Limit of the ratio of risks of James-Stein estimators with unknown variance

Djamel Benmansour, Abdennour Hamdaoui
Department of Mathematics, University of -Abou Bekr Belkaid-Tlemcen 13000 Algeria

Abstract

We study the estimate of the mean θ of a Gaussian random variable $X \sim N_{p}\left(\theta, \sigma^{2} I_{p}\right)$ in $I R^{p}, \sigma^{2}$ unknown and estimated by the chi-square variable $S^{2}\left(S^{2} \sim \sigma^{2} \chi_{n}^{2}\right)$. We particularly study the bounds and limits of the ratios of the risks, of the James-Stein estimator $\delta_{J S}(X)$ and of its positive-part $\delta_{J \dot{S}}^{+}(X)$, with that of the maximum likelihood estimator X when $p \rightarrow \infty$. If $\lim _{p \rightarrow+\infty} \frac{\|\theta\|^{2}}{p \sigma^{2}}=c$, we show that the ratios of the risks of the James-Stein estimator $\delta_{J \cdot S}(X)$ and its positive-part $\delta_{J . S}^{+}(X)$, with that of the maximum likelihood estimator X tend to the same value $\frac{\frac{2}{n+2}+c}{1+c}$ when $p \rightarrow \infty$. If n and p tend to infinity we show that the ratios of the risks tend to $\frac{c}{1+c}$ We graphically illustrate the ratios of the risks corresponding to the James-Stein estimators $\delta_{J \cdot s}(X)$ and its positive-part $\delta_{j \cdot}^{+}(X)$, with that of the maximum likelihood estimator X for diverse values of n and p.

1. Introduction

The estimate of the average θ of a multidimensional Gaussian law $N_{p}\left(\theta, \sigma^{2} I_{p}\right)$ in $I R^{p}, I_{p}$ means the matrix unit, has known many developments since the articles of C. Stein [7], [8] and W. James and C. Stein [5].

We cite also others works and generalizations papers [2-4]. In these works one has estimated the average of a Multidimensional Gaussian law $N_{p}\left(\theta, \sigma^{2} I_{p}\right)$ in $I R^{p}$ by estimators with retrecissor deduced from the empirical average those are proved better in quadratic cost than the empirical average. These studies for the majority were made when σ^{2} is known.

More precisely, if X represents an observation or a sample of multidimensional Gaussian law $N_{p}\left(\theta, \sigma^{2} I_{p}\right)$, the aim is to estimate θ by an estimator $\delta(X)$ relatively at the quadratic cost:

$$
L(\delta, \theta)=\|\delta(X)-\theta\|_{p}^{\theta},
$$

where $\|\cdot\|_{p}$ is the usual norm in $I R^{p}$. We associate his function of risk:

$$
R(\delta, \theta)=E_{\theta}(L(\delta, \theta)) .
$$

W. James and C. Stein [8], have introduced a class of James-Stein estimators improving $\delta(X)=X$, when the dimension of the space of the observations p is ≥ 3, noted

$$
\delta_{J S}(X)=\left(1-\frac{p-2}{\|X\|^{2}}\right) X .
$$

[^0]A. J. Baranchik [1] proposes the positive-part of the James-Stein estimator dominating the James-Stein estimator when $p \geq 3$:
$$
\delta_{J S}^{+}(X)=\max \left(0,1-\frac{p-2}{\|X\|^{2}}\right) X
$$
G. Casella and J. T. Hwang [3] studied the case where σ^{2} is known and shown that if the limit of the ratio $\frac{\|\theta\|^{2}}{p}$, when p tends to infinity is a constant $c>0$, then
$$
\lim _{p \rightarrow+\infty} \frac{R\left(\theta, \delta_{J \cdot S}(X)\right)}{R(\theta, X)}=\lim _{p \rightarrow+\infty} \frac{R\left(\theta, \delta_{J \cdot S}^{+}(X)\right)}{R(\theta, X)}=\frac{c}{1+c}, \quad c>0 .
$$

Li Sun [6] has considered the following model: $\left(y_{i j} \mid \theta_{j}, \sigma^{2}\right) \sim N\left(\theta_{j}, \sigma^{2}\right) i=1, \ldots, n, j=1, \ldots, m$ where $E\left(y_{i j}\right)=\theta_{j}$ for the group j and $\operatorname{Var}\left(y_{i j}\right)=\sigma^{2}$ is unknown. The James-Stein estimators is written in this case

$$
\delta^{J S}=\left(\delta_{1}^{S S}, \ldots, \delta_{m}^{J S}\right)^{t} \quad \text { avec } \quad\left(1-\frac{(m-3) S^{2}}{(N+2) T^{2}}\right)\left(\bar{y}_{i}-\bar{y}\right)+\bar{y}, j=1, \ldots, m
$$

where

$$
S^{2}=\sum_{i=1}^{n} \sum_{j=1}^{m}\left(y_{i j}-\bar{y}_{j}\right), T^{2}=n \sum_{j=1}^{m}\left(\bar{y}_{j}-\bar{y}\right), \bar{y}_{j}=\frac{\sum_{i=1}^{n} y_{i j}}{n}, \bar{y}=\frac{\sum_{j=1}^{m} y_{j}}{m}
$$

$N=(n-1) m$, he gives a lower bound for the ratio $\frac{R\left(\theta, \delta_{F I S}(X)\right)}{R(\theta, X)}$, that we find in (10). We give in (14) an upper bound of the same ratio.

It shows after that if: $q=\frac{\lim _{m \rightarrow+\infty} \sum_{j=1}^{m}\left(\theta_{j}-\bar{\theta}\right)^{2}}{m}$ exists, then $\lim _{m \rightarrow+\infty} \frac{R\left(\theta, \delta^{I S}(X)\right)}{R(\theta, X)}=\lim _{m \rightarrow+\infty} \frac{R\left(\theta, \delta^{I S}(X)\right)}{R(\theta, X)}=\frac{q}{q+\frac{\sigma^{2}}{n}}$.
In Section 2 we recall a lemma of G. Casella and J. T. Hwang [3] which we generalize if σ^{2} is unknown and a technical lemma to calculate a lower bound for the ratio $\frac{R\left(\theta, \delta^{/ s}(X)\right)}{R(\theta, X)}$. We give, indeed, another demonstration of the limit of the ratio $\frac{R\left(\theta, \delta^{I /}(X)\right)}{R(\theta, X)}$ when $p \rightarrow \infty$, because this last enabled us to more easily deduce the limit from the ratio $\frac{R\left(\theta, \delta^{/ S}(X)\right)}{R(\theta, X)}$ when n and p tend simultaneously to infinity.

