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variance
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Abstract. We study the estimate of the mean θ of a Gaussian random variable X ∼ Np(θ, σ2Ip) in IRp, σ2

unknown and estimated by the chi-square variable S2 (S2 ∼ σ2χ2
n). We particularly study the bounds and

limits of the ratios of the risks, of the James-Stein estimator δJS(X) and of its positive-part δ+
JṠ

(X), with that

of the maximum likelihood estimator X when p → ∞. If limp→+∞
‖θ‖2

pσ2 = c, we show that the ratios of the

risks of the James-Stein estimator δJ·S(X) and its positive-part δ+
J·S

(X), with that of the maximum likelihood

estimator X tend to the same value
2

n+2 +c

1+c
when p → ∞. If n and p tend to infinity we show that the ratios

of the risks tend to c
1+c

We graphically illustrate the ratios of the risks corresponding to the James-Stein
estimators δJ·S(X) and its positive-part δ+j·(X), with that of the maximum likelihood estimator X for diverse

values of n and p.

1. Introduction

The estimate of the average θ of a multidimensional Gaussian law Np(θ, σ2Ip) in IRp, Ip means the matrix
unit, has known many developments since the articles of C. Stein [7], [8] and W. James and C. Stein [5].

We cite also others works and generalizations papers [2–4]. In these works one has estimated the
average of a Multidimensional Gaussian law Np(θ, σ2Ip) in IRp by estimators with retrecissor deduced from
the empirical average those are proved better in quadratic cost than the empirical average. These studies
for the majority were made when σ2 is known.

More precisely, if X represents an observation or a sample of multidimensional Gaussian law Np(θ, σ2Ip),
the aim is to estimate θ by an estimator δ(X) relatively at the quadratic cost:

L(δ, θ) = ‖δ(X) − θ‖θp ,

where ‖ · ‖p is the usual norm in IRp. We associate his function of risk:

R(δ, θ) = Eθ(L(δ, θ)).

W. James and C. Stein [8], have introduced a class of James-Stein estimators improving δ(X) = X, when the
dimension of the space of the observations p is ≥ 3, noted

δJS(X) =

(

1 −
p − 2

‖X‖2

)

X.
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A. J. Baranchik [1] proposes the positive-part of the James-Stein estimator dominating the James-Stein
estimator when p ≥ 3:

δ+JS(X) = max

(

0, 1 −
p − 2

‖X‖2

)

X.

G. Casella and J. T. Hwang [3] studied the case where σ2 is known and shown that if the limit of the ratio
‖θ‖2

p , when p tends to infinity is a constant c > 0, then

lim
p→+∞

R(θ, δJ·S(X))

R(θ,X)
= lim

p→+∞

R(θ, δ+
J·S

(X))

R(θ,X)
=

c

1 + c
, c > 0.

Li Sun [6] has considered the following model: (yi j|θ j, σ
2) ∼ N(θ j, σ

2) i = 1, . . . , n, j = 1, . . . ,m where
E(yi j) = θ j for the group j and Var(yi j) = σ

2 is unknown. The James-Stein estimators is written in this case

δJS
= (δJS

1
, . . . , δJS

m )t avec

(

1 −
(m − 3)S2

(N + 2)T2

)

(ȳi − ȳ) + ȳ, j = 1, . . . ,m,

where

S2
=

n
∑

i=1

m
∑

j=1

(yi j − ȳ j), T2
= n

m
∑

j=1

(ȳ j − ȳ), ȳ j =

∑n
i=1 yi j

n
, ȳ =

∑m
j=1 y j

m
,

N = (n − 1)m, he gives a lower bound for the ratio
R(θ,δJ·S(X))

R(θ,X) , that we find in (10). We give in (14) an upper

bound of the same ratio.

It shows after that if: q =
limm→+∞

∑m
j=1(θ j−θ̄)2

m exists, then limm→+∞
R(θ,δJS(X))

R(θ,X) = limm→+∞
R(θ,δJS(X))

R(θ,X) =
q

q+ σ
2

n

.

