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first kind under progressive Type II censored data with binomial

removals

Ashok Shanubhogue, N.R. Jain

Department of Statistics, Sardar Patel University, Vallabh Vidyanagar, Gujarat, India 388120

Abstract. This paper deals with the problem of uniformly minimum variance unbiased estimation of the
parameter of Pareto distribution of first kind based on progressive Type II censored data with binomial
removals. We obtain the uniformly minimum variance unbiased estimator (UMVUE) for powers of the
shape parameter and its functions. The UMVUE of the variance of these estimators are also given. The
UMVUE of (i) p.d.f. (ii) c.d.f. (iii) reliability function (iv) hazard function (v) geometric mean (vi) the
logarithm of pth quantile (vii) the rth moment (viii) mean and the variance of Pareto distribution are derived.
Further an exact (1 − α)100% confidence interval for the pth quantile is obtained. Finally the UMVUE of
lifetime performance index is given.An illustrative numerical example is presented.

1. Introduction

A Type II censored sample is one for which only m smallest observations in a sample of n items are
observed. A generalization of Type II censoring is a progressive Type II censoring. Under this scheme,
n units of the same kind are placed on test at time zero, and m failures are observed. When the first
failure is observed, a number r1 of surviving units are randomly withdrawn from the test; at the second
failure time, r2 surviving units are selected at random and taken out of the experiment, and so on. At the
time of mth failure, the remaining rm = n − r1 − r2 − ... − rm−1 − m units are removed. Balakrishnan et al.
[6] indicated that such scheme can arise in clinical trials where the drop out of patients may be caused by
migration or by lack of interest. In such situations, the progressive censoring scheme with random removals
is required. For a detailed discussion of progressive censoring we refer to Balakrishnan and Aggarwala
[5]. If r1 = r2 = ... = rm−1 = 0, then, this scheme reduces to the Type II censoring scheme. Also note that
if r1 = r2 = ... = rm = 0, so that m = n, this scheme reduces to the case of no censoring that is the case of
a complete sample. In this paper, we use progressive Type II censoring scheme with binomial removals
where the number of units removed at each failure time follows a binomial distribution.

To study income distributions Vilferdo Pareto introduced the Pareto distribution in 1897. Since then
investigators have been using the Pareto distribution or some related forms of it in industrial, engineering
and economic studies. Several such situations have been discussed by Harris [13], Davis and Feldstein [10],
Freiling [11], Berger and Mandelbrot [8] and Hassan et al. [14]. For a review of literature on estimating
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parameters of the Pareto distribution one may refer to Amin [1], Arnold and Press [2] Asrabadi [4], Baxter
[7], Kern [20], Malik [22], Hosking and Wallis [18], Rytagaard [25] and many others.

Inference for Pareto distribution based on progressive Type II censored data were discussed by many
authors. Wu et al. [29] obtained the maximum likelihood estimators of two parameter Pareto distribution
under progressive Type II censoring with random removals where the number of units removed at each
failure time follows a binomial or uniform distribution. They had also given the expected test time to
complete the censoring test. Kus and Kaya [21] obtained the exact confidence region for the parameters
of the Pareto distribution under progressive Type II censored data. Parsi et al. [24] introduced a new
approach for constructing simultaneous confidence interval of the parameters of the Pareto distribution
under progressive Type II censoring.

In the manufacturing or service industry, process capability indices are useful to assess whether the
quality of product meets the desired level. The study of assessing the lifetime performance index of the
products is the subject of investigation of many authors. Tong et al. [28] constructed a UMVUE of process
capability index CL, based on the complete sample from an exponential distribution , where L is the lower
specification limit. Hong et al. [15] constructed a maximum likelihood estimator of CL and using this
estimator they developed the new testing procedure in the condition of known L , with the right type II
censored sample for Pareto distribution. Hong et al. [16] constructed a maximum likelihood estimator of
CL and developed (1 − α)100% confidence interval for lifetime performance index in Pareto distribution
based on type II right censored samples. Hong et al. [17] constructed a UMVUE of CL based on right type II
censored sample from the Pareto distribution. Using the UMVUE of CL they developed a novel hypothesis
testing procedure in the condition of known L.