We generalize the results of G. Casella and J. T. Hwang [3] in Section 3 (case where σ^{2} is unknown), by giving a lower bound and an upper bound of ratio $\frac{R\left(\theta, \delta^{/ S}(X)\right)}{R(\theta, X))}$, and its limit when p tends to infinity and n fixes on the one hand, and on the other hand, when n and p tend simultaneously to infinity and this by supposing that $\lim _{p \rightarrow+\infty} \frac{\|\theta\|^{2}}{p \sigma^{2}}=c>0$.

In Section 4, we give lower and upper bounds of the ratio $\frac{R\left(\theta, \delta_{S .}^{+}(X)\right)}{R(\theta, X))}$ and its limit when p tends to infinity and n fixes on the one hand, and on the other hand, when n and p tend simultaneously to infinity, and this in all the cases where σ^{2} is unknown.

We take as estimator of σ^{2} the statistics S^{2} independing of X and of law $\sigma^{2} \chi_{n}^{2}$ in $I R^{+}$. In this case the James-Stein estimator and his positive-part are written respectively

$$
\begin{align*}
\delta_{J S}(X) & =\left(1-\frac{(p-2) S^{2}}{(n+2)\|X\|^{2}}\right) X \tag{1}\\
\delta_{J S}^{+}(X) & =\max \left(0,1-\frac{(p-2) S^{2}}{(n+2)\|X\|^{2}}\right) X . \tag{2}
\end{align*}
$$

In Section 5, we give a graphic illustration of different ratios of risks and the lower and upper bounds associeted for various values of n and p.

2. Preliminary

Let us recall that the risk of the maximum likelihood estimator X is $p \sigma^{2}$ the risk of the James Stein estimator (given in (1) of θ is

$$
R\left(\theta, \delta_{J . S}(X)\right)=\sigma^{2}\left\{p-\frac{n}{n+2}(p-2)^{2} E\left(\frac{1}{p-2+2 K}\right)\right\},
$$

where $K \sim P\left(\frac{\left\|\left\|\|^{2}\right.\right.}{2 \sigma^{2}}\right)$ being the law of Poisson of parameter $\frac{\|\theta\|^{2}}{2 \sigma^{2}}$.
When $X \sim N_{p}\left(\theta, I_{p}\right)$ G. Casella and J. T. Hwang [3] have given the lemma 1 which expresses the following inequalities:

$$
\frac{1}{\left(p-2+\|\theta\|^{2}\right)} \leq E\left(\frac{1}{\|X\|^{2}}\right) \leq \frac{p}{(p-2)\left(p+\|\theta\|^{2}\right)}, p \geq 3 .
$$

In the following lemma, we generalise this result when $X \sim N_{p}\left(\theta, \sigma^{2} I_{p}\right)$ and σ^{2} is unknown.
Lemma 2.1. Let $X \sim N_{p}\left(\theta, \sigma^{2} I_{p}\right)$. If $p \geq 3$ then

$$
\frac{1}{\sigma^{2}\left(p-2+\frac{\| \| \|^{2}}{\sigma^{2}}\right)} \leq E\left(\frac{1}{\|X\|^{2}}\right) \leq \frac{p}{\sigma^{2}(p-2)\left(p+\frac{\|\theta\| 2^{2}}{\sigma^{2}}\right)} .
$$

Proof. We have

$$
\begin{align*}
X \sim N_{p}\left(\theta, \sigma^{2} I_{p}\right) & \Rightarrow \frac{X}{\sigma} \sim N_{p}\left(\frac{\theta}{\sigma^{\prime}} I_{p}\right) \Rightarrow \frac{1}{\sigma^{2}}\|X\|^{2} \sim \chi_{p}^{2}\left(\frac{\|\theta\|^{2}}{\sigma^{2}}\right) \\
E\left(\frac{1}{\|X\|^{2}}\right) & =\frac{1}{\sigma^{2}} E\left(\frac{1}{\frac{\|X\|^{2}}{\sigma^{2}}}\right)=\frac{1}{\sigma^{2}} \sum_{k \geq 0} \int_{0}^{+\infty} \frac{1}{\omega} \chi_{p+2 k}^{2}(d \omega) \pi\left(\frac{\|\theta\|^{2}}{2 \sigma^{2}}\right) \tag{3}\\
& =\frac{1}{\sigma^{2}} E\left(\frac{1}{p-2+2 K}\right)
\end{align*}
$$

where $K \sim P\left(\frac{\|\Theta\|^{2}}{2 \sigma^{2}}\right)$ and (3) being the definition of the law of χ^{2} no centred. According to the inequality of Jensen we have

$$
E\left(\frac{1}{\|X\|^{2}}\right)=\frac{1}{\sigma^{2}} E\left(\frac{1}{p-2+2 K}\right) \geq \frac{1}{\sigma^{2}\left(p-2+\frac{\|\theta\|^{2}}{\sigma^{2}}\right)} .
$$

In the other hand, for any real function h such that $\left.E(h) \chi_{q}^{2}((\lambda)) \chi_{q}^{2}(\lambda)\right)$ exists (see G. Casella [2]), we have

$$
\begin{equation*}
E\left(h\left(\chi_{q}^{2}(\lambda)\right) \chi_{q}^{2}(\lambda)\right)=q E\left(h\left(\chi_{q+2}^{2}(\lambda)\right)\right)+2 \lambda E\left(h\left(\chi_{q+4}^{2}(\lambda)\right)\right) \tag{4}
\end{equation*}
$$

for $q=p-2, h(\omega)=\frac{1}{\omega}, \lambda=\frac{\|\theta\|^{2}}{2 \sigma^{2}}$ we obtain

$$
\int_{0}^{+\infty} \chi_{p-2}^{2}(\lambda, d \omega)=(p-2) \int_{0}^{+\infty} \frac{1}{\omega} \chi_{p}^{2}(\lambda, d \omega)+\frac{\|\theta\|^{2}}{\sigma^{2}} \int_{0}^{+\infty} \frac{1}{\omega} \chi_{p+2}^{2}(\lambda, d \omega) .
$$

Then

$$
\begin{equation*}
1=(p-2) E\left(\frac{1}{\frac{\|X\|^{2}}{\sigma^{2}}}\right)+\frac{\|\theta\|^{2}}{\sigma^{2}} E\left(\frac{1}{p+2 K}\right) \text { with } K \sim P\left(\frac{\|\theta\|^{2}}{2 \sigma^{2}}\right) . \tag{5}
\end{equation*}
$$

Thus

$$
\sigma^{2} E\left(\frac{1}{\|X\|^{2}}\right)=\frac{1}{p-2}\left[1-\frac{\|\theta\|^{2}}{\sigma^{2}} E\left(\frac{1}{p+2 K}\right)\right]
$$

Hence

$$
\begin{equation*}
E\left(\frac{1}{\|X\|^{2}}\right) \leq \frac{1}{\sigma^{2}} \frac{1}{p-2}\left[1-\frac{\|\theta\|^{2}}{\sigma^{2}} \frac{1}{p+\frac{\|\theta\|^{2}}{\sigma^{2}}}\right] \tag{6}
\end{equation*}
$$

Thus

$$
E\left(\frac{1}{\|X\|^{2}}\right) \leq \frac{1}{\sigma^{2}(p-2)}\left[\frac{p}{p+\frac{\|\theta\|^{2}}{\sigma^{2}}}\right]
$$

The equality (5) came from $E\left(\chi_{p-2}^{2}(\lambda)\right)=1$, with $K \sim P\left(\frac{\|\theta\|^{2}}{2 \sigma^{2}}\right)$ and the inequality (6) came from Jensen's inequality. Hence the result.

