Limit of the ratio of risks of James-Stein estimators with unknown variance

Djamel Benmansour, Abdennour Hamdaoui
Department of Mathematics, University of -Abou Bekr Belkaid-Tlemcen 13000 Algeria

Abstract. We study the estimate of the mean θ of a Gaussian random variable $X \sim N_p(\theta, \sigma^2 I_p)$ in \mathbb{R}^p, σ^2 unknown and estimated by the chi-square variable $S^2 (S^2 \sim \sigma^2 \chi^2_n)$. We particularly study the bounds and limits of the ratios of the risks, of the James-Stein estimator $\delta_{JS}(X)$ and of its positive-part $\delta_{JS}^+(X)$, with that of the maximum likelihood estimator X when $p \to \infty$. If $\lim_{p \to +\infty} \frac{\|\theta\|_2}{p\sigma^2} = c$, we show that the ratios of the risks of the James-Stein estimator $\delta_{JS}(X)$ and its positive-part $\delta_{JS}^+(X)$, with that of the maximum likelihood estimator X tend to the same value $\frac{2}{1+c}$ when $p \to \infty$. If n and p tend to infinity we show that the ratios of the risks tend to $\frac{2}{1+c}$. We graphically illustrate the ratios of the risks corresponding to the James-Stein estimators $\delta_{JS}(X)$ and its positive-part $\delta_{JS}^+(X)$, with that of the maximum likelihood estimator X for diverse values of n and p.

1. Introduction

The estimate of the average θ of a multidimensional Gaussian law $N_p(\theta, \sigma^2 I_p)$ in \mathbb{R}^p, I_p means the matrix unit, has known many developments since the articles of C. Stein [7], [8] and W. James and C. Stein [5].

We cite also others works and generalizations papers [2–4]. In these works one has estimated the average of a Multidimensional Gaussian law $N_p(\theta, \sigma^2 I_p)$ in \mathbb{R}^p by estimators with retrecisor deduced from the empirical average those are proved better in quadratic cost than the empirical average. These studies for the majority were made when σ^2 is known.

More precisely, if X represents an observation or a sample of multidimensional Gaussian law $N_p(\theta, \sigma^2 I_p)$, the aim is to estimate θ by an estimator $\delta(X)$ relatively at the quadratic cost:

$$L(\delta, \theta) = \|\delta(X) - \theta\|^p_p,$$

where $\| \cdot \|_p$ is the usual norm in \mathbb{R}^p. We associate his function of risk:

$$R(\delta, \theta) = E_{\theta}(L(\delta, \theta)).$$

W. James and C. Stein [8], have introduced a class of James-Stein estimators improving $\delta(X) = X$, when the dimension of the space of the observations p is ≥ 3, noted

$$\delta_{JS}(X) = \left(1 - \frac{p - 2}{\|X\|^2}
ight) X.$$
A. J. Baranchik [1] proposes the positive-part of the James-Stein estimator dominating the James-Stein estimator when \(p \geq 3 \):

\[
\delta_{JS}^0(X) = \max \left(0, 1 - \frac{p-2}{\|X\|^2} \right) X.
\]

G. Casella and J. T. Hwang [3] studied the case where \(\sigma^2 \) is known and shown that if the limit of the ratio \(\frac{\hat{R}}{\hat{R}_{\hat{S}}} \), when \(p \) tends to infinity is a constant \(c > 0 \), then

\[
\lim_{p \to +\infty} \frac{R(\theta, \delta_{JS}^0(X))}{R(\theta, X)} = \lim_{p \to +\infty} \frac{R(\theta, \delta_{JS}^0(X))}{R(\theta, X)} = \frac{c}{1+c}, \quad c > 0.
\]

Li Sun [6] has considered the following model: \((y_{ij}\|\theta_i, \sigma^2) \sim N(\theta_i, \sigma^2) \) \(i = 1, \ldots, n, \ j = 1, \ldots, m \) where \(E(y_{ij}) = \theta_j \) for the group \(j \) and \(Var(y_{ij}) = \sigma^2 \) is unknown. The James-Stein estimators is written in this case

\[
\delta^{JS} = (\delta_i^{JS}, \ldots, \delta_m^{JS})^t \text{ avec } \left(1 - \frac{(m-3)S^2}{(N+2)T^2} \right) (\bar{y}_j - \bar{y}) + \bar{y}, \ j = 1, \ldots, m,
\]

where

\[
S^2 = \sum_{i=1}^{n} \sum_{j=1}^{m} (y_{ij} - \bar{y}_{ij}), \quad T^2 = n \sum_{j=1}^{m} (\bar{y}_j - \bar{y})^2, \quad \bar{y}_{ij} = \frac{\sum_{i=1}^{n} y_{ij}}{n}, \quad \bar{y}_j = \frac{\sum_{j=1}^{m} y_j}{m}.
\]

\(N = (n-1)m \), he gives a lower bound for the ratio \(\frac{R(\theta, \delta_{JS}^0(X))}{R(\theta, X)} \), that we find in (10). We give in (14) an upper bound of the same ratio.

It shows after that if: \(q = \lim_{m \to +\infty} \frac{\sum_{i=1}^{m} (\theta_i - \bar{\theta})^2}{m} \) exists, then \(\lim_{m \to +\infty} \frac{R(\theta, \delta_{JS}^0(X))}{R(\theta, X)} = \lim_{m \to +\infty} \frac{R(\theta, \delta_{JS}^0(X))}{R(\theta, X)} = \frac{q}{q+\frac{2}{\pi}} \).

