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On discrete distributions with gaps having ALM property

E. Sandhyaa,∗, K. E. Rajasekharanb

aDepartment of Statistics, Prajyoti Niketan College, Pudukkad, Trichur-680 301, India
bDepartment of Statistics, Unversity of Calicut, Calicut University P.O, 673 635, India

Abstract. Almost lack of memory property of discrete distributions with gaps in their support is defined
and it is observed that a random variable cX has lack of memory property on {0, c, 2c, . . .}, c > 1 integer iff X
has lack of memory property on {0, 1, 2, . . .}. Also infinite divisibility of discrete distributions having almost
lack of property is discussed.

1. Introduction

Geometric distribution plays a vital role both in distribution theory and reliability theory because of
its remarkable lack of memory (LM) property, which characterizes the distribution. This property leads to
similar properties in reliability context such as constancy of hazard rate, measure of memory being equal
to zero and so on. Since the property and its manifestations characterize the distribution, the extensions of
the property should lead to a wider class of distributions of which the geometric distribution becomes a
special case.

One direction in which this property has been extended is in defining the concept of almost lack of
memory (ALM) property by Chukova and Dimitrov [1] and Chukova et al. [2]. Chukova et al. [2] showed
that ALM property is equivalent to periodic failure rate of the corresponding distributions and gave a
characterization of ALM property in terms of service time properties. Dimitrov et al. [3] showed that
non-stationary Poisson process with periodic failure rate is the closest extension of homogeneous Poisson
process to model the number of events imbedded in to random environment of periodic failure. They also
mention some possible applications in reliability, queues, environmental studies etc.

Just like the role of geometric distribution in discussing LM property here we consider an extension of
geometric distribution and discuss its role in ALM property. This extension is called extended geometric
distribution on the set of integers {0, k, 2k, . . .}, k ≥ 1, integer. The corresponding random variable (r.v.) has
probability mass function (p.m.f.) defined by

P(X = kx) = pqx, x = 0, 1, 2, . . . (1)

Johnson et al. [6] mentions that geometric distribution may be extended to cover the case of a variable
taking values θ0, θ0 + δ, θ0 + 2δ, . . . (δ > 0) with p.m.f.

P(X = θ0 + δ j) = pq j, j = 0, 1, 2, . . . (2)

We see that probabilities of extended geometric distribution coincide with that of geometric distribution, but
the support of the former is the set of integers {0, k, 2k, . . .} instead of {0, 1, 2, . . .}. When k = 1, the extended
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geometric distribution reduces to a geometric distribution. For more properties and characterizations of
extended geometric distribution see, Sandhya et al. [9].

This paper is organized as follows. In Section 2 we define LM property on {0, k, 2k, . . .} and characterize
extended geometric distribution. Next in Section 3 we discuss ALM property for distributions with gaps in
their support. Section 4 deals with infinite divisibility of distributions with ALM property, where we show
that distributions with ALM property need not be infinitely divisible.

2. Extended geometric distribution and ALM property

The LM property is said to be satisfied by a discrete r.v. if for all x, j ≥ 0, integers

P(X ≥ x + j/X ≥ j) = P(X ≥ x). (3)

Johnson et al. [6] mentions that the characterization (3) also applies to the r.v. X taking values (θ0 + δ j),
j = 0, 1, 2, . . .. We know that the above property holds good iff X follows a geometric distribution on
{0, 1, 2, . . .}. We now have

Definition 2.1. For a r.v. X on {0, k, 2k, . . .}, P(X ≥ ( j+ x)k/X ≥ jk) = P(X ≥ xk) for all j, x ≥ 0, integers describes
LM property on {0, k, 2k, . . .}.

Consider a geometric distribution on {0, k, 2k, . . .}with P(X = jk) = pq j, j = 0, 1, 2, . . .. For this distribution
we have

P(X ≥ ( j + x)k/X ≥ jk) = qx = P(X ≥ xk).

Now arguing on the lines similar to the proof of Theorem 5 in Rohatgi and Saleh [8, p.189] the converse of
the above follows resulting in a geometric distribution on {0, k, 2k, . . .}. Hence we have:

Theorem 2.2. A r.v. X on {0, k, 2k, . . .} has LM property iff it is extended geometric.