We recall that if X is of a random variable of multidimensional Gaussian law $X \sim N_{p}\left(\theta, \sigma^{2} I_{p}\right)$ in $I R^{p}$, then $U=\|X\|^{2} \sim \chi_{p}^{2}(\lambda)$ where $\chi_{p}^{2}(\lambda)$ designates a noncentral χ^{2} distribution with p degrees of freedom and noncentrality parameter $\lambda\left(=\frac{\|\theta\|^{2}}{\sigma^{2}}\right)$.

Lemma 2.2. Let f be a real function defined on $I R$ and X a random variable of multidimensional Gaussian law $X \sim N_{p}\left(\theta, \sigma^{2} I_{p}\right)$ in $I R^{p}$. If for $p \geq 1, E\left[\left(f(U) \chi_{p}^{2}(\lambda)\right]\right.$ exists, then:
a) If f nonincreasing we have

$$
\begin{equation*}
E\left[\left(f(U) \chi_{p+2}^{2}(\lambda)\right] \leq E\left[\left(f(U) \chi_{p}^{2}(\lambda)\right]\right.\right. \tag{7}
\end{equation*}
$$

b) If f nondecreasing we have:

$$
\begin{equation*}
E\left[\left(f(U) \chi_{p+2}^{2}(\lambda)\right] \geq E\left[\left(f(U) \chi_{p}^{2}(\lambda)\right]\right.\right. \tag{8}
\end{equation*}
$$

Proof. a) We have

$$
E\left[\left(f(U) \chi_{p+2}^{2}(\lambda)\right]-E\left[\left(f(U) \chi_{p}^{2}(\lambda)\right]=E\left[f(U)\left(\frac{u}{(p+2 K)}-1\right) \chi_{p}^{2}(\lambda)\right] E\left[f(U) \chi_{p}^{2}(\lambda)\right] E\left[\left(\frac{u}{(p+2 K)}-1\right) \chi_{p}^{2}(\lambda)\right]\right.\right.
$$

because the covariance of two functions one increasing and the other decreasing is negative or null, with $K \sim P\left(\frac{\|\theta\|^{2}}{2 \sigma^{2}}\right)$. However

$$
E\left[\left(\frac{u}{(p+2 K)}-1\right) \chi_{p}^{2}(\lambda)\right]=0
$$

then

$$
E\left[\left(f(U) \chi_{p+2}^{2}(\lambda)\right] \leq E\left[\left(f(U) \chi_{p}^{2}(\lambda)\right]\right.\right.
$$

Hence the result a), (in the same manner we get b). Thus the result.
3. Bounds and limit of the ratio of the risks of James-Stein estimator to the maximum likelihood estimator
Theorem 3.1. If $\lim _{p \rightarrow+\infty} \frac{\|\theta\|^{2}}{p \sigma^{2}}=c>0$, then

$$
\lim _{p \rightarrow+\infty} \frac{R\left(\theta, \delta_{J . S}(X)\right)}{R(\theta, X))}=\frac{\frac{2}{n+2}+c}{1+c}
$$

Proof. We have

$$
\begin{equation*}
R\left(\theta, \delta_{J . S}(X)\right)=\sigma^{2}\left\{p-\frac{n}{n+2}(p-2)^{2} E\left(\frac{1}{p-2+2 K}\right)\right\} \tag{9}
\end{equation*}
$$

where $K \sim P\left(\frac{\|\theta\|^{2}}{2 \sigma^{2}}\right)$. Then

$$
\begin{align*}
\frac{R\left(\theta, \delta_{J . S}(X)\right)}{R(\theta, X))} & =1-\frac{n}{n+2} \frac{(p-2)^{2}}{p} E\left(\frac{1}{p-2+2 K}\right) \\
& =1-\frac{n}{n+2} \frac{\sigma^{2}(p-2)^{2}}{p} E\left(\frac{1}{\|X\|^{2}}\right) \\
& \leq 1-\frac{n}{n+2} \frac{(p-2)^{2}}{p} \frac{1}{\left(p-2+\frac{\|\theta\|^{2}}{\sigma^{2}}\right)} \tag{10}\\
& \leq 1-\frac{n}{n+2} \frac{(p-2)^{2}}{p^{2}} \frac{1}{\frac{p-2}{p}+\frac{\|\theta\|^{2}}{p \sigma^{2}}} . \tag{11}
\end{align*}
$$

The inequality (10) is obtained from lemma 2.1. Hence

$$
\begin{align*}
\lim _{p \rightarrow+\infty} \frac{R\left(\theta, \delta_{J . S}(X)\right)}{R(\theta, X))} & \leq \lim _{p \rightarrow+\infty}\left\{1-\frac{n}{n+2} \frac{(p-2)^{2}}{p^{2}} \frac{1}{\frac{p-2}{p}+\frac{\|\theta\|^{2}}{p \sigma^{2}}}\right\} \\
& \leq 1-\frac{n}{(n+2)} \frac{1}{(1+c)} \\
& \leq \frac{(n+2)(1+c)-n}{(n+2)(1+c)} \tag{12}\\
& \leq \frac{\frac{2}{n+2}+c}{1+c} \tag{13}
\end{align*}
$$

Where $\lim _{p \rightarrow+\infty} \frac{\|\theta\|^{2}}{p \sigma^{2}}=c$. In the other hand

$$
\begin{aligned}
\frac{R\left(\theta, \delta_{J . S}(X)\right)}{R(\theta, X))} & =1-\frac{n}{n+2} \frac{(p-2)^{2}}{p} E\left(\frac{1}{p-2+2 K}\right) \\
& =1-\frac{n}{n+2} \frac{(p-2)^{2}}{p} \sigma^{2} E\left(\frac{1}{\|X\|^{2}}\right)
\end{aligned}
$$