In Section 2 we recall a lemma of G. Casella and J. T. Hwang [3] which we generalize if \(\sigma^2 \) is unknown and a technical lemma to calculate a lower bound for the ratio \(\frac{R(\theta, \delta_{JS}^0(X))}{R(\theta, X)} \). We give, indeed, another demonstration of the limit of the ratio \(\frac{R(\theta, \delta_{JS}^0(X))}{R(\theta, X)} \) when \(p \to \infty \), because this last enabled us to more easily deduce the limit from the ratio \(\frac{R(\theta, \delta_{JS}^0(X))}{R(\theta, X)} \) when \(n \) and \(p \) tend simultaneously to infinity.

We generalize the results of G. Casella and J. T. Hwang [3] in Section 3 (case where \(\sigma^2 \) is unknown), by giving a lower bound and an upper bound of ratio \(\frac{R(\theta, \delta_{JS}^0(X))}{R(\theta, X)} \), and its limit when \(p \) tends to infinity and \(n \) fixes on the one hand, and on the other hand, when \(n \) and \(p \) tend simultaneously to infinity, and this by supposing that \(\lim_{p \to +\infty} \frac{\|y\|^2}{p^2} = c > 0 \).

In Section 4, we give lower and upper bounds of the ratio \(\frac{R(\theta, \delta_{JS}^0(X))}{R(\theta, X)} \) and its limit when \(p \) tends to infinity and \(n \) fixes on the one hand, and on the other hand, when \(n \) and \(p \) tend simultaneously to infinity, and this in all the cases where \(\sigma^2 \) is unknown.

We take as estimator of \(\sigma^2 \) the statistics \(S^2 \) independent of \(X \) and of law \(\sigma^2 \chi^2_n \) in \(IR^+ \). In this case the James-Stein estimator and his positive-part are written respectively

\[
\delta_{JS}(X) = \left(1 - \frac{(p-2)S^2}{(n+2)||X||^2} \right) X
\]

\[
\delta_{JS}^+(X) = \max \left(0, 1 - \frac{(p-2)S^2}{(n+2)||X||^2} \right) X.
\]

In Section 5, we give a graphic illustration of different ratios of risks and the lower and upper bounds associated for various values of \(n \) and \(p \).
2. Preliminary

Let us recall that the risk of the maximum likelihood estimator X is $p\sigma^2$ the risk of the James Stein estimator (given in (1) of θ is

$$R(\theta, \delta_{JS}(X)) = \sigma^2 \left\{ p - \frac{h}{n + 2} (p - 2)E \left(\frac{1}{p - 2 + 2K} \right) \right\},$$

where $K \sim P \left(\frac{||\theta||^2}{2\sigma^2} \right)$ being the law of Poisson of parameter $\frac{||\theta||^2}{2\sigma^2}$.

When $X \sim N_p(\theta, I_p)$ G. Casella and J. T. Hwang [3] have given the lemma 1 which expresses the following inequalities:

$$\frac{1}{(p - 2 + ||\theta||^2)} \leq E \left(\frac{1}{||X||^2} \right) \leq \frac{p}{(p - 2)(p + ||\theta||^2)} p \geq 3.$$

In the following lemma, we generalise this result when $X \sim N_p(\theta, \sigma^2 I_p)$ and σ^2 is unknown.

Lemma 2.1. Let $X \sim N_p(\theta, \sigma^2 I_p)$. If $p \geq 3$ then

$$\frac{1}{\sigma^2 (p - 2 + ||\theta||^2)} \leq E \left(\frac{1}{||X||^2} \right) \leq \frac{p}{\sigma^2 (p - 2 + ||\theta||^2)}.$$

Proof. We have

$$X \sim N_p(\theta, \sigma^2 I_p) \Rightarrow \frac{X}{\sigma} \sim N_p \left(\frac{\theta}{\sigma}, I_p \right) \Rightarrow \frac{1}{\sigma^2} ||X||^2 \sim \chi^2_p \left(\frac{||\theta||^2}{\sigma^2} \right)$$

$$E \left(\frac{1}{||X||^2} \right) = \frac{1}{\sigma^2} E \left(\frac{1}{\chi^2_p} \right) = \frac{1}{\sigma^2} \sum_{k \geq 0} \int_0^{+\infty} \frac{1}{\omega} \chi^2_{p+2k}(d\omega) \pi \left(\frac{||\theta||^2}{2\sigma^2} \right)$$

$$= \frac{1}{\sigma^2} E \left(\frac{1}{p - 2 + 2K} \right),$$

where $K \sim P \left(\frac{||\theta||^2}{2\sigma^2} \right)$ and (3) being the definition of the law of χ^2 no centred. According to the inequality of Jensen we have

$$E \left(\frac{1}{||X||^2} \right) = \frac{1}{\sigma^2} E \left(\frac{1}{p - 2 + 2K} \right) \geq \frac{1}{\sigma^2 (p - 2 + ||\theta||^2)}.$$