In this paper we discuss the problem of UMVUE for shape parameter θ of the Pareto distribution of
first kind based on progressive Type II censored data with binomial removals. This paper is organized
as follows. In Section 2,the likelihood function is given. In Section 3, the UMVUE of θ and its functions
are derived. Also, the UMVUE of the (i) geometric mean (ii) the logarithm of pth quantile (iii) hazard
function (iv) p.d.f (v) positive power of reliability function (vi) c.d.f. of Pareto distribution are obtained. In
Section 4 the UMVUE of the rth moment and mean of Pareto distribution are obtained. Further an exact
(1 − α)100% confidence interval for pth quantile is constructed. Section 5, then presents the UMVUE of
lifetime performance index. In Section 6, an illustrative numerical example is given.

2. The model

Let the failure time distribution be Pareto with probability density function

f ( x) =

θµθ x−θ−1, θ, µ > 0 x ≥ µ,
0, otherwise,

(1)

where θ is shape parameter and µ is known. The cumulative distribution function is given by

F(x) = 1 −
(µ

x

)θ
, x ≥ µ. (2)

The survival function is given by

S(x) =
(µ

x

)θ
, x ≥ µ. (3)

The density given in (1) can be written as

f (x) =
a(x)[h(θ)]d(x)

[1(θ)]
, (4)
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where

a(x) =
1
x
, h(θ) = exp(−θ), d(x) = log

(
x
µ

)
and 1(θ) =

( 1
θ

)
, (5)

such that a(x) > 0 and 1(θ) =
∫

x>µ a(x)[h(θ)]d(x)dx.
Let (X1,R1), (X2,R2), . . . , (Xm,Rm), denote a progressively Type II censored sample where Xi = Xi,m,n

for i = 1, 2, ...,m and X1 < X2 < ... < Xm. The conditional likelihood function can be written as, see Cohen[9],

L(θ; x/R = r) = c
m∏

i=1

f (xi)[s(xi)]ri , (6)

where c = n(n− r1 − 1)(n− r1 − r2 − 2) · · · (n− r1 − r2 − ...− rm−1 −m + 1) and 0 ≤ ri ≤ (n−m− r1 − r2 − ...− ri−1)
for i = 1, 2, . . . ,m − 1. Substituting (1) and (3) in (6), we get

L(θ; x/R = r) = cθm

 m∏
i=1

1
xi

 exp

−θ m∑
i=1

(1 + ri) log
(

xi

µ

). (7)

We assume that Xi and Ri are independent for all i. We further suppose that the number of units removed at
each failure time follows a binomial distribution with probability p. From Wu et al. [29] the joint probability
mass function of r1, r2, . . . , rm−1 is given by

P(R = r) =
(n −m)!p

m−1∑
i=1

ri
(1 − p)

(m−1)(n−m)−
m−1∑
i=1

(m−i)ri(
n −m −

m−1∑
i=1

ri

)
!

m−1∏
i=1

ri!
. (8)

That is

P(R = r) =
(n −m)!

[ p
(1−p)m

]m−1∑
i=1

ri
(1 − p)

m−1∑
i=1

iri

m∏
i=1

ri!
[
(1 − p)−(n−m)](m−1)

. (9)

The unconditional likelihood function is

L(θ, p : x, r) = L(θ; x/R = r)P(R = r). (10)

Using (7)and (10) in (??), we can write the likelihood function as

L(θ, p : x, r) = cθm

 m∏
i=1

1
xi

 exp

−θ m∑
i=1

(1 + ri) log
(

xi

µ

) (n −m)!
[ p

(1−p)m

]m−1∑
i=1

ri
(1 − p)

m−1∑
i=1

iri

m∏
i=1

ri!
[
(1 − p)−(n−m)](m−1)

.