According to lemma 2.1 we have

$$
\begin{align*}
\frac{R\left(\theta, \delta_{J . S}(X)\right)}{R(\theta, X))} & \geq 1-\frac{n}{n+2} \frac{(p-2)^{2}}{(p-2) p} \frac{p}{\left(p+\frac{\|X\|^{2}}{\sigma^{2}}\right)} \\
& \geq 1-\frac{n}{n+2} \frac{(p-2)^{2}}{p} \frac{1}{\left(1+\frac{\|X\|^{2}}{p \sigma^{2}}\right)} \tag{14}
\end{align*}
$$

Thus we obtain lower and upper bounds of the ratio $\frac{R\left(\theta, \delta_{I S}(X)\right)}{R(\theta, X))}$ deduced from (10) and (14)

$$
\begin{align*}
1-\frac{n}{n+2} \frac{(p-2)}{p} \frac{1}{\left(1+\frac{\|\theta\|^{2}}{p \sigma^{2}}\right)} & \leq \frac{R\left(\theta, \delta_{J, S}(X)\right)}{R(\theta, X))} \\
& \leq 1-\frac{n}{n+2} \frac{(p-2)^{2}}{p} \frac{1}{\left(p-2+\frac{\|\theta\|^{2}}{\sigma^{2}}\right)} . \tag{15}
\end{align*}
$$

Passaging to the limit when $p \rightarrow+\infty$ we obtain

$$
\begin{align*}
\lim _{p \rightarrow+\infty} \frac{R\left(\theta, \delta_{J . S}(X)\right)}{R(\theta, X))} & \geq \lim _{p \rightarrow+\infty}\left\{1-\frac{n}{n+2} \frac{(p-2)}{p} \frac{1}{\left(1+\frac{\|\theta\|^{2}}{p \sigma^{2}}\right)}\right\} \\
& \geq 1-\frac{n}{(n+2)} \frac{1}{(1+c)} \\
& \geq \frac{\frac{2}{n+2}+c}{1+c} \tag{16}
\end{align*}
$$

where $\lim _{p \rightarrow+\infty} \frac{\|\theta\|^{2}}{p \sigma^{2}}=c$. Combining (13) and (16) we obtain

$$
\lim _{p \rightarrow+\infty} \frac{R\left(\theta, \delta_{\Gamma . S}(X)\right)}{R(\theta, X))}=\frac{\frac{2}{n+2}+c}{1+c} .
$$

Hence the result.
Corollary 3.2. If $\lim _{p \rightarrow+\infty} \frac{\|\theta\|^{2}}{p \sigma^{2}}=c>0$, we have

$$
\lim _{n, p \rightarrow+\infty} \frac{R\left(\theta, \delta_{J . S}(X)\right)}{R(\theta, X))}=\frac{c}{1+c} .
$$

Proof. It is obtained immediately from (11) and (14).

4. Bounds and limit of the ratio of the risks of the positive-part James-Stein estimator to the maximum likelihood estimator

The results of the positive -part James-Stein estimator $\delta_{J . S}^{+}(X)$ are similar to the results obtained on the James-Stein estimator $\delta_{J . S}(X)$.
Indeed, we denote $\alpha=\frac{p-2}{n+2}$, and recall that:

$$
\begin{aligned}
& \delta_{J . S}^{+}(X)=\left(1-\alpha \frac{S^{2}}{\|X\|^{2}}\right)^{+} X=\phi_{J S}^{+}(X) X\left(1-\alpha \frac{S^{2}}{\|X\|^{2}}\right) X I_{\left(\alpha \frac{s^{2}}{\alpha X \mid \|^{2}} \leq 1\right)} \\
& \delta_{J . S}^{-}(X)=\left(1-\alpha \frac{S^{2}}{\|X\|^{2}}\right)^{-} X=\phi_{J S}^{-}(X) X\left(\alpha \frac{S^{2}}{\|X\|^{2}}-1\right) X I_{\left(\alpha \frac{s^{2}}{\|X\|^{2}} \geq 1\right)}
\end{aligned}
$$

$I_{\left(\alpha \frac{s^{2}}{\|\times 1\|^{2}} \geq 1\right)}$ showing the indicating function of the set $\left(\alpha \frac{s^{2}}{\|X\|^{2}} \geq 1\right)$.
We will denote for the needs for demonstration and each time that it will be necessary, for the sequel, by: $Y=\frac{X}{\sigma}, \beta=\frac{\theta}{\sigma}, T^{2}=\frac{S^{2}}{\sigma^{2}}$ and $U=\|Y\|^{2}$.

Then we have $Y \sim N\left(\beta, I_{p}\right), T^{2} \sim \chi_{n}^{2}$ and $U \sim \chi_{p}^{2}(\lambda)$ where χ_{n}^{2} designates the law of the chi square centered with n degrees of freedom and $\chi_{p}^{2}(\lambda)$ designates a noncentral χ^{2} distribution with p degrees of freedom and noncentrality parameter $\lambda\left(=\frac{\|\theta\|^{2}}{\sigma^{2}}\right)$.

The following lemma is a recall of the expression of the risk of $\delta_{J . S}^{+}(X)$.

Lemma 4.1. We have that

Proof. We have

$$
\begin{aligned}
R\left(\theta, \delta_{J . S}(X)\right) & =E\left(\left\|\delta_{J . S}(X)-\theta\right\|^{2}\right) \\
& =E\left(\left\|\phi_{J S}^{+}(X) X-\theta-\phi_{J S}^{-}(X) X\right\|^{2}\right) \\
& =E\left(\left\|\phi_{J S}^{+}(X) X-\theta\right\|^{2}\right)+E\left(\left[\phi_{J S}^{-}(X)\right]^{2}\|X\|^{2}\right)-2 E\left\{\left\langle\phi_{J S}^{+}(X) X-\theta, \phi_{J S}^{-}(X) X\right\rangle\right\} \\
& =R\left(\theta, \delta_{J . S}^{+}(X)\right)+E\left(\left[\phi_{J S}^{-}(X)\right]^{2}\|X\|^{2}\right)-2 E\left\{\left\langle-\theta, \phi_{J S}^{-}(X) X\right\rangle\right\} \\
& =R\left(\theta, \delta_{J . S}^{+}(X)\right)+E\left(\left[\phi_{J S}^{-}(X)\right]^{2}\|X\|^{2}\right)-2 E\left\{\left\langle X-\theta, \phi_{J S}^{-}(X) X\right\rangle\right\}+2 E\left\{\left\langle X, \delta_{J . S}^{-}(X) X\right\rangle\right\} .
\end{aligned}
$$