In the other hand, for any real function h such that $E(h(\chi^2_q(\lambda)))\chi^2_q(\lambda))$ exists (see G. Casella [2]), we have

$$E(h(\chi^2_q(\lambda)))\chi^2_q(\lambda)) = qE(h(\chi^2_{q+2}(\lambda))) + 2AE(h(\chi^2_{q+4}(\lambda)))$$

for $q = p - 2, h(\omega) = \frac{1}{\lambda}, \lambda = \frac{||\theta||^2}{2\sigma^2}$ we obtain

$$\int_0^{+\infty} \chi^2_{p-2}(\lambda, d\omega) = (p - 2) \int_0^{+\infty} \frac{1}{\omega} \chi^2_p(\lambda, d\omega) + \frac{||\theta||^2}{\sigma^2} \int_0^{+\infty} \frac{1}{\omega} \chi^2_{p+2}(\lambda, d\omega).$$

Then

$$1 = (p - 2)E \left(\frac{1}{||X||^2} \right) + \frac{||\theta||^2}{\sigma^2} E \left(\frac{1}{p + 2K} \right) \text{ with } K \sim P \left(\frac{||\theta||^2}{2\sigma^2} \right).$$

(5)
Thus
\[\sigma^2 E \left(\frac{1}{\|X\|^2} \right) = \frac{1}{p-2} \left[1 - \frac{\|\theta\|^2}{\sigma^2} E \left(\frac{1}{p+2K} \right) \right]. \]

Hence
\[E \left(\frac{1}{\|X\|^2} \right) \leq \frac{1}{\sigma^2} \frac{1}{p-2} \left[1 - \frac{\|\theta\|^2}{\sigma^2} \frac{1}{p+\|\theta\|} \right]. \quad (6) \]

Thus
\[E \left(\frac{1}{\|X\|^2} \right) \leq \frac{1}{\sigma^2(p-2)} \left[\frac{p}{p+\|\theta\|} \right]. \]

The equality (5) came from \(E \left(\chi^2_{p-2}(\lambda) \right) = 1 \), with \(K \sim \mathcal{P} \left(\frac{\|\theta\|^2}{\sigma^2} \right) \) and the inequality (6) came from Jensen’s inequality. Hence the result.

We recall that if \(X \) is of a random variable of multidimensional Gaussian law \(X \sim N_p(\theta, \sigma^2 I_p) \) in \(\mathbb{R}^p \), then \(U = \|X\|^2 \sim \chi^2_p(\lambda) \) where \(\chi^2_p(\lambda) \) designates a noncentral \(\chi^2 \) distribution with \(p \) degrees of freedom and noncentrality parameter \(\lambda = \frac{\|\theta\|^2}{\sigma^2} \).

Lemma 2.2. Let \(f \) be a real function defined on \(\mathbb{R} \) and \(X \) a random variable of multidimensional Gaussian law \(X \sim N_p(\theta, \sigma^2 I_p) \) in \(\mathbb{R}^p \). If for \(p \geq 1 \), \(E[f(U)\chi^2_p(\lambda)] \) exists, then:

a) If \(f \) nonincreasing we have
\[E[f(U)\chi^2_{p+2}(\lambda)] \leq E[f(U)\chi^2_p(\lambda)]. \quad (7) \]

b) If \(f \) nondecreasing we have:
\[E[f(U)\chi^2_{p+2}(\lambda)] \geq E[f(U)\chi^2_p(\lambda)]. \quad (8) \]

Proof. a) We have
\[E[(f(U)\chi^2_{p+2}(\lambda))] - E[(f(U)\chi^2_p(\lambda))] = E\left[f(U)\left(\frac{\frac{u}{p+2K}}{p} - 1 \right)\chi^2_p(\lambda)\right] E[f(U)\chi^2_p(\lambda)] E\left[\frac{\frac{u}{p+2K}}{p} - 1\right] \chi^2_p(\lambda) \]

because the covariance of two functions one increasing and the other decreasing is negative or null, with \(K \sim \mathcal{P}(\frac{\|\theta\|^2}{\sigma^2}) \). However
\[E\left[\left(\frac{\frac{u}{p+2K}}{p} - 1 \right)\chi^2_p(\lambda)\right] = 0, \]
then
\[E[(f(U)\chi^2_{p+2}(\lambda))] \leq E[(f(U)\chi^2_p(\lambda))]. \]

Hence the result a), (in the same manner we get b). Thus the result.
3. Bounds and limit of the ratio of the risks of James-Stein estimator to the maximum likelihood estimator

Theorem 3.1. If \(\lim_{p \to +\infty} \frac{\|\theta\|_2^2}{p \sigma^2} = c > 0 \), then

\[
\lim_{p \to +\infty} \frac{R(\theta, \delta_{JS}(X))}{R(\theta, X)} = \frac{2}{n+2} + c.
\]

Proof. We have

\[
R(\theta, \delta_{JS}(X)) = \sigma^2 \left\{ p - \frac{n}{n+2} \left(p - 2 \right)^2 E \left(\frac{1}{p - 2 + 2K} \right) \right\}
\]

where \(K \sim \mathcal{P}(\|\theta\|_2^2) \). Then

\[
\frac{R(\theta, \delta_{JS}(X))}{R(\theta, X)} = 1 - \frac{n}{n+2} \left(p - 2 \right)^2 \frac{1}{p - 2 + 2K} \]

\[
\leq 1 - \frac{n}{n+2} \left(p - 2 \right)^2 \frac{1}{p - 2 + \frac{\|\theta\|_2^2}{\sigma^2}} \leq \frac{n}{n+2} \left(p - 2 \right)^2 \frac{1}{p - 2 + \frac{\|\theta\|_2^2}{\sigma^2}}.
\]

