 1998).
Observe that, under condition ∆(2)(un, rn), the expression in (1.16) can be
approximated as follows:

θ(u) ≡ θ(u, r⌊u⌋) ∼ 1 − P (Y2 > u|Y1 > u) (1.18)

and a relation with η can be stated by (1.4). We will see that if we replace θ
by the pre-asymptotic extremal index θ(u) in the result (1.15), we get some
improvement on estimations based on this latter, like high quantiles and return
periods. This will be done in the last section.

In this paper, we start by presenting the pARMAX process {Xi}i∈Z
and

state stationarity, extremal behavior and local dependence structure. We shall
focus on heavy tailed pARMAX, the most interesting case for extremal infer-
ence. We will characterize the joint limiting d.f. of the normalized first passage
time of threshold u, T = inf{n ∈ N : Xn ≥ u}, and the corresponding excess,
RT = XT − u, as u → ∞. In Section 4, we derive a procedure for model
identification of pARMAX through the ATDF. We will see that, for m ∈ N,
this function presents a power decay with m if c ∈ (1/2, 1). We also give
estimators for parameter c which work for both pARMAX and pRARMAX.
Consistency and asymptotic normality will be proved as well. Section 5 is
devoted to the pre-asymptotic extremal index, θ(u). According to Bortot and
Tawn (1998), we establish a connection between this functional and η in the
pARMAX model and derive a better estimate for the return levels.

2 Stationarity and extremal properties of pARMAX

Consider {Zi}i∈Z
a sequence of i.i.d. copies of a r.v., Z, having real nonnegative

support and marginal d.f. FZ. A sequence {Xi}i∈Z
is said to be a pARMAX

process if,
Xi = Xc

i−1 ∨ Zi , 0 < c < 1, i = 0,±1,±2, ... (2.1)

with Xi independent of Zj , for all integer i < j. The sequence {Zi}i∈Z
is also

known as the innovations sequence of the process.
Observe that the pARMAX process can be obtained from ARMAX given in

(1.1) by taking exponentials, and hence, the stationarity of the first is straight-
forward from the latter. More precisely, the ARMAX process is stationary
if and only if

∑
∞

j=0
− log FW (cjx) is finite for some x ≥ 0, where FW is the

marginal d.f. of innovations {Wi}i∈Z
(Alpuim 1989). Therefore, we have,

∑∞
j=0 − log FZ(x1/cj

) < ∞ , for some x ≥ 0, (2.2)

as a necessary and sufficient condition for the stationarity of the process
pARMAX. Note that thus the pARMAX innovations, {Zi}i∈Z

, have support in
[1,∞[.
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Denoting by Ki(·) the marginal d.f. of Xi for any integer i, the recurrence
(2.1) and the independence assumptions lead to:

Ki(x) = P (Xi ≤ x) = P (Xi−1 ≤ x1/c, Zi ≤ x) = Ki−1(x
1/c)FZ(x) .

So, any d.f. that satisfies the stationarity equation,

K(x) = K(x1/c)FZ(x) , (2.3)

is a stationary distribution of the pARMAX process {Xi}i∈Z
. Here is an ex-

ample.

Example 2.1 Consider {Zi}i∈Z
with common d.f.,

FZ(x) = c1{x=1} +
1 − x−1/γ

1 − x−1/(cγ)
1{x>1}, (2.4)

where 1{·} is the indicator function. Hence, K(x) =
(
1−x−1/γ

)
1{x≥1}, satisfies

(2.3), being, therefore, a stationary distribution for Xi.

The margins of a stationary pARMAX process {Xi}i∈Z
are in the same

max-domain of attraction of the innovations, with the same tail index value,
since

P
(∨n

i=1 X
i
≤ x

)
= P

(
X1 ∨

∨n
i=2 Z

i
≤ x

)
= K(x)F n−1

Z
(x) . (2.5)

The β-mixing condition is valid for ARMAX (Canto e Castro 1992) and hence
for pARMAX, given the mentioned relationship between the two processes.
Heavy tailed pARMAX has unit extremal index (as is the case of an ARMAX
process in the Gumbel max-domain of attraction; Alpuim 1989).