Then

$$
\begin{aligned}
& R\left(\theta, \delta_{J . S}(X)\right)=R\left(\theta, \delta_{J . S}^{+}(X)\right)+E\left\{\left(\left(\alpha \frac{S^{2}}{\|X\|^{2}}-1\right) I_{\alpha \frac{S^{2}}{\|X\| \|^{2}} \geq 1}\right)^{2}\|X\|^{2}\right\} \\
& -2 E\left\{{ }^{t}(X-\theta) X\left(\left(\alpha \frac{S^{2}}{\|X\|^{2}}-1\right) I_{\alpha \frac{s^{2}}{\|X\|^{2}} \geq 1}\right)\right\}+2 E\left\{\left(\left(\alpha \frac{S^{2}}{\|X\|^{2}}-1\right) I_{\alpha \frac{s^{2}}{\|X\|^{2}} \geq 1}\right)\|X\|^{2}\right\} .
\end{aligned}
$$

According to the lemma of P. Shao and W. E. Strawderman ([7, Lemma 2.1]) we have,

$$
\begin{aligned}
& E\left\{t(X-\theta) X\left(\left(\alpha \frac{S^{2}}{\|X\|^{2}}-1\right) I_{\alpha \frac{s^{2}}{\|X\|^{2}} \geq 1}\right)\right\} \\
& \quad=\sigma^{2} E\left\{\left(-2 \alpha \frac{S^{2}}{\sigma^{2}\|Y\|^{2}}+p\left(\alpha \frac{S^{2}}{\sigma^{2}\|Y\|^{2}}-1\right)\right) I_{\alpha \frac{s^{2}}{\sigma^{2}\|Y\|^{2}} \geq 1}\right\} \\
& \quad=\sigma^{2} E\left\{\left((p-2) \alpha \frac{S^{2}}{\sigma^{2}\|Y\|^{2}}-p\right) I_{\alpha \frac{s^{2}}{\sigma^{2}\|Y\|^{2}}} \geq 1\right\} \\
& \quad=\sigma^{2} E\left\{\left((p-2) \alpha \frac{S^{2}}{\sigma^{2}\|Y\|^{2}}-p\right) I_{\alpha \frac{s^{2}}{\sigma^{2}\|Y\|^{2}}} \geq 1\right\} \\
& \quad=\sigma^{2} E\left\{\left((p-2) \alpha \frac{S^{2}}{\|X\|^{2}}-p\right) I_{\alpha \frac{s^{2}}{\|X\|^{2}} \geq 1}\right\}
\end{aligned}
$$

thus

$$
\begin{aligned}
R\left(\theta, \delta_{J . S}(X)\right)= & R\left(\theta, \delta_{J . S}^{+}(X)\right)+E\left\{\left[\alpha^{2} \frac{\left(S^{2}\right)^{2}}{\|X\|^{2}}-2 \alpha S^{2}+\|X\|^{2}\right] I_{\alpha \frac{s^{2}}{\|X\|^{2}} \geq 1}\right\} \\
& -2 \sigma^{2} E\left\{\left((p-2) \alpha \frac{S^{2}}{\|X\|^{2}}-p\right) I_{\alpha \frac{S^{2}}{\|X\|^{2}} \geq 1}\right\}+2 E\left\{\left(\left(\alpha \frac{S^{2}}{\|X\|^{2}}-1\right) I_{\alpha \frac{s^{2}}{\|X\|^{2}} \geq 1}\right)\|X\|^{2}\right\} .
\end{aligned}
$$

Therefore

$$
R\left(\theta, \delta_{J . S}^{+}(X)\right)=R\left(\theta, \delta_{J . S}(X)\right)+E\left\{\left[\|X\|^{2}+2 \sigma^{2}(p-2) \alpha \frac{S^{2}}{\|X\|^{2}}-\alpha^{2} \frac{\left(S^{2}\right)^{2}}{\|X\|^{2}}-2 p \sigma^{2}\right] I_{\alpha \frac{S^{2}}{\|X\|^{2}} \geq 1}\right\}
$$

Hence the result.

The fact that $R\left(\theta, \delta_{J . S}^{+}(X)\right) \leq R\left(\theta, \delta_{J . S}(X)\right)$ (Baranchick [1]), an upper bound of the ratio $\frac{R\left(\theta, \delta_{. J}^{+}(X)\right)}{R(\theta, X))}$ would be for example the upper bound of the ratio $\frac{R\left(\theta, \delta_{[J S}(X)\right)}{R(\theta, X))}$ that we know the asymptotic character. Thus we will interesting ourselves in what follows on a lower bound of the ratio $\frac{R\left(\theta, \delta_{S . S}^{+}(X)\right)}{R(\theta, X))}$.

We have the following result.
Theorem 4.2. For all $p \geq 3$, we have the following minoration of the ratio of the risks $\frac{R\left(\theta, \delta_{S . S}^{+}(X)\right)}{R(\theta, X))}$:

$$
\begin{align*}
\frac{R\left(\theta, \delta_{J . S}^{+}(X)\right)}{p \sigma^{2}} & \geq \frac{R\left(\theta, \delta_{J . S}(X)\right)}{p \sigma^{2}}+\frac{(p+\lambda)}{p} \int_{0}^{+\infty} I P\left(\chi_{n}^{2} \geq \frac{u}{\alpha}\right) \chi_{p+4}^{2}(\lambda, d u) \frac{(\alpha n+4)}{p} \int_{0}^{+\infty} I P\left(\chi_{n+4}^{2} \geq \frac{u}{\alpha}\right) \chi_{p-2}^{2}(\lambda, d u) \\
& =\frac{R\left(\theta, \delta_{J . S}^{+}(X)\right)}{p \sigma^{2}}+\frac{(p+\lambda)}{p} F_{(p+4, n, \lambda)}(\alpha)-\frac{(\alpha n+4)}{p} F_{(p-2, n+4, \lambda)}(\alpha) \tag{18}
\end{align*}
$$

where $F_{(p, n, \lambda)}(\alpha)$ is a function to distribution of Fisher with p and n degrees of freedom and parameter of noncentrality $\lambda\left(=\frac{\|\theta\|^{2}}{\sigma^{2}}\right)$.