3. Unbiased estimation

Let

Yi = log
(

Xi

µ

)
, i = 1, 2, . . . ,m. (11)

Then Yi have exponential distribution with mean 1/θ. Now consider the following transformation

Z1 = nY1, Zi = (n − i + 1 − r1 − r2 − · · · − ri−1)(Yi − Yi−1), i = 2, 3, . . . ,m. (12)
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In order to derive the distribution of Zi, for i = 1, 2, . . . ,m, consider the inverse transformation Y1 =
Z1
n and Yi =

m∑
i=2

Zi
(n−ri−1−i+1) , i = 2, 3, ...,m. The variables Z1,Z2, . . . ,Zm defined in (12) are all independent

and identically distributed with exponential distribution with mean 1/θ, see[27]. The joint density of
Z1,Z2, . . . ,Zm is

f (z, θ/R = r) = θm exp

−θ m∑
i=1

zi

 . (13)

It can be seen that

m∑
i=1

Zi =

m∑
i=1

(1 + ri)Yi. (14)

Using (11) in (14), we have

m∑
i=1

Zi =

m∑
i=1

(1 + ri) log
(

Xi

µ

)
. (15)

Let

T =

m∑
i=1

Zi =

m∑
i=1

(1 + ri) log
(

Xi

µ

)
. (16)

Since (13) is a member of exponential family of distributions, T is a complete sufficient statistic for θ. The
distribution of T is gamma with parameters θ and m, which is again a member of exponential family of
distributions. The p.d.f. of T is given by

f (t, θ) =
B(t,m)[h(θ)]t

[1(θ)]m , (17)

where B(t,m) = tm−1

Γm , h(θ) = exp(−θ) , 1(θ) = 1/θ.
Jani and Dave [19] have studied the problem of minimum variance unbiased estimation in a class of

exponential family of distributions. They have shown that if X1,X2, . . . ,Xn be a random sample from
density of the type given in (4) and the p.d.f. of its complete sufficient statistic can be written as the one
given in (17) then the UMVUE of [h(θ)]k is given by

Hk,n =
B(t − k,n)

B(t,n)
, t > k, (18)

and the UMVUE of [1(θ)]k is

Gk,n =
B(t,n + k)

B(t,n)
. (19)

Following the results derived in Jani and Dave [19], we get the UMVUE of some important parametric
functions as given below.

(i) Using (18), the UMVUE of exp(−θk) is

Hk,m =

1 − k∑m
i=1(1 + ri) log

(
xi
µ

) 
(m−1)

,
m∑

i=1

(1 + ri) log
(

xi

µ

)
> k. (20)
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Remark 3.1. Substituting k = 1 in (20), we get the UMVUE of exp(−θ) as

H1,m =

1 − 1∑m
i=1(1 + ri) log

(
xi
µ

) 
(m−1)

,
m∑

i=1

(1 + ri) log
(

xi

µ

)
> 1

Remark 3.2. Substituting k = −1 in (20), we get the UMVUE of exp(θ) as

H−1,m =

1 +
1∑m

i=1(1 + ri) log
(

xi
µ

) 
(m−1)

,
m∑

i=1

(1 + ri) log
(

xi

µ

)
> 0.

(ii) Using (20), the UMVUE of the variance of Hk,m is given by, see [19],

Ṽar[Hk,m] =

1 − k
m∑

i=1
(1 + ri) log

(
xi
µ

)


(2m−2)

−

1 − 2k
m∑

i=1
(1 + ri) log

(
xi
µ

)


(m−1)

.

(iii) Using (19), the UMVUE of
(

1
θ

)k
is given by

Gk,m =
Γ(m)

Γ(m + k)

 m∑
i=1

(1 + ri) log
(

xi

µ

)
k

. (21)

Remark 3.3. Substituting k = 1 in (21), we get the UMVUE of 1/θ as

G1,m =
1
m

 m∑
i=1

(1 + ri) log
(

xi

µ

) . (22)

Remark 3.4. Substituting k = −1 in (21), we get the UMVUE of θ as

G−1,m =
(m − 1)[

m∑
i=1

(1 + ri) log
(

xi
µ

)] . (23)

(iv) Using (21), the UMVUE of the variance of Gk,m is given by

Ṽar[Gk,m ] =

 m∑
i=1

(1 + ri) log
(

xi

µ

)
2k ( Γ(m)

Γ(m + k)

)2

−

(
Γ(m)

Γ(m + 2k)

) .
Remark 3.5. Using (21), the UMVUE of geometric mean GM = µ exp

(
1
θ

)
is given by

G̃M = µ
∞∑
j=0

Γ(m)
Γ(m + j)

 m∑
i=1

(1 + ri) log
(

xi

µ

)
j

1
j!
.