3 Heavy tailed pARMAX processes

As already mentioned, we will consider stationary pARMAX processes with
heavy tail innovations, a more general case than the standard Fréchet consid-
ered for the study of MARMA models (Davis and Resnick 1989; Zhang and
Smith 2001; Lebedev 2008).
Indeed, using a convenient representation of a Fréchet(γ) domain of attraction
(for some γ > 0), it is easy to prove that condition (2.2) is valid therein. More
precisely, the assumption is equivalent to a regular variation at infinity with
index −1/γ, i.e.,

1 − FZ(x) = x−1/γLZ(x) , (3.1)

where LZ(·) is a slowly varying function at ∞ (Embrechts at al. 1997, Theorem
3.3.7 on p.131 and p.152), and hence we also have,

1 − K(x) = x−1/γLK(x) (3.2)
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for some slowly varying function LK(·).
Now we will show that first passage times over high levels are also easily

derived for pARMAX processes. Let T = Tu = inf{n ∈ N : Xn ≥ u} be the
first passage of Xn over threshold u and RT = XT −u the respective overshoot.
We prove that T and RT , properly normalized, are asymptotically independent
and we calculate their joint limiting distribution as the threshold u → ∞.

Theorem 3.1 Let {Xi}i∈Z
be a pARMAX process. Let E and V be in-

dependent r.v.’s with distribution functions
(
1 − e−x

)
I(0,∞) and

(
1 − (y +

1)−1/γ
)
I(0,∞) respectively. Then,

(
(1 − FZ(u))T, u−1RT

)
−→(E, V ) in distribution, when u → ∞.

Proof Set d = 1 − FZ(u). For positive s, v and ω, such that s < v,

P
(
s ≤ dT ≤ ω, RT > vu

)
=

∑

j

P (RT > vu, T = j)

=
∑

j

K(u)F j−2

Z
(u)(1 − FZ((v + 1)u) ,

where the summation is over [s/d] ≤ j ≤ [ω/d] ([·] denotes the integer part).
By (3.1), as u → ∞, we have that, (1−FZ((v+1)u))/(1−FZ(u)) ∼ (v+1)−1/γ

and hence,

(1 − FZ(u))
∑

j
F j−2

Z
(u) = (1 − FZ(u)) 1−FZ(u)[

ω
d

]−[ s
d

]+1

1−FZ(u)
FZ(u)[ s

d
]−2 ∼ e−s−e−ω .

Since K(u) → 1 as u → ∞, the assertion follows. �

Remark 3.1 A sequence of normalized levels (un)n≥1
of the marginal d.f.,

K, is also a sequence of normalized levels of the innovations d.f., FZ(.), i.e.,
by (2.3) we have

n(1 − FZ(un)) = n(1−K(un))−n(1−K(u
1/c
n ))

K(u
1/c
n )

. (3.3)

If n(1 − K(un)) → τ > 0, as n → ∞, and hence un ∼ nγLK(un)
γ/τγ, then

1 − K(u1/c
n ) ∼ (τ/n)1/cL(a1/c

τ/n) ,
(3.4)

L(a1/c

t ) =
[
LK−1(t)

]−1/(γc)
LK

(
a1/c

t

)
∼

[
LK−1(t)

]−1/(γc)
LK

(
(t−γLK−1(t))1/c

)
(3.5)

where at = K−1(1 − t) and function L is a slowly varying as t ↓ 0. Therefore,

as n → ∞, we have n(1 − K(u
1/c
n )) ∼ 0, and

n(1 − FZ(un)) ∼ n(1 − K(un)) ∼ τ , n → ∞ . (3.6)
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4 The function ATDF and its estimation

The function ATDF, Λm = 2ηm − 1, where ηm is the Ledford and Tawn tail
dependence parameter, provides a measure of serial dependence between ex-
treme values lag m apart, analogous to the role of the ACF (auto-correlation
function) for linear processes (see Subsection 1.1).

A special feature of stationary heavy tailed pARMAX processes is the fact
that ηm = max(cm, 1/2) as can be seen in the next result. Therefore, the
ATDF has a power decay as the ACF of AR(1) processes and a cut-off as the
MA(p) processes (see Figure 2).

Proposition 4.1 Let {Xi}i∈Z
be a pARMAX process. Then, the random

pair (X1, X1+m) has a coefficient of asymptotic tail dependence ηm = 1/2 if
cm ≤ 1/2, and cm if cm > 1/2.