In Section 2 we recall a lemma of G. Casella and J. T. Hwang [3] which we generalize if σ2 is unknown and

a technical lemma to calculate a lower bound for the ratio
R(θ,δJS(X))

R(θ,X) . We give, indeed, another demonstration

of the limit of the ratio
R(θ,δJS(X))

R(θ,X) when p → ∞, because this last enabled us to more easily deduce the limit

from the ratio
R(θ,δJS(X))

R(θ,X) when n and p tend simultaneously to infinity.

We generalize the results of G. Casella and J. T. Hwang [3] in Section 3 (case where σ2 is unknown), by

giving a lower bound and an upper bound of ratio
R(θ,δJS(X))

R(θ,X)) , and its limit when p tends to infinity and n

fixes on the one hand, and on the other hand, when n and p tend simultaneously to infinity and this by

supposing that limp→+∞
||θ||2

pσ2 = c > 0.

In Section 4, we give lower and upper bounds of the ratio
R(θ,δ+

J.S
(X))

R(θ,X)) and its limit when p tends to infinity

and n fixes on the one hand, and on the other hand, when n and p tend simultaneously to infinity, and this
in all the cases where σ2 is unknown.

We take as estimator of σ2 the statistics S2 independing of X and of law σ2χ2
n in IR+. In this case the

James-Stein estimator and his positive-part are written respectively

δJS(X) =

(

1 −
(p − 2)S2

(n + 2)||X||2

)

X (1)

δ+JS(X) = max

(

0, 1 −
(p − 2)S2

(n + 2)||X||2

)

X. (2)

In Section 5, we give a graphic illustration of different ratios of risks and the lower and upper bounds
associeted for various values of n and p.
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2. Preliminary

Let us recall that the risk of the maximum likelihood estimator X is pσ2 the risk of the James Stein
estimator (given in (1) of θ is

R(θ, δJ.S(X)) = σ2

{

p −
n

n + 2
(p − 2)2E

(

1

p − 2 + 2K

)}

,

where K ∼ P
(

||θ||2

2σ2

)

being the law of Poisson of parameter ||θ||
2

2σ2 .

When X ∼ Np(θ, Ip) G. Casella and J. T. Hwang [3] have given the lemma 1 which expresses the following
inequalities:

1

(p − 2 + ||θ||2)
≤ E

(

1

||X||2

)

≤
p

(p − 2)(p + ||θ||2)
, p ≥ 3.

In the following lemma, we generalise this result when X ∼ Np(θ, σ2Ip) and σ2 is unknown.

Lemma 2.1. Let X ∼ Np(θ, σ2Ip). If p ≥ 3 then

1

σ2
(

p − 2 + ||θ||
2

σ2

) ≤ E

(

1

||X||2

)

≤
p

σ2(p − 2)
(

p + ||θ||
2

σ2

) .

Proof. We have

X ∼ Np(θ, σ2Ip)⇒
X

σ
∼ Np

(

θ

σ
, Ip

)

⇒
1

σ2
||X||2 ∼ χ2

p

(

||θ||2

σ2

)

E

(

1

||X||2

)

=
1

σ2
E















1
||X||2

σ2















=
1

σ2

∑

k≥0

∫

+∞

0

1

ω
χ2

p+2k(dω)π

(

||θ||2

2σ2

)

(3)

=
1

σ2
E

(

1

p − 2 + 2K

)

where K ∼ P
(

||θ||2

2σ2

)

and (3) being the definition of the law of χ2 no centred. According to the inequality of

Jensen we have

E

(

1

||X||2

)

=
1

σ2
E

(

1

p − 2 + 2K

)

≥
1

σ2(p − 2 + ||θ||
2

σ2 )
.