It is worth mentioning that for a geometric r.v. with p.m.f. given by P(X = x) = pqx−1, x = 1, 2, . . .,
P(X ≥ x + j/X ≥ j) = qx , P(X ≥ x). Hence (3) does not characterize the geometric distribution on {1, 2, . . .}.

Chukova and Dimitrov [1] discuss in detail the concept of ALM property as an extension to LM property.
It is shown that r.v.s X exist, not exponentially or geometrically distributed such that (3) holds for all x > 0
and infinitely many different values of j. Also, Chukova et al. [2] define LM property at a given point c > 0.

Definition 2.3. A non-negative integer-valued r.v. X has the LM property at the point c > 0 integer iff

P(X ≥ x + c/X ≥ c) = P(X ≥ x), for all x ≥ 0. (4)

Definition 2.4. A non-negative integer-valued r.v. X has ALM property if there exists a sequence of distinct
constants {an}∞n=1 such that (4) holds for any integer c = an, n = 1, 2, . . . and for all x ≥ 0.

Also from Marsaglia and Tubilla [7], a r.v. possesses ALM property only at points {an}∞n=1 which form
a lattice. That is, in the case of integer-valued r.v.s, there exists an integer c > 0 such that all an satisfying
Definition 2.4 are in the form an = knc where {kn} is a sequence of positive integers. Now we have the
following result by Chukova et al. [2].

Lemma 2.5. If a r.v. X has the LM property at a point c > 0 integer, then X has the ALM property over the sequence
{an = nc}∞n=0.

We know that a geometric r.v. X has LM property at integers {0, 1, 2, . . .}. Then X has ALM property
over {0, c, 2c, . . .} by the above lemma. Hence,

P(X ≥ (x + j)c/X ≥ jc) = P(X ≥ xc), for all x ≥ 0 and
P(X ≥ xc + jc)

P(X ≥ jc)
= qx = P(X ≥ xc). (5)

Thus (5) characterizes an extended geometric distribution on {0, c, 2c, . . .} defined by (2). Hence it follows
that an extended geometric distribution has LM property on {0, c, 2c, . . .}. We record this as:
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Theorem 2.6. A r.v. cX has LM property on {0, c, 2c, . . .}, c ≥ 1 integer iff X has LM property on {0, 1, 2, . . .}.

Note. Theorem 2.6 characterizes geometric and extended geometric distributions simultaneously.

Next is a stochastic representation of r.v.s having LM property at c > 0 as the sum of two independent
r.v.s given in Chukova et al [2].

Theorem 2.7. A r.v. X has the LM property at a point c > 0 integer, (X has the ALM property over the sequence
{an = nc}∞n=0) iff it is decomposable in the form X = Yc + cZ, where Yc and Z are independent r.v.s, Yc is concentrated
on the interval [0, c) and Z has a geometric distribution on {0, 1, 2, . . .} with parameter α = P(X ≥ c).

In the case of non-negative integer-valued r.v.s the above representation holds with Yc is concentrated
on {0, . . . , c − 1}, c > 0 integer. We know that (Sandhya et al. [10]) a direct relationship between geometric
and extended geometric distributions is given by: A r.v. X follows geometric distribution on {0, 1, 2, . . .} iff
cX follows an extended geometric distribution on {0, c, 2c, . . .}. Hence the above stochastic representation
can be equivalently written as: X = Yc + Gc where Gc is an extended geometric r.v. on {0, c, 2c, . . .}. Now it
follows that a r.v. can have LM at points {0, c, 2c, . . .} and this set of points coincides with the support of the
extended geometric distribution. Taking the probability generating function (p.g.f ) on both sides we get,

P(s) = Qc(s)
1 − α

1 − αsc .

Chukova and Dimitrov [1] mention that the geometric distribution on {0, 1, 2, . . .}, belongs to the class
of distributions with ALM property with Qc(s) = p

1−α
1−αsc

1−qs where α = qc. Also, an extended geometric
distribution on {0, c, 2c, . . .} belongs to this class with Qc(s) = 1 and q = α. They also mention that when Qc(s)
corresponds to the p.g.f of a uniform distribution on {0, 1, 2, . . . , c − 1} we get a distribution having ALM
property that is neither geometric nor extended geometric. It can be easily seen that when Qc(s) = (q+ps)c−1,
(the p.g.f of a binomial distribution with parameters c− 1 and p) we get a p.g.f P(s) = (q+ ps)c−1 1−α

1−αsc having
ALM property with conditions on p, α and c.