The inequality (10) is obtained from lemma 2.1. Hence

\[
\lim_{p \to +\infty} \frac{R(\theta, \delta_{JS}(X))}{R(\theta, X)} \leq \lim_{p \to +\infty} \left\{ 1 - \frac{n}{n+2} \left(p - 2 \right)^2 \frac{1}{p - 2 + \frac{\|\theta\|_2^2}{\sigma^2}} \right\}
\]

\[
\leq 1 - \frac{n}{(n+2)(1+c)} \leq \frac{(n+2)(1+c) - n}{(n+2)(1+c)} \leq \frac{2}{n+2} + c.
\]

Where \(\lim_{p \to +\infty} \frac{\|\theta\|_2^2}{p \sigma^2} = c \). In the other hand

\[
\frac{R(\theta, \delta_{JS}(X))}{R(\theta, X)} = 1 - \frac{n}{n+2} \left(p - 2 \right)^2 \frac{1}{p - 2 + 2K} \]

\[
\leq 1 - \frac{n}{n+2} \left(p - 2 \right)^2 \frac{1}{\|X\|^2} \]

According to lemma 2.1 we have

\[
\frac{R(\theta, \delta_{JS}(X))}{R(\theta, X)} \geq 1 - \frac{n}{n+2} \left(p - 2 \right)^2 \frac{p}{p + \|X\|^2} \]

\[
\geq 1 - \frac{n}{n+2} \left(p - 2 \right)^2 \frac{1}{p \left(1 + \frac{\|X\|^2}{\sigma^2} \right)}.
\]
Thus we obtain lower and upper bounds of the ratio \(\frac{R(\theta, \delta_{JS}(X))}{R(\theta, X)} \) deduced from (10) and (14):

\[
1 - \frac{n}{n + 2} \left(\frac{p - 2}{p} \right) \frac{1}{1 + \frac{\|\theta\|}{p \sigma^2}} \leq \frac{R(\theta, \delta_{JS}(X))}{R(\theta, X)} \leq 1 - \frac{n}{n + 2} \left(\frac{p - 2}{p} \right)^2 \frac{1}{1 + \frac{\|\theta\|}{p \sigma^2}}. \tag{15}
\]

Passaging to the limit when \(p \to +\infty \) we obtain

\[
\lim_{p \to +\infty} \frac{R(\theta, \delta_{JS}(X))}{R(\theta, X)} \geq \lim_{p \to +\infty} \left(1 - \frac{n}{n + 2} \left(\frac{p - 2}{p} \right) \frac{1}{1 + \frac{\|\theta\|}{p \sigma^2}} \right) \geq 1 - \frac{n}{n + 2} \frac{1}{1 + \frac{\|\theta\|}{\sigma^2}} = \frac{n + 2 - 1}{n + 2} = \frac{n + 1}{n + 2} \geq 1 - \frac{n}{n + 2} \frac{1}{1 + \frac{\|\theta\|}{\sigma^2}} \geq 1 - \frac{n}{n + 2} \frac{1}{1 + \frac{\|\theta\|}{\sigma^2}}.
\]

where \(\lim_{p \to +\infty} \frac{\|\theta\|}{\sigma^2} = c \). Combining (13) and (16) we obtain

\[
\lim_{p \to +\infty} \frac{R(\theta, \delta_{JS}(X))}{R(\theta, X)} = \frac{1}{\frac{n + 2 - 1}{n + 2} + \frac{1}{1 + \frac{\|\theta\|}{\sigma^2}}} = \frac{1 + c}{n + 2}.
\]

Hence the result.

Corollary 3.2. If \(\lim_{p \to +\infty} \frac{\|\theta\|}{\sigma^2} = c > 0 \), we have

\[
\lim_{n, p \to +\infty} \frac{R(\theta, \delta_{JS}(X))}{R(\theta, X)} = \frac{c}{1 + c}.
\]

Proof. It is obtained immediately from (11) and (14). \(\square \)

4. Bounds and limit of the ratio of the risks of the positive-part James-Stein estimator to the maximum likelihood estimator

The results of the positive-part James-Stein estimator \(\delta_{JS}^+(X) \) are similar to the results obtained on the James-Stein estimator \(\delta_{JS}(X) \).

Indeed, we denote \(\alpha = \frac{p - 2}{n + 2} \), and recall that:

\[
\delta_{JS}^+(X) = \left(1 - \alpha \frac{S^2}{\|X\|^2} \right)^+ X = \phi_{JS}^+(X) X \left(1 - \alpha \frac{S^2}{\|X\|^2} \right) X I_{\{\alpha \frac{S^2}{\|X\|^2} \leq 1\}},
\]

\[
\delta_{JS}^-(X) = \left(1 - \alpha \frac{S^2}{\|X\|^2} \right)^- X = \phi_{JS}^-(X) X \left(\alpha \frac{S^2}{\|X\|^2} - 1 \right) X I_{\{\alpha \frac{S^2}{\|X\|^2} \geq 1\}}.
\]

\(I_{\{\alpha \frac{S^2}{\|X\|^2} \geq 1\}} \) showing the indicating function of the set \(\{\alpha \frac{S^2}{\|X\|^2} \geq 1\} \).