In the other hand, for any real function h such that E(h)χ2
q((λ))χ2

q(λ)) exists (see G. Casella [2]), we have

E(h(χ2
q(λ))χ2

q(λ)) = qE(h(χ2
q+2(λ))) + 2λE(h(χ2

q+4(λ))) (4)

for q = p − 2, h(ω) = 1
ω

, λ = ||θ||
2

2σ2 we obtain

∫

+∞

0

χ2
p−2(λ, dω) = (p − 2)

∫

+∞

0

1

ω
χ2

p(λ, dω) +
||θ||2

σ2

∫

+∞

0

1

ω
χ2

p+2(λ, dω).

Then

1 = (p − 2)E















1
||X||2

σ2















+
||θ||2

σ2
E

(

1

p + 2K

)

with K ∼ P

(

||θ||2

2σ2

)

. (5)
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Thus

σ2E

(

1

||X||2

)

=
1

p − 2

[

1 −
||θ||2

σ2
E

(

1

p + 2K

)]

.

Hence

E

(

1

||X||2

)

≤
1

σ2

1

p − 2















1 −
||θ||2

σ2

1

p + ||θ||
2

σ2















. (6)

Thus

E

(

1

||X||2

)

≤
1

σ2(p − 2)















p

p + ||θ||
2

σ2















.

The equality (5) came from E
(

χ2
p−2

(λ)
)

= 1, with K ∼ P
(

||θ||2

2σ2

)

and the inequality (6) came from Jensen’s

inequality. Hence the result.

We recall that if X is of a random variable of multidimensional Gaussian law X ∼ Np(θ, σ2Ip) in IRp,
then U = ||X||2 ∼ χ2

p(λ) where χ2
p(λ) designates a noncentral χ2 distribution with p degrees of freedom and

noncentrality parameter λ
(

=
||θ||2

σ2

)

.

Lemma 2.2. Let f be a real function defined on IR and X a random variable of multidimensional Gaussian law
X ∼ Np(θ, σ2Ip) in IRp. If for p ≥ 1, E[( f (U)χ2

p(λ)] exists, then:
a) If f nonincreasing we have

E[( f (U)χ2
p+2(λ)] ≤ E[( f (U)χ2

p(λ)]. (7)

b) If f nondecreasing we have:

E[( f (U)χ2
p+2(λ)] ≥ E[( f (U)χ2

p(λ)]. (8)

Proof. a) We have

E[( f (U)χ2
p+2(λ)] − E[( f (U)χ2

p(λ)] = E

[

f (U)

(

u

(p + 2K)
− 1

)

χ2
p(λ)

]

E[ f (U)χ2
p(λ)]E

[(

u

(p + 2K)
− 1

)

χ2
p(λ)

]

because the covariance of two functions one increasing and the other decreasing is negative or null, with

K ∼ P
(

||θ||2

2σ2

)

. However

E

[(

u

(p + 2K)
− 1

)

χ2
p(λ)

]

= 0,

then

E[( f (U)χ2
p+2(λ)] ≤ E[( f (U)χ2

p(λ)].

Hence the result a), (in the same manner we get b). Thus the result.
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3. Bounds and limit of the ratio of the risks of James-Stein estimator to the maximum likelihood
estimator

Theorem 3.1. If lim
p→+∞

||θ||2

pσ2 = c > 0, then

lim
p→+∞

R(θ, δJ.S(X))

R(θ,X))
=

2
n+2 + c

1 + c
.

Proof. We have

R(θ, δJ.S(X)) = σ2

{

p −
n

n + 2
(p − 2)2E

(

1

p − 2 + 2K

)}

(9)

where K ∼ P
(

||θ||2

2σ2

)

. Then

R(θ, δJ.S(X))

R(θ,X))
= 1 −

n

n + 2

(p − 2)2

p
E

(

1

p − 2 + 2K

)

= 1 −
n

n + 2

σ2(p − 2)2

p
E

(

1

||X||2

)

≤ 1 −
n

n + 2

(p − 2)2

p

1
(

p − 2 + ||θ||
2

σ2

) (10)

≤ 1 −
n

n + 2

(p − 2)2

p2

1
p−2

p +
||θ||2

pσ2

. (11)