Remark 3.6. Using (23), the UMVUE of logarithm of the pth quantile is given by

l̃ogξp =


[

m∑
i=1

(1 + ri) log
(

xi
µ

)]
log

{
(1 − p)−1

}
+ m log(µ)

m

 . (24)
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Remark 3.7. Using (24), the UMVUE of hazard function can be obtained as

h̃(x) =
(m − 1)[

m∑
i=1

(1 + ri) log
(

xi
µ

)] log
(

x
µ

)
.

Remark 3.8. In case of Type II censored sample that is when ri = 0, i = 1, 2, . . . ,m− 1 and rm = n−m, the UMVUE
of θ can be obtained from (24) as

θ̃m =
(m − 1)[

m∑
i=1

log
(

xi
µ

)
+ (n −m) log

(
xm
µ

)] .
In case of complete sample that is when ri = 0, i = 1, 2, . . . ,m and m = n, the UMVUE of θ reduces to

θ̃n =
(n − 1)[

n∑
i=1

log
(

xi
µ

)] . (25)

The result given in (25) coincides with Asrabadi [4] who obtained it by using usual techniques.
(v) The UMVUE of density f (x) given in (1), for fixed x is given by

φx,m =
1
x

 m − 1
m∑

i=1
(1 + ri) log

(
xi
µ

)

1 −

log
(

x
µ

)
m∑

i=1
(1 + ri) log

(
xi
µ

)


(m−2)

, log
(

x
µ

)
<

m∑
i=1

(1 + ri) log
(

xi

µ

)
,m > 2. (26)

Remark 3.9. For complete sample case that is when r1 = r2 = · · · = rm = 0 and m = n, the result (26) reduces to

φx,n = (n − 1)

[
m∑

i=1
log(xi) − log(x) − (n − 1) logµ

]
x
[

m∑
i=1

log(xi) − n logµ
]n−1 . (27)

The result given in (27) coincides with Asrabadi [4].

(vi) The UMVUE of variance of φx,m for m > 2 is given by

Ṽar[φx,m]=


[

m−1
tx

]2
[
1 −

log( x
µ )

t

](2m−4)
−

[
m−1

tx

] [
1 −

log( x
µ )

t

](m−2) [
1
x

m−2
t−log( x

µ )

] [
1 −

log( x
µ )

t−log( x
µ )

](m−3)
, t > 2 log( x

µ )[
1
x

(m−1)
t

]2
[
1 −

log( x
µ )

t

](2m−4)
, log( x

µ ) < t ≤ 2 log( x
µ )

0 , otherwise,

where t =
m∑

i=1
(1 + ri) log( x

µ ).

(vii) Considering x as fixed, the UMVUE of positive integer power, Rh(x) of reliability function R(X) =

P(X > x), x ≥ 0 is obtained as follows. Since Rh(x) = [h(θ)]h log
(

x
µ

)
, where h(θ) is given in (5) and using (20)

with k = h log
(

x
µ

)
, the UMVUE R̃h(x) of Rh(x) is given by

R̃h(x) =

1 −
h log

(
x
µ

)
m∑

i=1
(1 + ri) log

(
xi
µ

)


(m−1)

, h log
(

x
µ

)
<

m∑
i=1

(1 + ri) log
(

xi

µ

)
. (28)

Substituting h = 1 in (28), one gets the UMVUE of reliability for fixed x .
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Remark 3.10. Using (28), the UMVUE of the variance of R̃(x) is given by

Ṽar[R̃(x)] =



1 − log
(

x
µ

)
m∑

i=1
(1+ri) log

( xi
µ

)


(2m−2)

−

1 − 2 log
(

x
µ

)
m∑

i=1
(1+ri) log

( xi
µ

)


(m−1)

, 0 < x < µe
t
2 ,1 − log

(
x
µ

)
m∑

i=1
(1+ri) log

( xi
µ

)


(2m−2)

, µe
t
2 < x < µet,

0 , otherwise.