We will denote for the needs of demonstration and each time that it will be necessary, for the sequel, by: \(Y = \frac{X}{\sigma} \), \(\beta = \frac{\phi}{\sigma} \), \(T^2 = \frac{S^2}{\sigma^2} \), and \(U = \|Y\|^2 \).

Then we have \(Y \sim N(\beta, I_p), T^2 \sim \chi^2_n \) and \(U \sim \chi^2_p(\lambda) \), where \(\chi^2_n \) designates the law of the chi square centered with \(n \) degrees of freedom and \(\chi^2_p(\lambda) \) designates a noncentral \(\chi^2 \) distribution with \(p \) degrees of freedom and noncentrality parameter \(\lambda = \frac{\|\theta\|}{\sigma^2} \).

The following lemma is a recall of the expression of the risk of \(\delta_{JS}^+(X) \).
Lemma 4.1. We have that
\[
R(\theta, \delta_{JS}(X)) = R(\theta, \delta_{JS}(X)) + E \left\{ \left[||X||^2 + 2(p - 2)\sigma^2 \theta \frac{S^2}{||X||^2} - \alpha^2 \frac{(S^2)^2}{||X||^2} - 2p\sigma^2 \right] I_{\frac{\phi}{\phi} \geq 1} \right\}.
\] (17)

Proof. We have
\[
R(\theta, \delta_{JS}(X)) = E \left(||\phi_{JS}(X)X - \theta||^2 \right)
= E \left(||\phi_{JS}^+(X)X - \phi_{JS}(X)||^2 \right)
= E \left((||\phi_{JS}^+(X)X - \theta||^2) + E \left(\left(\phi_{JS}^-(X) \right)^2 ||X||^2 \right) - 2E \left(\langle \phi_{JS}^+(X)X - \phi_{JS}(X) \rangle \right) \right)
= R(\theta, \delta_{JS}(X)) + E \left(\left(\phi_{JS}^-(X) \right)^2 ||X||^2 \right) - 2E \left(\langle X - \theta, \phi_{JS}^-(X) \rangle \right) + 2E \left(\langle X, \delta_{JS}^-(X) \rangle \right).
\]

Then
\[
R(\theta, \delta_{JS}(X)) = R(\theta, \delta_{JS}^+(X)) + E \left\{ \left(\frac{S^2}{||X||^2} - 1 \right) I_{\frac{\phi}{\phi} \geq 1} \right\}
- 2E \left\{ t(X - \theta)X \left(\alpha \frac{S^2}{||X||^2} - 1 \right) I_{\frac{\phi}{\phi} \geq 1} \right\} + 2E \left\{ \left(\frac{S^2}{||X||^2} - 1 \right) I_{\frac{\phi}{\phi} \geq 1} \right\} ||X||^2.
\]

According to the lemma of P. Shao and W. E. Strawderman ([7, Lemma 2.1]) we have,
\[
E \left\{ t(X - \theta)X \left(\alpha \frac{S^2}{||X||^2} - 1 \right) I_{\frac{\phi}{\phi} \geq 1} \right\} = \sigma^2 E \left\{ -2\alpha \frac{S^2}{\sigma^2||Y||^2} + p \left(\frac{S^2}{\sigma^2||Y||^2} - 1 \right) I_{\frac{\phi}{\phi} \geq 1} \right\}
= \sigma^2 E \left\{ (p - 2)\alpha \frac{S^2}{\sigma^2||Y||^2} - p I_{\frac{\phi}{\phi} \geq 1} \right\}
= \sigma^2 E \left\{ (p - 2)\alpha \frac{S^2}{\sigma^2||Y||^2} - p I_{\frac{\phi}{\phi} \geq 1} \right\}
= \sigma^2 E \left\{ (p - 2)\alpha \frac{S^2}{||X||^2} - p I_{\frac{\phi}{\phi} \geq 1} \right\}
\]

thus
\[
R(\theta, \delta_{JS}(X)) = R(\theta, \delta_{JS}^+(X)) + E \left\{ \frac{\alpha^2 (S^2)^2}{||X||^2} - 2\alpha S^2 + ||X||^2 \right\} I_{\frac{\phi}{\phi} \geq 1}
- 2\sigma^2 E \left\{ (p - 2)\alpha \frac{S^2}{||X||^2} - p I_{\frac{\phi}{\phi} \geq 1} \right\} + 2E \left\{ \left(\frac{S^2}{||X||^2} - 1 \right) I_{\frac{\phi}{\phi} \geq 1} \right\} ||X||^2.
\]

Therefore
\[
R(\theta, \delta_{JS}(X)) = R(\theta, \delta_{JS}^+(X)) + E \left\{ ||X||^2 + 2\sigma^2 (p - 2)\alpha \frac{S^2}{||X||^2} - \alpha^2 \frac{(S^2)^2}{||X||^2} - 2p\sigma^2 \right\} I_{\frac{\phi}{\phi} \geq 1}.
\]

Hence the result. \(\square\)
The fact that \(R(\theta, \delta_{1S}(X)) \leq R(\theta, \delta_{J}(X)) \) (Baranchick [1]), an upper bound of the ratio \(\frac{R(\theta, \delta_{1S}(X))}{R(\theta, \delta_{J}(X))} \) would be for example the upper bound of the ratio \(\frac{R(\theta, \delta_{1S}(X))}{R(\theta, \delta_{J}(X))} \) that we know the asymptotic character. Thus we will interesting ourselves in what follows on a lower bound of the ratio \(\frac{R(\theta, \delta_{1S}(X))}{R(\theta, \delta_{J}(X))} \).