Proof. Taking again the equality (17) we have

$$
R\left(\theta, \delta_{J . S}^{+}(X)\right)=R\left(\theta, \delta_{J . S}(X)\right)+E\left\{\left[\|X\|^{2}+2(p-2) \sigma^{2} \alpha \frac{S^{2}}{\|X\|^{2}}-\alpha^{2} \frac{\left(S^{2}\right)^{2}}{\|X\|^{2}}-2 p \sigma^{2}\right] I_{\alpha \frac{s^{2}}{\|X\|^{2}} \geq 1}\right\}
$$

Then

$$
\begin{align*}
I_{1} & =E\left(\|X\|^{2} I_{\alpha \frac{s^{2}}{\|X\|^{2}} \geq 1}\right) \\
& =\sigma^{2} E\left(\frac{\|X\|^{2}}{\sigma^{2}} I_{\alpha \frac{s^{2}}{\|X\|^{2}} \geq 1}\right) \\
& =\sigma^{2} \int_{0}^{+\infty}\left(\int_{\frac{u}{\alpha}}^{+\infty} \chi_{n}^{2}(0, d s)\right) u \chi_{p}^{2}(\lambda, d u) . \tag{19}
\end{align*}
$$

Taking $h(u)=\int_{\frac{u}{\alpha}}^{+\infty} \chi_{n}^{2}(0, d s)$ and $q=p$, and applying (4) we obtain

$$
\begin{align*}
I_{1} & =\sigma^{2} p \int_{0}^{+\infty} I P\left(\chi_{n}^{2} \geq \frac{u}{\alpha}\right) \chi_{p+2}^{2}(\lambda, d u)+\sigma^{2} \lambda \int_{0}^{+\infty} I P\left(\chi_{n}^{2} \geq \frac{u}{\alpha}\right) \chi_{p+4}^{2}(\lambda, d u) \\
& \geq \sigma^{2}(p+\lambda) \int_{0}^{+\infty} I P\left(\chi_{n}^{2} \geq \frac{u}{\alpha}\right) \chi_{p+4}^{2}(\lambda, d u) \tag{20}
\end{align*}
$$

The inequality (20) cames from inequality (7) of lemma 2.2. On the other hand

$$
\begin{align*}
I_{2} & =\sigma^{2} E\left(\left[2(p-2) \alpha \frac{S^{2}}{\|X\|^{2}}-2 p\right] I_{\left(\alpha \frac{s^{2}}{\|X\|^{2}} \geq 1\right)}\right) \\
& \geq-4 \sigma^{2} E\left(I_{\left(\alpha \frac{s^{2}}{\|X\|^{2}} \geq 1\right)}\right) \\
& \geq-4 \sigma^{2} \int_{0}^{+\infty}\left(\int_{0}^{+\infty} \chi_{n}^{2}(0, d s)\right) \chi_{p}^{2}(\lambda, d u) \\
& \geq-4 \sigma^{2} \int_{0}^{+\infty} I P\left(\chi_{n}^{2} \geq \frac{u}{\alpha}\right) \chi_{p}^{2}(\lambda, d u) \\
& \geq-4 \sigma^{2} \int_{0}^{+\infty} I P\left(\chi_{n+4}^{2} \geq \frac{u}{\alpha}\right) \chi_{p-2}^{2}(\lambda, d u) \tag{21}
\end{align*}
$$

The inequality (21) cames from inequality (7) of lemma 2.2 and by observing that $I P\left(\chi_{n+4}^{2} \geq \frac{u}{\alpha}\right) \geq I P\left(\chi_{n}^{2} \geq \frac{u}{\alpha}\right)$ for all $n \geq 1$. On the other hand

$$
\begin{aligned}
I_{3} & =-E\left(\alpha^{2} \frac{\left(S^{2}\right)^{2}}{\|X\|^{2}} I_{\left(\alpha \frac{s^{2}}{\|X\|^{2}} \geq 1\right)}\right) \\
I_{3} & =-\alpha^{2} \sigma^{2} E\left(\frac{\left(T^{2}\right)^{2}}{U} I_{\left(T^{2} \geq \frac{u}{\alpha}\right)}\right) \\
& =-\alpha^{2} \sigma^{2} \int_{0}^{+\infty}\left(\int_{\frac{u}{\alpha}}^{+\infty}\left(t^{2}\right)^{2} \chi_{n}^{2}\left(0, d t^{2}\right)\right) \frac{1}{u} \chi_{p}^{2}(\lambda, d u) \\
& \geq-\frac{\sigma^{2} \alpha}{(n+2)} \int_{0}^{+\infty}\left(\int_{\frac{u}{\alpha}}^{+\infty}\left(t^{2}\right)^{2} \chi_{n}^{2}\left(0, d t^{2}\right)\right) \chi_{p-2}^{2}(\lambda, d u) .
\end{aligned}
$$

The last inequality cames from (4) while taking $h(u)=\frac{1}{u} \int_{\frac{u}{\alpha}}^{+\infty}\left(t^{2}\right)^{2} \chi_{n}^{2}(0, d s), q=p-2$ and the fact that $\alpha=\frac{p-2}{n+2}$. However

$$
\begin{align*}
\int_{\frac{u}{\alpha}}^{+\infty}\left(t^{2}\right)^{2} \chi_{n}^{2}\left(0, d t^{2}\right) & =n \int_{\frac{u}{\alpha}}^{+\infty} t^{2} \chi_{n+2}^{2}\left(0, d t^{2}\right) \\
& =n(n+2) \int_{\frac{u}{\alpha}}^{+\infty} \chi_{n+4}^{2}\left(0, d t^{2}\right) \\
& =n(n+2) I P\left(\chi_{n+4}^{2} \geq \frac{u}{\alpha}\right) \tag{22}
\end{align*}
$$

Then we have

$$
\begin{equation*}
I_{3} \geq-\sigma^{2} \alpha n \int_{0}^{+\infty} I P\left(\chi_{n+4}^{2} \geq \frac{u}{\alpha}\right) \chi_{p-2}^{2}(\lambda, d u) \tag{23}
\end{equation*}
$$

According to (14), (20), (21) and (23) we have

$$
\begin{align*}
& \frac{R\left(\theta, \delta_{J . S}^{+}(X)\right)}{p \sigma^{2}}=\frac{R\left(\theta, \delta_{J . S}(X)\right)}{p \sigma^{2}}+\frac{I_{1}}{p \sigma^{2}}+\frac{I_{2}}{p \sigma^{2}}+\frac{I_{3}}{p \sigma^{2}} \\
& \geq \frac{R\left(\theta, \delta_{J . S}(X)\right)}{p \sigma^{2}}+\frac{\sigma^{2}(p+\lambda)}{p \sigma^{2}} \int_{0}^{+\infty}\left(I P\left(\chi_{n}^{2} \geq \frac{u}{\alpha}\right)\right) \chi_{p+4}^{2}(\lambda, d u) \\
& \quad-\frac{4 \sigma^{2}}{p \sigma^{2}} \int_{0}^{+\infty}\left(I P\left(\chi_{n+4}^{2} \geq \frac{u}{\alpha}\right)\right) \chi_{p-2}^{2}(\lambda, d u)-\frac{\sigma^{2} \alpha n}{p \sigma^{2}} \int_{0}^{+\infty} I P\left(\chi_{n+4}^{2} \geq \frac{u}{\alpha}\right) \chi_{p-2}^{2}(\lambda, d u) \\
& \geq \frac{R\left(\theta, \delta_{J . S}(X)\right)}{p \sigma^{2}}+\frac{(p+\lambda)}{p} \int_{0}^{+\infty} I P\left(\chi_{n}^{2} \geq \frac{u}{\alpha}\right) \chi_{p+4}^{2}(\lambda, d u)-\frac{(\alpha n+4)}{p} \int_{0}^{+\infty} I P\left(\chi_{n+4}^{2} \geq \frac{u}{\alpha}\right) \chi_{p-2}^{2}(\lambda, d u) \tag{24}
\end{align*}
$$