The inequality (10) is obtained from lemma 2.1. Hence

lim
p→+∞

R(θ, δJ.S(X))

R(θ,X))
≤ lim

p→+∞



















1 −
n

n + 2

(p − 2)2

p2

1
p−2

p +
||θ||2

pσ2



















≤ 1 −
n

(n + 2)

1

(1 + c)

≤
(n + 2)(1 + c) − n

(n + 2)(1 + c)
(12)

≤

2
n+2 + c

1 + c
. (13)

Where lim
p→+∞

||θ||2

pσ2 = c. In the other hand

R(θ, δJ.S(X))

R(θ,X))
= 1 −

n

n + 2

(p − 2)2

p
E

(

1

p − 2 + 2K

)

= 1 −
n

n + 2

(p − 2)2

p
σ2E

(

1

||X||2

)

.

According to lemma 2.1 we have

R(θ, δJ.S(X))

R(θ,X))
≥ 1 −

n

n + 2

(p − 2)2

(p − 2)p

p
(

p + ||X||
2

σ2

)

≥ 1 −
n

n + 2

(p − 2)2

p

1
(

1 + ||X||
2

pσ2

) . (14)
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Thus we obtain lower and upper bounds of the ratio
R(θ,δJ.S(X))

R(θ,X)) deduced from (10) and (14)

1 −
n

n + 2

(p − 2)

p

1
(

1 + ||θ||
2

pσ2

) ≤
R(θ, δJ.S(X))

R(θ,X))

≤ 1 −
n

n + 2

(p − 2)2

p

1
(

p − 2 + ||θ||
2

σ2

) . (15)

Passaging to the limit when p→ +∞we obtain

lim
p→+∞

R(θ, δJ.S(X))

R(θ,X))
≥ lim

p→+∞



















1 −
n

n + 2

(p − 2)

p

1
(

1 + ||θ||
2

pσ2

)



















≥ 1 −
n

(n + 2)

1

(1 + c)

≥

2
n+2 + c

1 + c
(16)

where lim
p→+∞

||θ||2

pσ2 = c. Combining (13) and (16) we obtain

lim
p→+∞

R(θ, δJ.S(X))

R(θ,X))
=

2
n+2 + c

1 + c
.

Hence the result.

Corollary 3.2. If lim
p→+∞

||θ||2

pσ2 = c > 0, we have

lim
n,p→+∞

R(θ, δJ.S(X))

R(θ,X))
=

c

1 + c
.

Proof. It is obtained immediately from (11) and (14).

4. Bounds and limit of the ratio of the risks of the positive-part James-Stein estimator to the maximum
likelihood estimator

The results of the positive -part James-Stein estimator δ+
J.S

(X) are similar to the results obtained on the

James-Stein estimator δJ.S(X).

Indeed, we denote α =
p−2

n+2 , and recall that:

δ+J.S(X) =

(

1 − α
S2

||X||2

)+

X = φ+JS(X)X

(

1 − α
S2

||X||2

)

XI(
α S2

||X||2
≤1

)

δ−J.S(X) =

(

1 − α
S2

||X||2

)−

X = φ−JS(X)X

(

α
S2

||X||2
− 1

)

XI(
α S2

||X||2
≥1

)

I(
α S2

||X||2
≥1

) showing the indicating function of the set
(

α S2

||X||2
≥ 1

)

.

We will denote for the needs for demonstration and each time that it will be necessary, for the sequel,

by: Y = X
σ
, β = θ

σ
,T2 =

S2

σ2 and U = ||Y||2.

Then we have Y ∼ N(β, Ip), T2 ∼ χ2
n and U ∼ χ2

p(λ) where χ2
n designates the law of the chi square centered

with n degrees of freedom and χ2
p(λ) designates a noncentral χ2 distribution with p degrees of freedom and

noncentrality parameter λ
(

=
||θ||2

σ2

)

.