We have the following result.

Theorem 4.2. For all \(p \geq 3 \), we have the following minoration of the ratio of the risks \(\frac{R(\theta, \delta_{1S}(X))}{R(\theta, \delta_{J}(X))} \):

\[
\frac{R(\theta, \delta_{1S}(X))}{R(\theta, \delta_{J}(X))} \geq \frac{R(\theta, \delta_{1S}(X))}{p \sigma^2} + \frac{(p + \lambda)}{p} \int_0^{+\infty} I_P \left(\chi_n^2 \geq \frac{u}{\alpha}, \chi_{p+4}(\lambda, du) \right) \frac{(an + 4)}{p} \int_0^{+\infty} I_P \left(\chi_n^2 \geq \frac{u}{\alpha}, \chi_{p-2}(\lambda, du) \right)
\]

where \(F_{(p, n, \lambda)}(\alpha) \) is a function to distribution of Fisher with \(p \) and \(n \) degrees of freedom and parameter of noncentrality \(\lambda = \frac{||q||^2}{\sigma^2} \).

Proof. Taking again the equality (17) we have

\[
R(\theta, \delta_{1S}(X)) = R(\theta, \delta_{J}(X)) + E \left\{ \left[||X||^2 + 2(p - 2) \alpha \sigma^2 \frac{S^2}{||X||^2} - \alpha^2 \frac{(S^2)^2}{||X||^2} - 2p \sigma^2 \right] I_{\frac{\alpha S^2}{||X||^2} \geq 1} \right\}
\]

Then

\[
I_1 = E \left(||X||^2 I_{\frac{\alpha S^2}{||X||^2} \geq 1} \right)
\]

\[
= \alpha^2 E \left(\frac{||X||^2}{\sigma^2} I_{\frac{\alpha S^2}{||X||^2} \geq 1} \right)
\]

\[
= \alpha^2 \int_0^{+\infty} \left(\int_0^{+\infty} \chi_n^2(0, ds) \right) u \chi_p^2(\lambda, du).
\]

Taking \(h(u) = \int_0^{+\infty} \chi_n^2(0, ds) \) and \(q = p \), and applying (4) we obtain

\[
I_1 = \sigma^2 p \int_0^{+\infty} I_P \left(\chi_n^2 \geq \frac{u}{\alpha}, \chi_{p+4}(\lambda, du) + \sigma^2 \lambda \int_0^{+\infty} I_P \left(\chi_n^2 \geq \frac{u}{\alpha}, \chi_{p+4}(\lambda, du) \right)
\]

\[
\geq \sigma^2 (p + \lambda) \int_0^{+\infty} I_P \left(\chi_n^2 \geq \frac{u}{\alpha}, \chi_{p+4}(\lambda, du) \right)
\]

The inequality (20) comes from inequality (7) of lemma 2.2. On the other hand

\[
I_2 = \sigma^2 E \left(\left[2(p - 2) \alpha \frac{S^2}{||X||^2} - 2p \right] I_{\frac{\alpha S^2}{||X||^2} \geq 1} \right)
\]

\[
\geq -4 \sigma^2 E \left(I_{\frac{\alpha S^2}{||X||^2} \geq 1} \right)
\]

\[
\geq -4 \sigma^2 \int_0^{+\infty} \left(\int_0^{+\infty} \chi_n^2(0, ds) \right) \chi_p^2(\lambda, du)
\]

\[
\geq -4 \sigma^2 \int_0^{+\infty} I_P \left(\chi_n^2 \geq \frac{u}{\alpha}, \chi_p^2(\lambda, du) \right)
\]

\[
\geq -4 \sigma^2 \int_0^{+\infty} I_P \left(\chi_n^2 \geq \frac{u}{\alpha}, \chi_{p+4}(\lambda, du) \right)
\]
The inequality (21) comes from inequality (7) of lemma 2.2 and by observing that $\text{IP}(\chi_n^2 \geq \frac{u}{\alpha}) \geq \text{IP}(\chi_n^2 \geq \frac{u}{\alpha})$ for all $n \geq 1$. On the other hand

$$I_3 = -\alpha^2 \sigma^2 \int_0^{+\infty} \left(\int_0^{+\infty} (\chi_n^2(0,dt^2)) \frac{1}{u} \chi_n^2(\lambda,du) \right) \geq \frac{\sigma^2}{(n+2)} \int_0^{+\infty} \left(\int_0^{+\infty} (\chi_n^2(0,dt^2)) \chi_{n+2}(\lambda,du) \right).$$