(viii) The UMVUE of cumulative distribution function given in (2) is

F̃(x) =


0, , x < µ,

1 −

1 −
log

(
x
µ

)
m∑

i=1
(1+ri) log

( xi
µ

)


(m−1)

, log
(

x
µ

)
<

m∑
i=1

(1 + ri) log
(

xi
µ

)
,

1 , otherwise.

Shanubhogue and Jain [26] have studied the problem of minimum variance unbiased estimation in
exponential distribution under progressive Type II censored data with binomial removals. They have given
the UMVUE for parameter p and various functions of p. Since the joint density P(R = r) given in (10) is
independent of θ one gets the same estimators of p and its various functions as given in Shanubhogue and
Jain [26].

4. UMVU estimator of the rth moment and mean.

Theorem 4.1. Under progressive Type II censored data,the rth moment of φx,m is the UMVUE estimator of the rth

moment of the Pareto distribution.

Proof. We have

Ẽ(Xr) =

∫ µ exp(t)

µ
xrφx,mdx

=
(m − 1

t

) ∫ µ exp(t)

µ
xr−1

1 −
log

(
x
µ

)
t


(m−2)

dx (29)

where t is given in (??). Further simplification of (29) results to

Ẽ(Xr) = µr(m − 1) exp[rt]
(∫ 1

0
um−2 exp[−rtu]du

)
. (30)

Using the following result, given in Gradshteyn and Ryzhik [12, page 340],∫ 1

0
xn exp[−µx]dx =

n!
µn+1 − exp[−uµ]

n∑
k=0

n!
k!

uk

µn−k+1
,u > 0, µ > 0,n = 0, 1, ...

equation (30) further simplifies to

Ẽ(Xr) =
µr(m − 1)!

[rt](m−1)

exp[rt] − 1 −
m−2∑
k=1

[rt]k

k!

 , 0 < r < θ. (31)

We can show that Ẽ(Xr) is an unbiased estimate of E(Xr) =
µrθ

(θ−r) , 0 < r < θ, the rth moment of Pareto

distribution. The proof is completed by the fact that Ẽ(Xr) is a function of the complete sufficient statistic
T. For the complete sample case the result (31) reduces to the one obtained by Asrabadi [4].
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Corollary 4.2. Substituting r = 1 in (31), we get UMVUE of mean life as

Ẽ(X) =
µ(m − 1)!

[t](m−1)

exp[t] − 1 −
m−2∑
k=1

[t]k

k!

 , 1 < θ.
Theorem 4.3. The (1 − α)100% confidence interval for pth quantile is given byµ exp

2m ˜log
( ξp

µ

)
χ2

2m,1−α/2

 , µ exp

2m ˜log
( ξp

µ

)
χ2

2m,α/2


 . (32)

Proof. Using equation (16) and (21) we have, t =
m ˜log

( ξp

µ

)
θ log

[
(1 − p)−1] and t has gamma distribution with para-

meters θ and m. We make the transformation Q = 2Tθ. Hence Q =
2m ˜log

( ξp

µ

)
log

( ξp

µ

) has a chi-square distribution

with 2m degrees of freedom. Thus

P

χ2
2m, α2
≤

2m ˜log
( ξp

µ

)
log

( ξp

µ

) ≤ χ2
2m,1− α2

 = 1 − α. (33)

Rearranging (33) we get(32).

5. UMVU of lifetime performance index.

Suppose that the lifetime of units may be given by a Pareto distribution with probability density function
given in (1). Using the transformation given in (11), the distribution of Y is exponential with p.d.f.

f ( y) =

θ exp[−θy], y > 0, θ > 0
0, otherwise.