Thus the result.
Remark 4.3. The lower bound given by the inequality (18) is a bound enough "fine" and close to the ratio $\frac{R\left(\theta, \delta_{. S}^{+}(X)\right)}{p \sigma^{2}}$ as soon as λ moves away from zero. The simulations in Section 5 illustrates it rather well. On the other hand for the passage to limit of the ratio $\frac{R\left(\theta, \delta_{I S}^{+}(X)\right)}{p \sigma^{2}}$ when p tends to infinity or when p and n tend simultaneously to infinity, a less fine bound min would be enough. Then we have the next result on the limit of the ratio of the risks $\frac{R\left(\theta, \delta_{I . S}^{+}(X)\right)}{R(\theta, X))}$.
Proposition 4.4. If $\lim _{p \rightarrow+\infty} \frac{\|\theta\|^{2}}{p \sigma^{2}}=c>0$, we have:

$$
\lim _{p \rightarrow+\infty} \frac{R\left(\theta, \delta_{J . S}^{+}(X)\right)}{R(\theta, X))}=\frac{\frac{2}{n+2}+c}{1+c}
$$

Proof. Baranchick [1] showed that $R\left(\theta, \delta_{J . S}^{+}(X)\right) \leq R\left(\theta, \delta_{J, S}(X)\right)$ for $p \geq 3$ and all $\theta, \sigma \in I R^{p} I R^{+}$. Thus the upper bound in (11) plays the role of the upper bound of $\frac{R\left(\theta, \delta_{s}^{+}(X)\right)}{R(\theta, X))}$. It is enough to show that the limit of the lower bound is higher or equal to $\frac{\frac{2}{n+2}+c}{1+c}$. Indeed according to (24) we have

$$
\begin{align*}
\frac{R\left(\theta, \delta_{J . S}^{+}(X)\right)}{R(\theta, X))} \geq & \frac{R\left(\theta, \delta_{J . S}(X)\right)}{p \sigma^{2}}+\frac{(p+\lambda)}{p} \int_{0}^{+\infty} I P\left(\chi_{n}^{2} \geq \frac{u}{\alpha}\right) \chi_{p+4}^{2}(\lambda, d u) \\
& -\frac{(\alpha n+4)}{p} \int_{0}^{+\infty} I P\left(\chi_{n+4}^{2} \geq \frac{u}{\alpha}\right) \chi_{p-2}^{2}(\lambda, d u) \\
\frac{R\left(\theta, \delta_{J . S}^{+}(X)\right)}{R(\theta, X))} \geq & \frac{R\left(\theta, \delta_{J . S}(X)\right)}{p \sigma^{2}}+\int_{0}^{+\infty} I P\left(\chi_{n}^{2} \geq \frac{u}{\alpha}\right) \chi_{p+4}^{2}(\lambda, d u)-\frac{4}{p}-1 \tag{25}
\end{align*}
$$

because

$$
\begin{aligned}
\frac{(p+\lambda)}{p} \int_{0}^{+\infty} I P\left(\chi_{n}^{2} \geq \frac{u}{\alpha}\right) \chi_{p+4}^{2}(\lambda, d u) & \geq \int_{0}^{+\infty} I P\left(\chi_{n}^{2} \geq \frac{u}{\alpha}\right) \chi_{p+4}^{2}(\lambda, d u) \\
-\int_{0}^{+\infty} I P\left(\chi_{n}^{2} \geq \frac{u}{\alpha}\right) & \geq-1 \text { and }-\frac{n(p-2)}{p(n+2)} \geq-1
\end{aligned}
$$

Let us denote that like $\alpha=\frac{p-2}{n+2}$ and thus tends to $+\infty$ when $p \longrightarrow+\infty$, we have according to the theorem of Lebesgue by taking for example, the increasing sequel with $p\left(f_{p}(u)=\int_{\frac{u}{\alpha}}^{+\infty} \chi_{n}^{2}(0, d s)=I P\left(\chi_{n}^{2} \geq \frac{u}{\alpha}\right)\right)$

$$
\begin{equation*}
\lim _{p \rightarrow+\infty} I P\left(\chi_{n}^{2} \geq \frac{u}{\alpha}\right)=I P\left(\chi_{n}^{2} \geq 0\right)=1, \quad \forall n \geq 1 \tag{26}
\end{equation*}
$$

thus

$$
\lim _{p \rightarrow+\infty} \int_{0}^{+\infty} I P\left(\chi_{n}^{2} \geq \frac{u}{\alpha}\right) \chi_{p+4}^{2}(\lambda, d u)=1
$$

where $\lambda=\frac{\|\theta\|^{2}}{\sigma^{2}}$. Finally we obtains

$$
\lim _{p \rightarrow+\infty} \frac{R\left(\theta, \delta_{J . S}^{+}(X)\right)}{R(\theta, X))} \geq \frac{\frac{2}{n+2}+c}{1+c}
$$

Thus the result.
The case where n and p tend simultaneously to $+\infty$ is given in the following theorem.
Theorem 4.5. If $\lim _{p \rightarrow+\infty} \frac{\|\theta\|^{2}}{p \sigma^{2}}=c>0$, we have

$$
\lim _{n, p \rightarrow+\infty} \frac{R\left(\theta, \delta_{., S}^{+}(X)\right)}{R(\theta, X))}=\frac{c}{1+c} .
$$