The last inequality comes from (4) while taking $h(u) = \frac{1}{u} \int_0^{+\infty} (\chi_n^2(0,ds), q = p - 2$ and the fact that $\alpha = \frac{p-2}{n+2}$. However

$$\int_0^{+\infty} (\chi_n^2(0,dt^2)) = n \int_0^{+\infty} (\chi_n^2(0,dt^2)$$

$$= n(n+2) \int_0^{+\infty} \chi_n^2(0,dt^2)$$

$$= n(n+2) \text{IP}(\chi_n^2 \geq \frac{u}{\alpha}).$$

Then we have

$$I_3 \geq -\sigma^2 \alpha n \int_0^{+\infty} \text{IP}(\chi_n^2 \geq \frac{u}{\alpha}) \chi_{n+2}(\lambda,du).$$

According to (14), (20), (21) and (23) we have

$$\frac{R(\theta, \delta_{15}(X))}{p \sigma^2} \geq \frac{R(\theta, \delta_{15}(X))}{p \sigma^2} + \frac{I_1}{p \sigma^2} + \frac{I_2}{p \sigma^2} + \frac{I_3}{p \sigma^2}$$

$$\geq \frac{R(\theta, \delta_{15}(X))}{p \sigma^2} + \frac{\sigma^2 (p+\lambda)}{p \sigma^2} \int_0^{+\infty} \left(\text{IP}(\chi_n^2 \geq \frac{u}{\alpha}) \right) \chi_{n+2}(\lambda,du)$$

$$- \frac{4\sigma^2}{p \sigma^2} \int_0^{+\infty} \left(\text{IP}(\chi_n^2 \geq \frac{u}{\alpha}) \right) \chi_{n+2}(\lambda,du)$$

$$\geq \frac{R(\theta, \delta_{15}(X))}{p \sigma^2} + \frac{(p+\lambda)}{p} \int_0^{+\infty} \text{IP}(\chi_n^2 \geq \frac{u}{\alpha}) \chi_{n+2}(\lambda,du) - \frac{(an+4)}{p} \int_0^{+\infty} \text{IP}(\chi_n^2 \geq \frac{u}{\alpha}) \chi_{n+2}(\lambda,du).$$

Thus the result. □

Remark 4.3. The lower bound given by the inequality (18) is a bound enough “fine” and close to the ratio $\frac{R(\theta, \delta_{15}(X))}{p \sigma^2}$ as soon as λ moves away from zero. The simulations in Section 5 illustrates it rather well. On the other hand for the passage to limit of the ratio $\frac{R(\theta, \delta_{15}(X))}{p \sigma^2}$ when p tends to infinity or when p and n tend simultaneously to infinity, a less fine bound min would be enough. Then we have the next result on the limit of the ratio of the risks $\frac{R(\theta, \delta_{15}(X))}{R(\theta, X)}$.

Proposition 4.4. If $\lim_{p \to +\infty} \frac{R(\theta, \delta_{15}(X))}{R(\theta, X)} = c$ and $c > 0$, we have:

$$\lim_{p \to +\infty} \frac{R(\theta, \delta_{15}(X))}{R(\theta, X)} = \frac{2\pi + c}{1+c}.$$
Proof. Baranchick [1] showed that \(R(\theta, \delta_{I_S}(X)) \leq R(\theta, \delta_{I}(X)) \) for \(p \geq 3 \) and all \(\theta, \sigma \in IR^d IR^+ \). Thus the upper bound in (11) plays the role of the upper bound of \(\frac{R(\theta, \delta_{I_S}(X))}{R(\theta, X)} \). It is enough to show that the limit of the lower bound is higher or equal to \(\frac{n^2 + \xi}{1 + c} \). Indeed according to (24) we have

\[
\frac{R(\theta, \delta_{I_S}(X))}{R(\theta, X)} \geq \frac{R(\theta, \delta_{I}(X))}{p \alpha^2} + \frac{(p + \lambda)}{p} \int_0^{+\infty} IP \left(\chi_n^2 \geq \frac{u}{\alpha} \right) \chi_{p+4}^2(\lambda, du)
\]

because

\[
\frac{(p + \lambda)}{p} \int_0^{+\infty} IP \left(\chi_n^2 \geq \frac{u}{\alpha} \right) \chi_{p+4}^2(\lambda, du) \geq \int_0^{+\infty} IP \left(\chi_n^2 \geq \frac{u}{\alpha} \right) \chi_{p+4}^2(\lambda, du)
\]

\[
= \int_0^{+\infty} IP \left(\chi_n^2 \geq \frac{u}{\alpha} \right) \chi_{p+4}^2(\lambda, du) \geq -1 \quad \text{and} \quad - \frac{n(p - 2)}{\lambda(p + 2)} \geq -1.
\]

Let us denote that like \(\alpha = \frac{n^2 - \xi}{\sigma^2} \) and thus tends to \(+\infty\) when \(p \to +\infty \), we have according to the theorem of Lebesgue by taking for example, the increasing sequel with \(p \left(\int_0^{+\infty} \chi_n^2(0, ds) = IP \left(\chi_n^2 \geq \frac{\xi}{2} \right) \right) \)

\[
\lim_{p \to +\infty} IP \left(\chi_n^2 \geq \frac{u}{\alpha} \right) = IP \left(\chi_n^2 \geq 0 \right) = 1, \quad \forall \ n \geq 1
\]

thus

\[
\lim_{p \to +\infty} \int_0^{+\infty} IP \left(\chi_n^2 \geq \frac{u}{\alpha} \right) \chi_{p+4}^2(\lambda, du) = 1
\]

where \(\lambda = \frac{n^2 + \xi}{\sigma^2} \). Finally we obtains

\[
\lim_{p \to +\infty} \frac{R(\theta, \delta_{I_S}(X))}{R(\theta, X)} \geq \frac{\xi}{n^2 + \xi} + c \quad \frac{1}{1 + c}.
\]

Thus the result. \(\square \)

The case where \(n \) and \(p \) tend simultaneously to \(+\infty\) is given in the following theorem.