The following lemma is a recall of the expression of the risk of δ+
J.S

(X).
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Lemma 4.1. We have that

R(θ, δ+J.S(X)) = R(θ, δJ.S(X)) + E

{[

||X||2 + 2(p − 2)σ2α
S2

||X||2
− α2 (S2)2

||X||2
− 2pσ2

]

I
α S2

||X||2
≥1

}

. (17)

Proof. We have

R(θ, δJ.S(X)) = E
(

||δJ.S(X) − θ||2
)

= E
(

||φ+JS(X)X − θ − φ−JS(X)X||2
)

= E
(

||φ+JS(X)X − θ||2
)

+ E
(

[

φ−JS(X)
]2
||X||2

)

− 2E
{

〈φ+JS(X)X − θ, φ−JS(X)X〉
}

= R(θ, δ+J.S(X)) + E
(

[

φ−JS(X)
]2
||X||2

)

− 2E
{

〈−θ, φ−JS(X)X〉
}

= R(θ, δ+J.S(X)) + E
(

[

φ−JS(X)
]2
||X||2

)

− 2E
{

〈X − θ, φ−JS(X)X〉
}

+ 2E
{

〈X, δ−J.S(X)X〉
}

.

Then

R(θ, δJ.S(X)) = R(θ, δ+J.S(X)) + E















((

α
S2

||X||2
− 1

)

I
α S2

||X||2
≥1

)2

||X||2















− 2E

{

t(X − θ)X

((

α
S2

||X||2
− 1

)

I
α S2

||X||2
≥1

)}

+ 2E

{((

α
S2

||X||2
− 1

)

I
α S2

||X||2
≥1

)

||X||2
}

.

According to the lemma of P. Shao and W. E. Strawderman ([7, Lemma 2.1]) we have,

E

{

t(X − θ)X

((

α
S2

||X||2
− 1

)

I
α S2

||X||2
≥1

)}

= σ2E

{(

−2α
S2

σ2||Y||2
+ p

(

α
S2

σ2||Y||2
− 1

))

I
α S2

σ2 ||Y||2
≥1

}

= σ2E

{(

(p − 2)α
S2

σ2||Y||2
− p

)

I
α S2

σ2 ||Y||2
≥1

}

= σ2E

{(

(p − 2)α
S2

σ2||Y||2
− p

)

I
α S2

σ2 ||Y||2
≥1

}

= σ2E

{(

(p − 2)α
S2

||X||2
− p

)

I
α S2

||X||2
≥1

}

thus

R(θ, δJ.S(X)) = R(θ, δ+J.S(X)) + E

{[

α2 (S2)2

||X||2
− 2αS2

+ ||X||2
]

I
α S2

||X||2
≥1

}

− 2σ2E

{(

(p − 2)α
S2

||X||2
− p

)

I
α S2

||X||2
≥1

}

+ 2E

{((

α
S2

||X||2
− 1

)

I
α S2

||X||2
≥1

)

||X||2
}

.

Therefore

R(θ, δ+J.S(X)) = R(θ, δJ.S(X)) + E

{[

||X||2 + 2σ2(p − 2)α
S2

||X||2
− α2 (S2)2

||X||2
− 2pσ2

]

I
α S2

||X||2
≥1

}

.

Hence the result.
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The fact that R(θ, δ+
J.S

(X)) ≤ R(θ, δJ.S(X)) (Baranchick [1]), an upper bound of the ratio
R(θ,δ+

J.S
(X))

R(θ,X)) would be

for example the upper bound of the ratio
R(θ,δJ.S(X))

R(θ,X)) that we know the asymptotic character. Thus we will

interesting ourselves in what follows on a lower bound of the ratio
R(θ,δ+

J.S
(X))

R(θ,X)) .

We have the following result.