Montgomery [23] has given a capability index CL given by,

CL =
µ − L
σ

, (34)

where µ is process mean, σ is process standard deviation and L is the lower specification limit. Using(11)
and since the distribution of Y is exponential distribution, the equation (34) can be written as, see [16],
CL = 1 − θL, CL < 1. Using (24)the UMVUE of CL is given by

C̃L = 1 −
(m − 1)L

m∑
i=1

(1 + ri) log
(

xi
µ

) . (35)

Remark 5.1. In case of Type II censored sample that is substituting ri = 0, i = 1, 2, . . . ,m − 1 and rm = n − m in
(35), one gets the result given in Hong et al. [17].
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Table 1: Observed times of failure and the dropouts.

i xi ri
1 308.79 1
2 314.81 1
3 325.83 2
4 369.09 0
5 373.12 0
6 375.88 0
7 376.26 0
8 390.55 1
9 428.54 0

10 465.77 0
11 516.88 1
12 274.34 7

6. Illustrative example

In this section we illustrate the use of the estimation methods given in this article using the data
given in Amin [1]. He has generated a progressive Type II censored data with binomial removals for the
Pareto distribution with µ = 300 and θ = 1.5 for n = 25 units and m = 12. The data for the removals
ri were generated from the binomial distribution as follows: r1 from B(13, 0.05) and ri/r1, r2, . . . , ri−1 from

B(13 −
i−1∑
j=1

r j, 0.05) for i = 2, 3, . . . , 12. The data given in Table 1 is taken from Amin [1].

Using the results given in Sections 3 and 4, the UMVUE estimates of different parametric functions of θ
based on data given in Table 1 are given below.

Sr.No. Parametric f unction UMVUE estimate

1 exp[−θ] H1,12 = 0.26898
2 Variance o f H1,12 Ṽar[H1,12 ] = 0.01181
3 exp[θ] H−1,12 = 3.23153
4 Variance o f H−1,12 Ṽar[H−1,12 ] = 1.11683
5 1

θ G1,12 = 0.740574
6 Variance o f G1,12 Ṽar[G1,12 ] = 0.04218
7 θ G−1,12 = 1.237780
8 Variance o f G−1,12 Ṽar[G−1,12 ] = 0.13928
9 Geometric mean G̃M = 316.8492
10 Lo1arithm o f third quartile l̃ogξ0.75 = 3.17176
11 Hazard f unction at x = 310 h̃(x) = 0.04059
12 Density at x = 310 φ310,12 = 0.00385
13 Variance o f φ310,12 Ṽar[φ310,12] = 0.003695
14 Relibility at x = 310 R̃(x) = 0.96015
15 Variance o f R̃(x) Ṽar[R̃(x)] = 0.000139
16 c.d. f . at x = 310 F̃(x) = 0.03985
17 Mean o f Pareto Distribution Ẽ(X) = 890.7971

Using (32), the 95% confidence interval for third quartile is (561.00398, 2187.89775).
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7. Conclusion

We thank one of the referees for bringing to our notice the paper, Asgharzadeh and Valiollahi [3]. We
would like to add the following in this regard. The authors have obtained the UMVUE of θ, hazard function
and reliability, for proportional hazards family under progressive Type II censored sample. They have also
given 100(1− α)% confidence interval for θ. Our approach in getting these estimators is quite different and
easy from the approach given in [3]. We have assumed that removals have binomial distribution. We have

obtained the UMVUE of (i)
(

1
θ

)k
, (ii) exp[−θk], (iii) reliability function (iv) density function, where one can

choose the appropriate values of k. We have given an elegant expressions for the UMVUE of the variance
of UMVUE of these estimators. We have also obtained the UMVUE of geometric mean, rth moment, mean
and c.d.f. of Pareto distribution. We have also obtained the UMVUE of lifetime performance index. Using
the UMVUE of the logarithm of pth quantile, we have obtained the (1 − α)100%confidence interval for pth

quantile. Many results given in Asarabadi [4], can be obtained as a particular case of our result. Inference
when µ is unknown, as pointed out by the referee, will be investigated separately.
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