Theorem 4.5. If \(\lim_{p \to +\infty} \frac{\sigma^d}{\sigma^d} = c > 0 \), we have

\[
\lim_{n,p \to +\infty} \frac{R(\theta, \delta_{I_S}(X))}{R(\theta, X)} = \frac{c}{1 + c}.
\]

Proof. On the one hand, we have

\[
\lim_{n,p \to +\infty} \frac{R(\theta, \delta_{I_S}(X))}{R(\theta, X)} \leq \lim_{n,p \to +\infty} \frac{R(\theta, \delta_{I}(X))}{R(\theta, X)} = \frac{c}{1 + c}\]

(27)
because $R(\theta, \delta^*_J(X)) \leq R(\theta, \delta_{IS}(X))$ for $p \geq 3$ and all $\theta, \sigma \in IR^pIR^+$. In the other hand, by beginning again (25) we have

$$\lim_{n,p \to +\infty} \frac{R(\theta, \delta^*_J(X))}{R(\theta, X)} \geq \frac{c}{1 + c} + \lim_{n,p \to +\infty} \int_0^{+\infty} \left(IP\left(\chi^2_n \geq \frac{u}{\alpha} \right) \right) \chi^2_{p+4}(\lambda, du) - 1.$$ (28)

However

$$IP\left(\chi^2_n \geq \frac{u}{\alpha} \right) = IP\left(\sum_{i=1}^n y_i^2 \geq \frac{u(n + 2)}{(p - 2)} \right) = IP\left(\frac{\sum_{i=1}^n y_i^2}{n} \geq \frac{u}{(p - 2)} + \frac{2u}{n(p - 2)} \right)$$

where y_1, y_2, \ldots, y_n are independent, Gaussian random variables centered reduced. Thus by the strong law of the great numbers we have

$$\lim_{n,p \to +\infty} IP\left(\chi^2_n \geq \frac{u}{\alpha} \right) = \lim_{n,p \to +\infty} IP\left(\frac{\sum_{i=1}^n y_i^2}{n} \geq \frac{u}{(p - 2)} + \frac{2u}{n(p - 2)} \right) = \lim_{n,p \to +\infty} IP\left(\sum_{i=1}^n y_i^2 \geq 0 \right) = IP(1 \geq 0) = 1$$

ainsi

$$\lim_{n,p \to +\infty} \int_0^{+\infty} \left(IP\left(\chi^2_n \geq \frac{u}{\alpha} \right) \right) \chi^2_{p+4}(\lambda, du) = \int_0^{+\infty} \chi^2_{p+4}(\lambda, du) = 1.$$ (29)

Combining (27), (28) and (29), there is finally the result. \(\Box\)

5. Simulations

We illustrate graphically in what follows the ratios of the risks $R(\theta, \delta^*_J(X)) / R(\theta, X)$, as well as the evolution of the bound min and max associated, given respectively by the expressions (15) and (18), for $\sigma^2 = 1$ and different values of n and p.
Figure 1: Graph of the relative risks and their minima and maxima for $n = 50$ and $p = 4$, according to $\lambda = \frac{|\theta|}{\sigma^2}$ and $\sigma^2 = 1$.

Figure 2: Graph of the relative risks and their minima and maxima for $n = 100$ and $p = 10$, according to $\lambda = \frac{|\theta|}{\sigma^2}$ and $\sigma^2 = 1$.
Conclusion

In the case of the estimate of the average θ of a multidimensional Gaussian law $N_p(\theta, I_p)$ in \mathbb{R}^p, Casella, G and J, T, Tzon Hwang [3] showed that if $\lim_{p \to +\infty} \frac{||\theta||^2}{p} = c_1 > 0$ then the ratio $\frac{R(\theta, \delta J, S(X))}{R(\theta, X)}$ tends to $\frac{c_1}{1+c_1}$. By taking the same model, namely $X \sim N_p(\theta, \sigma^2 I_p)$ with this time σ^2 unknown, and estimated by the statistic S^2 independent of X and of law $\sigma^2 \chi^2_n$ in \mathbb{R}^+. We have for our part, showed that we obtain a similar ratio depend on the size n of the sample, with that found by the latter, as soon as $\lim_{p \to +\infty} \sigma^2 \frac{\chi^2_n}{p^2} = c > 0$. Moreover we obtain a ratio constant and independent of n, when n and p tend simultaneously to $+\infty$ and this without taking account of an unspecified relation of order or functional calculus between n and p. Li Sun. [6] is him also interested if σ^2 is unknown, but studied the behavior of the ratio $\frac{R(\theta, \delta J, S(X))}{R(\theta, X)}$ and $\frac{R(\theta, \delta J, S(X))}{R(\theta, X)}$, when only p tends to infinity. An idea would be to see whether we obtain similar ratios in the general case of the symmetrical spherical models.

References