Theorem 4.2. For all p ≥ 3, we have the following minoration of the ratio of the risks
R(θ,δ+

J.S
(X))

R(θ,X)) :

R(θ, δ+
J.S

(X))

pσ2
≥

R(θ, δJ.S(X))

pσ2
+

(p + λ)

p

∫

+∞

0

IP
(

χ2
n ≥

u

α

)

χ2
p+4(λ, du)

(αn + 4)

p

∫

+∞

0

IP
(

χ2
n+4 ≥

u

α

)

χ2
p−2(λ, du)

=

R(θ, δ+
J.S

(X))

pσ2
+

(p + λ)

p
F(p+4,n,λ)(α) −

(αn + 4)

p
F(p−2,n+4,λ)(α) (18)

where F(p,n,λ)(α) is a function to distribution of Fisher with p and n degrees of freedom and parameter of noncentrality

λ
(

=
||θ||2

σ2

)

.

Proof. Taking again the equality (17) we have

R(θ, δ+J.S(X)) = R(θ, δJ.S(X)) + E

{[

||X||2 + 2(p − 2)σ2α
S2

||X||2
− α2 (S2)2

||X||2
− 2pσ2

]

I
α S2

||X||2
≥1

}

.

Then

I1 = E
(

||X||2I
α S2

||X||2
≥1

)

= σ2E

(

||X||2

σ2
I
α S2

||X||2
≥1

)

= σ2

∫

+∞

0













∫

+∞

u
α

χ2
n(0, ds)













uχ2
p(λ, du). (19)

Taking h(u) =
∫

+∞

u
α

χ2
n(0, ds) and q = p, and applying (4) we obtain

I1 = σ
2p

∫

+∞

0

IP
(

χ2
n ≥

u

α

)

χ2
p+2(λ, du) + σ2λ

∫

+∞

0

IP
(

χ2
n ≥

u

α

)

χ2
p+4(λ, du)

≥ σ2(p + λ)

∫

+∞

0

IP
(

χ2
n ≥

u

α

)

χ2
p+4(λ, du). (20)

The inequality (20) cames from inequality (7) of lemma 2.2. On the other hand

I2 = σ
2E

([

2(p − 2)α
S2

||X||2
− 2p

]

I(
α S2

||X||2
≥1

)

)

≥ −4σ2E

(

I(
α S2

||X||2
≥1

)

)

≥ −4σ2

∫

+∞

0

(∫

+∞

0

χ2
n(0, ds)

)

χ2
p(λ, du)

≥ −4σ2

∫

+∞

0

IP
(

χ2
n ≥

u

α

)

χ2
p(λ, du)

≥ −4σ2

∫

+∞

0

IP
(

χ2
n+4 ≥

u

α

)

χ2
p−2(λ, du). (21)
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The inequality (21) cames from inequality (7) of lemma 2.2 and by observing that IP
(

χ2
n+4
≥ u
α

)

≥ IP
(

χ2
n ≥

u
α

)

for all n ≥ 1. On the other hand

I3 = −E

(

α2 (S2)2

||X||2
I(
α S2

||X||2
≥1

)

)

I3 = −α
2σ2E

(

(T2)2

U
I(T2≥ U

α )

)

= −α2σ2

∫

+∞

0













∫

+∞

u
α

(t2)2χ2
n(0, dt2)













1

u
χ2

p(λ, du)

≥ −
σ2α

(n + 2)

∫

+∞

0













∫

+∞

u
α

(t2)2χ2
n(0, dt2)













χ2
p−2(λ, du).

The last inequality cames from (4) while taking h(u) = 1
u

+∞
∫

u
α

(t2)2χ2
n(0, ds), q = p − 2 and the fact that α =

p−2

n+2 .

However
∫

+∞

u
α

(t2)2χ2
n(0, dt2) = n

∫

+∞

u
α

t2χ2
n+2(0, dt2)

= n(n + 2)

∫

+∞

u
α

χ2
n+4(0, dt2)

= n(n + 2)IP
(

χ2
n+4 ≥

u

α

)

. (22)

Then we have

I3 ≥ −σ
2αn

∫

+∞

0

IP
(

χ2
n+4 ≥

u

α

)

χ2
p−2(λ, du). (23)