Proof Consider notation axt = K−1(1 − xt). By (1.3), we need to show that,

h(x, y) = lim
t↓0

P
(
X1 > axt, X1+m > ayt

)
/P

(
X1 > at, X1+m > at

)
. (4.1)

is homogeneous, where ηm corresponds to the arithmetic inverse of the degree
of homogeneity of h. Developing expression in numerator we have:

P (X1 > axt, X1+m > ayt) = 1 − K(axt) − FZ(ayt)
[
K(a1/cm

yt ) − K(ayt)
]

(4.2)

By (3.4), (3.5) and (2.3), we have that,

P (X1 > axt, X1+m > ayt) ∼xyt21{cm≤1/2} + (yt)1/cm

L
(
a1/cm

t

)
1{cm≥1/2} . (4.3)

For denominator in (4.1) just take x = y = 1 in (4.3). �

We conclude that, pARMAX processes are asymptotically tail independent
Markov chains (η < 1) and that, the higher the value of parameter c, the higher
we must choose lag m in order to get asymptotically independent observations.

c=0,7

0

0,5

1

0 1 2 3 4 5 6 7 8

lag m

c=0,8

0

0,5

1

0 1 2 3 4 5 6 7 8

lag m

c=0,9

0

0,5

1

0 1 2 3 4 5 6 7 8

lag m

Figure 2: The ATDF (Λm) of pARMAX processes with parameters, c = 0.7,
c = 0.8 and c = 0.9, respectively, for lags m = 0, 1, ..., 8.
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For the estimation of ATDF we can use known estimators of ηm, (Ledford
and Tawn 1996; Peng 1999; Draisma, Drees, Ferreira and de Haan 2004).
However the properties of these latter ones were derived under the assumption
of independence between random pairs, (Xi, Yi), i = 1, ..., n, i.i.d. copies of
(X, Y ), while here we must apply to random pairs, (Xi, Xi+m), i = 1, ..., n, m
fixed, which are obviously dependent. Yet this is easily overcome as we shall
see in the next result.

Before going any further, we must observe that, based on (4.1), parame-
ter ηm can be estimated as the tail index of Ti = min((1 − K(Xi))

−1, (1 −
K(Xi+m))−1), in which replacing the unknown marginal d.f., K(x), by the
empirical counterpart, Kn(x) = (1/n)

∑n
i=1 1{Xi≤x}, leads to,

T
(n)
i := min

(
n + 1

n + 1 − nKn(Xi)
,

n + 1

n + 1 − nKn(Xi+m)

)
, i = 1, ..., n, (4.4)

(Ledford and Tawn 1996; Draisma, Drees, Ferreira and de Haan 2004). The
next result refers to tail index estimators of the class of Drees (see Subsec-
tion 1.2), which includes Hill, maximum likelihood, Pickands, moments and
probability weighted moments estimators.

Theorem 4.1 Let {Xi}i∈Z
be a pARMAX process and let

{
T (n)

i

}
i
be a se-

quence as defined in (4.4). The tail index estimators of the class of Drees based
on the sequence

{
T (n)

i

}
i
are consistent and asymptotically normal.

Proof Observe that, as n → ∞

P
(
T (n)

i > x
)

∼ P
(
Xi > K−1

n

(
1 − 1

x

)
, Xi+m > K−1

n

(
1 − 1

x

))
. (4.5)

Note also that, according to the theorem in Klotz (1973), we have that,

Kn(y) = n−1
∑n

j=1 1{Xj≤y}
P

−→ K(y), for any y in the support of Xi, since
it is the sum of dependent Bernoulli trials, denoted by Binomial(n, p, λ) in
Klotz (1973), with p = P (Xj ≤ y) = K(y) and λ = P (Xj ≤ y|Xj−1 ≤ y).
Based on the theoretical result, usually attributed to Slutsky, in which, any

given random elements, Yn, Y and Y ′
n, such that Yn

d
−→ Y and Y ′

n
P

−→ a, then,

(Yn, Y
′
n)

d
−→ (Y, a), we have that, for each i, and by the continuous mapping

theorem,
P

(
Xi >K−1

n

(
1 − 1

x

)
, Xi+m >K−1

n

(
1 − 1

x

))