Proof. On the one hand, we have

$$
\begin{equation*}
\lim _{n, p \rightarrow+\infty} \frac{R\left(\theta, \delta_{J . S}^{+}(X)\right)}{R(\theta, X))} \leq \lim _{n, p \rightarrow+\infty} \frac{R\left(\theta, \delta_{J . S}(X)\right)}{R(\theta, X))}=\frac{c}{1+c} \tag{27}
\end{equation*}
$$

because $R\left(\theta, \delta_{J . S}^{+}(X)\right) \leq R\left(\theta, \delta_{J . S}(X)\right)$ for $p \geq 3$ and all $\theta, \sigma \in I R^{p} I R^{+}$. In the other hand, by beginning again (25) we have

$$
\begin{equation*}
\lim _{n, p \rightarrow+\infty} \frac{R\left(\theta, \delta_{J . S}^{+}(X)\right)}{R(\theta, X))} \geq \frac{c}{1+c}+\lim _{n, p \rightarrow+\infty} \int_{0}^{+\infty}\left(I P\left(\chi_{n}^{2} \geq \frac{u}{\alpha}\right)\right) \chi_{p+4}^{2}(\lambda, d u)-1 \tag{28}
\end{equation*}
$$

However

$$
\begin{aligned}
I P\left(\chi_{n}^{2} \geq \frac{u}{\alpha}\right) & =I P\left(\sum_{i=1}^{n} y_{i}^{2} \geq \frac{u(n+2)}{(p-2)}\right) \\
& =I P\left(\frac{\sum_{i=1}^{n} y_{i}^{2}}{n} \geq \frac{u}{(p-2)}+\frac{2 u}{n(p-2)}\right)
\end{aligned}
$$

where $y_{1}, y_{2}, \ldots, y_{n}$ are independent, Gaussian random variables centered reduced. Thus by the strong law of the great numbers we have

$$
\begin{aligned}
\lim _{n, p \rightarrow+\infty} I P\left(x_{n}^{2} \geq \frac{u}{\alpha}\right) & =\lim _{n, p \rightarrow+\infty} I P\left(\frac{\sum_{i=1}^{n} y_{i}^{2}}{n} \geq \frac{u}{(p-2)}+\frac{2 u}{n(p-2)}\right) \\
& =\lim _{n, p \rightarrow+\infty} I P\left(\frac{\sum_{i=1}^{n} y_{i}^{2}}{n} \geq 0\right) \\
& =I P(1 \geq 0)=1
\end{aligned}
$$

ainsi

$$
\begin{equation*}
\lim _{n, p \rightarrow+\infty} \int_{0}^{+\infty}\left(I P\left(\chi_{n}^{2} \geq \frac{u}{\alpha}\right)\right) \chi_{p+4}^{2}(\lambda, d u)=\int_{0}^{+\infty} \chi_{p+4}^{2}(\lambda, d u)=1 \tag{29}
\end{equation*}
$$

Combining (27), (28) and (29), there is finally the result.

5. Simulations

We illustrate graphically in what follows the ratios of the risks $\frac{R\left(\theta, \delta_{I S}(X)\right)}{R(\theta, X))}, \frac{R\left(\theta, \delta_{I, S}^{+}(X)\right)}{R(\theta, X))}$ as well as the evolution of the bound min and max associated, given respectively by the expressions (15) and (18), for $\sigma^{2}=1$ and different values of n and p.

Figure 1: Graph of the relative risks and their minima and maxima for $n=50$ and $p=4$, according to $\lambda=\frac{\|\theta\|^{2}}{\sigma^{2}}$ and $\sigma^{2}=1$.

Figure 2: Graph of the relative risks and their minima and maxima for $n=100$ and $p=10$, according to $\lambda=\frac{\|\theta\|^{2}}{\sigma^{2}}$ and $\sigma^{2}=1$.

Conclusion

In the case of the estimate of the average θ of a multidimensional Gaussian law $N_{p}\left(\theta, I_{p}\right)$ in $I R^{p}$, Casella, G and J, T, Tzon Hwang [3] showed that if $\lim _{p \rightarrow+\infty} \frac{\|\theta\|^{2}}{p}=c_{1}>0$ then the ratio $\frac{R\left(\theta, \delta_{5}^{+}(X)\right)}{R(\theta, X))}$ tends to $\frac{c_{1}}{1+c_{1}}$. By taking the same model, namely $X \sim N_{p}\left(\theta, \sigma^{2} I_{p}\right)$ with this time σ^{2} unknown, and estimated by the statistic S^{2} independent of X and of law $\sigma^{2} \chi_{n}^{2}$ in $I R^{+}$. We have for our part, showed that we obtain a similar ratio depend on the size n of the sample, with that found by the latter, as soon as $\lim _{p \rightarrow+\infty} \frac{\|\theta\|^{2}}{p \sigma^{2}}=c>0$. Moreover we obtain a ratio constant and independent of n, when n and p tend simultaneously to $+\infty$ and this without taking account of an unspecified relation of order or functional calculus between n and p. Li Sun. [6] is him also interested if σ^{2} is unknown, but studied the behavior of the ratio $\frac{R\left(\theta\left(\theta \delta_{S S}^{+}(X)\right)\right.}{R(\theta, X))}$ and $\frac{R\left(\theta\left(\theta, \delta_{S}(X)\right)\right.}{R(\theta, X))}$, when only p tends to infinity. An idea would be to see whether we obtain similar ratios in the general case of the symmetrical spherical models.

References

[1] Baranchik, A.J. (1964) Multiple regression and estimation of the mean of a multivariate normal distribution, Stanford Univ. Technical Report 51.
[2] Casella, G. (1980) Minimax ridge regression estimation, Ann. Statis. 8, 1036-1056.
[3] Casella, G., Hwang, J.T. (1982) Limit expressions for the risk of James-Stein estimator, The Canadian Journal of Statistics 10, 305-309.
[4] Gruber, M.H.G. (1998) Improving efficiency by shrinkage; Statistics: textbooks and monographs, Volume 156.
[5] James, W., Stein, C. (1961) Estimation of quadratique loss, Proc 4th Berkeley Symp, Math. Statist. Prob. 1, 361-379, University of California Press, Berkeley.
[6] Sun, L. (1995) Risk Ratio and Minimaxity in Estimating the Multivariate Normal Mean with unknown Variance, Scandinavian Journal of Statistics 22, 105-120.
[7] Shao, P., Strawderman, W.E. (1994) Improving on the James-Stein positive part, Ann. Statist. 22, 1517-1539.
[8] Stein, C. (1956) Inadmissibilty of the usual estimator for the mean of a multivariate normal distribution, Proc $3^{\text {th }}$ Berkeley Symp, Math. Statist. Prob. 1, 197-206, University of California Press, Berkeley.
[9] Stein, C. (1981) Estimation of the mean of a multivariate normal distribution, Ann. Statis. 9, 1135-1151.

[^0]: 2010 Mathematics Subject Classification.
 Keywords. James-Stein Estimator, positive part of the James-Stein estimator, quadratic risk, multidimensional Gaussian law Received: 08 June 2011; Accepted: 11 December 2011