According to (14), (20), (21) and (23) we have

R(θ, δ+
J.S

(X))

pσ2
=

R(θ, δJ.S(X))

pσ2
+

I1

pσ2
+

I2

pσ2
+

I3

pσ2

≥
R(θ, δJ.S(X))

pσ2
+
σ2(p + λ)

pσ2

∫

+∞

0

(

IP
(

χ2
n ≥

u

α

))

χ2
p+4(λ, du)

−
4σ2

pσ2

∫

+∞

0

(

IP
(

χ2
n+4 ≥

u

α

))

χ2
p−2(λ, du) −

σ2αn

pσ2

∫

+∞

0

IP
(

χ2
n+4 ≥

u

α

)

χ2
p−2(λ, du)

≥
R(θ, δJ.S(X))

pσ2
+

(p + λ)

p

∫

+∞

0

IP
(

χ2
n ≥

u

α

)

χ2
p+4(λ, du) −

(αn + 4)

p

∫

+∞

0

IP
(

χ2
n+4 ≥

u

α

)

χ2
p−2(λ, du). (24)

Thus the result.

Remark 4.3. The lower bound given by the inequality (18) is a bound enough “fine” and close to the ratio
R(θ,δ+

J.S
(X))

pσ2

as soon as λ moves away from zero. The simulations in Section 5 illustrates it rather well. On the other hand for the

passage to limit of the ratio
R(θ,δ+

J.S
(X))

pσ2 when p tends to infinity or when p and n tend simultaneously to infinity, a less

fine bound min would be enough. Then we have the next result on the limit of the ratio of the risks
R(θ,δ+

J.S
(X))

R(θ,X)) .

Proposition 4.4. If lim
p→+∞

||θ||2

pσ2 = c > 0, we have:

lim
p→+∞

R(θ, δ+
J.S

(X))

R(θ,X))
=

2
n+2 + c

1 + c
.
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Proof. Baranchick [1] showed that R(θ, δ+
J.S

(X)) ≤ R(θ, δJ.S(X)) for p ≥ 3 and all θ, σ ∈ IRpIR+. Thus the upper

bound in (11) plays the role of the upper bound of
R(θ,δ+

J.S
(X))

R(θ,X)) . It is enough to show that the limit of the lower

bound is higher or equal to
2

n+2+c

1+c . Indeed according to (24) we have

R(θ, δ+
J.S

(X))

R(θ,X))
≥

R(θ, δJ.S(X))

pσ2
+

(p + λ)

p

∫

+∞

0

IP
(

χ2
n ≥

u

α

)

χ2
p+4(λ, du)

−
(αn + 4)

p

∫

+∞

0

IP
(

χ2
n+4 ≥

u

α

)

χ2
p−2(λ, du)

R(θ, δ+
J.S

(X))

R(θ,X))
≥

R(θ, δJ.S(X))

pσ2
+

∫

+∞

0

IP
(

χ2
n ≥

u

α

)

χ2
p+4(λ, du) −

4

p
− 1 (25)

because

(p + λ)

p

∫

+∞

0

IP
(

χ2
n ≥

u

α

)

χ2
p+4(λ, du) ≥

∫

+∞

0

IP
(

χ2
n ≥

u

α

)

χ2
p+4(λ, du)

−

∫

+∞

0

IP
(

χ2
n ≥

u

α

)

≥ −1 and −
n(p − 2)

p(n + 2)
≥ −1.

Let us denote that like α =
p−2

n+2 and thus tends to +∞when p −→ +∞, we have according to the theorem of

Lebesgue by taking for example, the increasing sequel with p















fp(u) =
+∞
∫

u
α

χ2
n(0, ds) = IP

(

χ2
n ≥

u
α

)















lim
p→+∞

IP
(

χ2
n ≥

u

α

)

= IP
(

χ2
n ≥ 0

)

= 1, ∀ n ≥ 1 (26)

thus

lim
p→+∞

∫

+∞

0

IP
(

χ2
n ≥

u

α

)

χ2
p+4(λ, du) = 1

where λ = ||θ||
2

σ2 . Finally we obtains

lim
p→+∞

R(θ, δ+
J.S

(X))

R(θ,X))
≥

2
n+2 + c

1 + c
.

