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Abstract.

A family of continuous probability distribution has been characterized
through the difference of two conditional expectations, conditioned on a non-
adjacent order statistics. Further, some of its deductions are also discussed.
Keywords. Characterization, continuous distributions, conditional expecta-
tion, order statistics.

1 Introduction

Let X1, Xs, ..., X, be arandom sample of size n from a continuous population
having the probability density function (pdf) f(z) and the distribution func-
tion (df) F(x) and let X, < X5, < --- < X,,.,, be the corresponding order
statistics. Then the conditional pdf of Xg., given X,.,, =z, 1 <r < s < n,is

([2))

[ (n—r)! ] [F(y) = F(=) 'L = Fy)]"™
(s —r—1)!(n—s)! [1— F(x)]»

fly) =<y (11)

Conditional moments of order statistics are extensively used in characterizing
the probability distributions. Various approaches are available in the literature.
For a detailed survey one may refer to [3, 5, 6, 8] amongst others. In this paper,
a general class of distribution

Flx)=1—e @ 4+#£0 (1.2)

has been characterized through expectation of function of order statistics.
It may be noted that the df F'(z) in (1.2) and the corresponding pdf f(x)
are linked by the following equation

1 - F(z) = (1.3)
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For the applications of characterization of distributions, one may refer to [4]
and [1].

2 Characterization theorem
Theorem 2.1. Let X be an absolutely continuous random variable with the

df F(x) and the pdf f(x) in the interval (o, 3), where o and 5 may be finite
or infinite, then for1 <m <r <s <n,

B{A(Xon) ~ (X Ko = ] = (2.1)

if and only if
Flr)=1—e @ 40 (2.2)

where h(z) is a monotonic and differentiable function of x such that h(x) — 0
as x — a and h(x){1 — F(z)} - 0 as x — .

Proof. First we will prove (2.2) implies (2.1). It can be seen ([7]) that for
1<r<s<n,

E[h(Xsn) — h(Xsflzn)‘Xr:n = [L’]

n-—r 8
: ( >W / HIF(y) = F@) 1= Fy)"~dy

s—r—1
Therefore, for 1 <m <r < s <n,

E[h(Xsn - h(XTln)|Xm5n = I‘]
s—r—1

E[h(XS,i;n) - h(Xsfiflzn)‘Xm:n = $]

= (;- - m) (= F(a)]" / H)F(y) = F@) [ = Fy)]"dy
1 s—1 1 . '
== 2 Tk in view of (1.3)

This proves the necessary part.
To prove the sufficiency part, let
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Then
E(X ) = M(Xpin)| X = 7] = ¢
implies
n—m)! B
i, PIFE) T F) )y
(n —m)!

B
- 5 [ @) = @I = P

(r—=m-1Y(n—r
=c[l - F(x)]"™™
(2.3)

Differentiating (2.3) (r —m) times w.r.t. z, we have,

(n—r)!
(s—r—1l(n—s

B
5 [ MG ~ P@FT = Pl
= {h(z) +c}[1 - F(z)]"™" (2.4)
Integrating LHS of (2.4) by parts and simplifying, we get
(n—r)!
(s=r—=2)(n—s+1

(n—r)!
(s—r—1Yn—s+

B
5 [ HIPW) = Pl - Pl )y

B
= [ H@EG) - Fl - Ry
={h(x) +c}[1 — F(z)]"" (2.5)

From (2.4) and (2.5) it follows that

n—r)! A
Gor _(n!(")l iy L WG FEr Rty

+{hx) + e}l = F(2)]"™" = {h(z) + c}[1 = F(a)]"~"

2 1
T (n—j)"

where ¢; = %Z
That is,

s—
Jj=

— F(z)"™" n—r)! p
e e [ HwiFw - R

aln—s+1) (s—r—1n—s+1
1= F(y)]"dy

Differentiating (s — r) times both sides w.r.t x, we get

W)t - Fla)) = 12

a
and hence the Theorem. O
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Remark 2.1. At r = m, we have

E[h<Xs:n)|XT:n = I] = h(l’) + 2

if and only if 1 — F(z) = e~ as obtained in [5].

Corollary 2.1.1. Under the conditions given in Theorem 2.1 and for 1 <
r<s<n,

Eh( Xsn) — (X)) + h(z) = E[h( Xsn)| Xrm = 7] (2.6)

if and only iof
Fz)=1—e @ 440, (2.7)
Proof. Follows simply from Theorem 2.1 and Remark 2.1. O]

Table 1: Examples based on the d.f F(z) =1 — e~"®)

Distribution F(x) a h(z)

Exponential 1—e 0" 0 T
0<z<oo

Weibull 1—e 0" 0 xP
0<z<oo

Pareto 1—(2)? 7 log(%)
a<z<oo

Lomax L—[14 (2] p log[1 + (£)]
0<z<oo

Gompertz 1- exp[—%(e“x —1)] % et —1
0<z<oo

Beta of 11 1—(1+4x)t 1 log(1 + x)
0<xz<oo

Beta of 1 1—(1—x)° —0 log(1 — x)
0<x<l1

Extreme value I 1 — exp[—e”] 1 e’

—00 < T < 00

Log logistic 1—(1+62P)! 1 log(1 + OxP)

0<z<oo

x -1 z
Burr Type IX 1 — w +1 1 log [c{(l—i—e2 Ye_1} + 1]

—00 < & < 00
Burr Type XII 1— (14 @zP)—™ m log(1 + 6z7)
0<zr<oo
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