→
n→∞

P
(
Xi >K−1

(
1 − 1

x

)
, Xi+m >K−1

(
1 − 1

x

)) (4.6)

Therefore, given (4.5), we conclude that, T (n)

i
d

−→ Ti. Similarly it is shown
that,

P
(
T (n)

i > x, T (n)

i+k > y
) d
−→ P (Ti > x, Ti+k > y). (4.7)
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Now we shall see that sequence {Ti}i
(and therefore

{
T (n)

i

}
i

given (4.7))
satisfies Drees conditions in Subsection 1.2.

With respect to the β-mixing dependence of {Ti}i
it is immediate from the

β-mixing structure of pARMAX.
By Proposition 4.1, the function 1 − FT is regularly varying with index

γ∗ = max(1/2, cm) and, for the sake of simplicity, it is assumed that, for some
real constants, d > 0 and d∗ > 0,

F−1
T (1 − t) ∼ d∗t−γ∗ and K−1(1 − t) ∼ dt−γ , as t ↓ 0. (4.8)

Denoting the quantile, K−1
(
1 − 1/F−1

T

(
1 − kn

n
x
))

= an,x, we have,

P
(
T1 >F−1

T

(
1 − kn

n
x
)
, T1+m >F−1

T

(
1 − kn

n
y
))

= P (X1 >an,x, X2 >an,x, X1+m >an,y, X2+m >an,y)

Note that, by (4.8), an,x ∼
(

kn

n
x
)−γ∗γ

d(d∗)γ and hence, ∀j ≥ 0,

K
(
a1/cj

n,x

)
∼ 1 −

(
kn

n
x
)γ∗

d−1/(γcj )(d∗)−1/cj
d1/γ ∼ 1 −

(
kn

n
x
)γ∗

A1/cj
d1/γ, (4.9)

where A = d−1/γ(d∗)−1. The same reasoning as in Proposition 4.1 leads to,

P
(
T1 > F−1

T

(
1 − kn

n
x
)
, T1+m > F−1

T

(
1 − kn

n
y
))

∼
t↓0

(
y kn

n

) γ∗

cm+1 d1/γ A1/cm+1
+

(
xy

)2γ∗(
kn

n

)4γ∗

d1/γ A4 +
(
xy

)γ∗

c
(

kn

n

)2γ∗

c d1/γ A2/c

Therefore, condition in (1.6) holds for {Ti}i
, and by (4.7) also for

{
T (n)

i

}
i
, with

cm(x, y) = 0, ∀m ≥ 1.
With respect to condition (1.7), observe that, we can state,

n
kn

P
(
T1 ∈ In(x, y), T1+m ∈ In(x, y)

)

≤ n
kn

[
P
(
an,y < X1 ≤ an,x, X1 > a1/cm

n,y

)
+P

(
an,y < X1 ≤ an,x,

m−1∨

j=0

Zcj

m−j+1
> an,y

)]

+ n
kn

[
P
(
an,y < X2 ≤ an,x, X2 > a1/cm

n,y

)
+P

(
an,y < X2 ≤ an,x,

m−1∨

j=0

Zcj

m−j+2
> an,y

)]
.

By the independence assumptions and considering (4.9) and conditions in (1.7),
the last expression can be bounded successively by,

n
kn

{
2
[
K(a

1/cm

n,x ) − K(a
1/cm

n,y )
]

+ 2
[
K(an,x) − K(an,y)

][
1 − K(an,y)

]}

≤ (y − x)
(
2d1/γA1/cm

[
kn

n
(1 + ǫ)

]γ∗/cm−1
1+ǫ
δ

+
(

kn

n

)2γ∗−1
2 (1+ǫ)2γ∗

δ
d2/γA2

)
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Take δ = y−x, ρ̃(m) = 2d1/γA1/cm
[

kn

n
(1+ǫ)

]γ∗/cm−1
1+ǫ
δ

, D1 = 2 (1+ǫ)2γ∗

δ
d2/γA2 >

0 and α = 2γ∗ − 1. Note that,
∑∞

m=0 ρ̃(m) < ∞ since, from some order n,

lim
m→∞

ρ̃(m + 1)/ρ̃(m) ∼
{
A

[
kn

n
(1 + ǫ)

]γ∗} 1
cm (1/c−1)

< 1. �

Remark 4.1 Observe that, as P (max(UiXi−1, Zi) > x) ≤ P (max(Xi−1, Zi) >
x), the survival functions of the pRARMAX process in (1.2) are upper bounded
by the respective ones of the pARMAX. Hence, condition (1.6) also holds for
pRARMAX with cm(x, y) = 0, ∀m. Condition (1.7) is also straightforward.