Thus the result.

The case where n and p tend simultaneously to +∞ is given in the following theorem.

Theorem 4.5. If lim
p→+∞

||θ||2

pσ2 = c > 0, we have

lim
n,p→+∞

R(θ, δ+
J.S

(X))

R(θ,X))
=

c

1 + c
.

Proof. On the one hand, we have

lim
n,p→+∞

R(θ, δ+
J.S

(X))

R(θ,X))
≤ lim

n,p→+∞

R(θ, δJ.S(X))

R(θ,X))
=

c

1 + c
(27)
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because R(θ, δ+
J.S

(X)) ≤ R(θ, δJ.S(X)) for p ≥ 3 and all θ, σ ∈ IRpIR+. In the other hand, by beginning again

(25) we have

lim
n,p→+∞

R(θ, δ+
J.S

(X))

R(θ,X))
≥

c

1 + c
+ lim

n,p→+∞

∫

+∞

0

(

IP
(

χ2
n ≥

u

α

))

χ2
p+4(λ, du) − 1. (28)

However

IP
(

χ2
n ≥

u

α

)

= IP















n
∑

i=1

y2
i ≥

u(n + 2)

(p − 2)















= IP













∑n
i=1 y2

i

n
≥

u

(p − 2)
+

2u

n(p − 2)













where y1, y2, . . . , yn are independent, Gaussian random variables centered reduced. Thus by the strong law
of the great numbers we have

lim
n,p→+∞

IP
(

χ2
n ≥

u

α

)

= lim
n,p→+∞

IP













∑n
i=1 y2

i

n
≥

u

(p − 2)
+

2u

n(p − 2)













= lim
n,p→+∞

IP













∑n
i=1 y2

i

n
≥ 0













= IP(1 ≥ 0) = 1

ainsi

lim
n,p→+∞

∫

+∞

0

(

IP
(

χ2
n ≥

u

α

))

χ2
p+4(λ, du) =

∫

+∞

0

χ2
p+4(λ, du) = 1. (29)

Combining (27), (28) and (29), there is finally the result.

5. Simulations

We illustrate graphically in what follows the ratios of the risks
R(θ,δJ.S(X))

R(θ,X)) ,
R(θ,δ+

J.S
(X))

R(θ,X)) as well as the evolution

of the bound min and max associated, given respectively by the expressions (15) and (18), for σ2 = 1 and
different values of n and p.
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Figure 1: Graph of the relative risks and their minima and maxima for n = 50 and p = 4, according to λ = ||θ||
2

σ2 and σ2 = 1.

Figure 2: Graph of the relative risks and their minima and maxima for n = 100 and p = 10, according to λ = ||θ||
2

σ2 and σ2 = 1.
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Conclusion

In the case of the estimate of the average θ of a multidimensional Gaussian law Np(θ, Ip) in IRp, Casella,

G and J, T, Tzon Hwang [3] showed that if lim
p→+∞

||θ||2

p = c1 > 0 then the ratio
R(θ,δ+

J.S
(X))

R(θ,X)) tends to c1

1+c1
. By

taking the same model, namely X ∼ Np(θ, σ2Ip) with this time σ2 unknown, and estimated by the statistic
S2 independent of X and of law σ2χ2

n in IR+. We have for our part, showed that we obtain a similar ratio

depend on the size n of the sample, with that found by the latter, as soon as lim
p→+∞

||θ||2

pσ2 = c > 0. Moreover we

obtain a ratio constant and independent of n, when n and p tend simultaneously to +∞ and this without
taking account of an unspecified relation of order or functional calculus between n and p. Li Sun. [6] is

him also interested if σ2 is unknown, but studied the behavior of the ratio
R(θ,δ+

J.S
(X))

R(θ,X)) and
R(θ,δJ.S(X))

R(θ,X)) , when

only p tends to infinity. An idea would be to see whether we obtain similar ratios in the general case of the
symmetrical spherical models.
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