Example 4.1 Consider pARMAX series with marginals Pareto(0.7) and
innovations with d.f. (2.4) for c = 0.7, 0.8, 0.9, respectively (sample size n =
5000). For each of these series, estimates of ηm are obtained, for lags m =
1, ..., 6, by the Hill estimator based on the largest k + 1 order statistics of T (n)

i ,
defined as follows:

η̂m = k−1
∑k

i=1 log T (n)

n−i+1:n − log T (n)

n−k:n.

Results in Table 1 show that the estimates are, in general, very close to their
true values. The values of k were chosen in a range of stability of Hill’s esti-
mates.

5 Return levels in pARMAX

A very important measure of extreme events is the r-year return level, the
quantile which has probability 1/r of being exceeded by the annual maximum
in any particular year, so that it is the level expected to be exceeded on average
once every r years. We will see that in pARMAX processes, return levels com-
putation based on (1.15) works better if we replace θ by a threshold-dependent
extremal index (Proposition 5.2). We follow the approach considered in Bortot
and Tawn, 1998 (see Subsection 1.3).

Proposition 5.1 Consider (un)n≥1
a sequence of normalized levels of K

and {rn}n≥1 a nondecreasing integers sequence as stated in (1.14). Then, con-
dition ∆(2)(un, rn) holds for the pARMAX process.

Proof We must prove that (1.17) holds. According to (2.5), P
(∨

j

i=2
Xi ≤

u, X1 > u
)

=
[
K(u1/c) − K(u)

][
F

Z
(u)

]j−1
, so that applying (4.2) and simple

calculations, expression in (1.17) becomes,

[K(u1/c
n

) − K(un)]FZ
(un)[1 − (F

Z
(un))

rn−2]

(1 − K(un) − F
Z
(un)[K(u1/c

n
) − K(un)])

.
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Table 1: Estimates of ηm (m = 1, ..., 6) obtained by Hill estimator based on
the largest k = 200, 500, 1000 order statistics of T (n)

i . The true values for each
lag m are on the lines beginning with “ηm”

c = 0.7 m = 1 m = 2 m = 3 m = 4 m = 5 m = 6
ηm 0.7 0.5 0.5 0.5 0.5 0.5

k = 200 0.69 0.54 0.49 0.48 0.48 0.48
k = 500 0.68 0.52 0.48 0.48 0.48 0.48
k = 1000 0.66 0.49 0.46 0.48 0.48 0.47

c = 0.8 m = 1 m = 2 m = 3 m = 4 m = 5 m = 6
ηm 0.8 0.64 0.51 0.5 0.5 0.5

k = 200 0.81 0.67 0.56 0.51 0.49 0.49
k = 500 0.79 0.66 0.56 0.5 0.49 0.49
k = 1000 0.8 0.62 0.53 0.47 0.46 0.49

c = 0.9 m = 1 m = 2 m = 3 m = 4 m = 5 m = 6
ηm 0.9 0.81 0.73 0.66 0.59 0.53

k = 200 0.89 0.79 0.7 0.63 0.58 0.54
k = 500 0.88 0.79 0.69 0.62 0.56 0.53
k = 1000 0.87 0.76 0.66 0.58 0.52 0.48

Considering the first order of Taylor’s approach of (F
Z
(un))

rn−2, as n → ∞,
we have, (F

Z
(un))

rn−2 ∼ 1 − (rn − 2)(1 − F
Z
(un)). Since (un)n≥1

is a sequence
of normalized levels of K, by (3.4), (3.6) and given (3.5), expression (1.17) can
be approximated successively,

[
τ
n
−
(

τ
n

)1/c

L(a
1/c
τ/n

)
](

1− τ
n

)
τ
n

(rn−2)

τ
n
−
(
1− τ

n

)[
τ
n
−
(

τ
n

)1/c

L(a
1/c
τ/n

)
] ∼ (rn − 2)1{c≤1/2} +

(
τ
n

)2−1/c rn−2

L(a
1/c
τ/n

)
1{c>1/2}.

Hence, when c ≤ 1/2, ∆(2)(un, rn) holds for rn = 2 and, when c > 1/2, the
condition holds for any rn such that, rn = o

(
n2−1/c

)
. �

Using the threshold-dependent extremal index stated in (1.18), the follow-
ing result can now be presented.

Proposition 5.2 Let (un)n≥1
and {rn}n≥1 be real sequences defined as in

Proposition 5.1. For pARMAX processs the following approximation holds

P (
∨n

i=1 Xi ≤ un) − Kn(un) ∼ e−τn1−1/cL(a1/c

τ/n)τ
1/c, (5.1)

which leads to,

P (
∨n

i=1 Xi ≤ un) − Knθ(un)(un) = o
(
n1−1/cL(a1/c

τ/n)
)
, (5.2)
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with

1 − θ(un) ∼ u−1/γ(1/η−1)

n

[
LK(un)1{c≤1/2} + LK(u1/c

n
)/LK(un)1{c>1/2}

]
,

where L and LK are slowly varying functions given in (3.5) and (3.2), respec-
tively.

Proof Consider normalized levels un of pARMAX such that, limn→∞ n(1 −
K(un)) = τ , with τ > 0 fixed. Then, using (2.5), (3.4) and (3.5), we derive
(5.1) which is analogous to the approximation obtained for m-dependent Gaus-
sian stationary sequences (Rootzén 1983). Hence, with a simple modification
as stated in Bortot and Tawn (1998) we obtain (5.2). The threshold-dependent
extremal index, which is defined in (1.18), is straightforward from (3.2) and
(4.3). �

In model pARMAX, the differences between approximation P (
∨

n

i=1
Xi ≤

u) ≈ K(u)nθ obtained for θ = 1 and obtained for θ replaced by θ(u) become
larger with higher values of parameter c, as can be seen in the following exam-
ple.

Example 5.1 Consider again the pARMAX processes of Example 4.1. We
obtain somewhat significantly different return levels, if we take θ = θ(u) ( I)
and θ = 1 ( II) in the approximation (1.15). In Figure 3 we can see larger
differences with larger c. Considering, for instance, the 100 year return level
of pARMAX (taking n = 250 observations per year), using approach ( I) we
obtain, 1126 with c = 0.7, 1184 with c = 0.8 and 893 with c = 0.9, and for
approach ( II) we obtain 1195.
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Figure 3: Return levels for pARMAX processes of Example 4.1 against 1/p,
(p = P (

∨
n

i=1
Xi > u)), on a logarithmic scale: solid line taking θ = 1 (approach

II); dotted line, dashed line and dotted-dashed line taking θ = θ(u) in (1.18)
(approach I), with c = 0.7, c = 0.8 and c = 0.9, respectively.
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6 Conclusion

In this paper, we have characterized the power max-autoregressive process
pARMAX which has the interesting feature of describing an asymptotic tail
independent behavior (with positive association, since 1/2 ≤ η < 1), i.e., the
degree of dependence between exceedances of high levels gradually decreases
as the levels become larger (with consecutive observations exceeding a large
value occurring more frequently than under exact independence), a property
that can be observed in various data series (Ledford and Tawn 1996; Bortot and
Tawn 1998). Moreover, the process parameter c is related to the coefficient
of asymptotic tail dependence η under the very mild assumption of heavy
tailed marginals. Hence the estimation of c is easily derived from the already
known estimation procedures of η. From this approach, we also derive a model
identification procedure through the ATDF (Λm = 2ηm−1) in a similar manner
as ACF for linear models. We notice that the max-autoregressive MARMA
models, in particular ARMAX, can only be applied in cases of asymptotic tail
dependence (η = 1). Finally, the characterization presented in this paper also
holds for more general and widely applicable pRARMAX in (1.2) for which a
methodology of model fitting to an observed data series was derived in Ferreira
and Canto e Castro (2010).
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