3. ALM property for distributions with gaps in their support

Distributions with gaps in their support have a key role in random summation schemes in connection
with their stability and infinite divisibility see Satheesh [11] and Satheesh et al. [12]. It may be noted that
from Lemma 2.5 and Theorem 2.7 it also follows that a r.v. X having ALM property has the stochastic
representation,

X = Yc + cZ. (6)

Further, to discuss the ALM property of distributions with gaps we cannot start with the stochastic repre-
sentation (6) since here the support of the distribution on the LHS cannot have gaps. This also justifies the
requirement for the following definition of ALM property of distributions with gaps in their support.

Definition 3.1. A r.v. X on {0, c, 2c, . . .}, c ≥ 1 integer, is said to have LM property at a given integer l = jc, if
P{X ≥ cx + l/X ≥ l} = P{X ≥ cx} for all x ≥ 0 integer.

Definition 3.2. A r.v. X on {0, c, 2c, . . .}, c ≥ 1 integer, is said to have ALM property over the sequence {nl}∞n=0 if it
has LM property at l.

Hence it follows that if X has LM property at l = jc, then it has ALM property over {njc}∞n=0.

Theorem 3.3. Let W = cX, c ≥ 1 integer, be a r.v. on {0, c, 2c, . . .}. Then W has LM property at l = jc iff X has LM
property at j.
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Proof. Suppose that a r.v. X has LM property at a point j > 0. Then

P(X ≥ x + j/X ≥ j) = P(X ≥ x), ∀x ≥ 0.

That is,

P(cX ≥ c(x + j)/cX ≥ cj) = P(cX ≥ cx), ∀x ≥ 0.

That is,

P(W ≥ cx + l)/W ≥ l) = P(W ≥ cx), ∀x ≥ 0.

Thus W has LM property at l by Definition 3.1. The converse is straight forward.

Corollary 3.4. If a r.v. W = cX, c ≥ 1 integer with support on {0, c, 2c, . . .} has ALM property over the sequence
over {nl}∞n=0 or {njc}∞n=0 iff X has ALM property on {nj}∞n=0.

Thus it follows that the ALM property of cX at the point l = jc is equivalent to the ALM property of
X at the point l

c = j. Hence in order to discuss the ALM property of W = cX, we need discuss the ALM
property of X. However, if W has support on {0, c, 2c, . . .}, then it has the following stochastic representation,
cX = cYc + c2Z or W = cYc +Gc2 , where Gc2 has an extended geometric distribution on {0, c2, 2c2, . . .}. Taking
the p.g.f.s on both sides stochastic representation we get, P(sc) = Q(sc) 1−α

1−αsc2 . Here Q(sc) corresponds to
a finite discrete distribution on {0, c2, 2c2, . . . , c2 − c}. Thus to discuss the ALM property of an extended
geometric distribution on {0, c, 2c, . . .} it is enough to discuss the ALM property of geometric distribution
on {0, 1, 2, . . .}. But we have already seen that the above geometric distribution has the ALM property with

Qc(s) =
p

1 − α
1 − αsc

1 − qs

where α = qc. Also, the p.g.f.

P(sc) = (q + psc)c2−c 1 − α
1 − αsc2 .

can be shown to have ALM property using the same argument.
Now consider another discrete distribution with gaps in its support and with p.g.f. 1

(m−(m−1)sc)
1
c

, c ≥ 1

integer and m > 1, which is called Harris distribution and is denoted by H0(m, c, 1
c ). For more on this see,

Sandhya et al. [10] Now it can be seen that if Y ∼ H0(m, c, 1
c ), then X = Y

c follows a negative binomial
distribution on {0, 1, 2, . . .} with p.g.f 1

(m−(m−1)s)
1
c

. Thus by Theorem 3.3 it is enough to discuss the ALM

property of the above negative binomial distribution. That is, we have to check whether it admits the
following representation

1

(m − (m − 1)s)
1
c

= Qc(s)
1

m − (m − 1)sc ,

where Qc(s) corresponds to the p.g.f. of a r.v. on {0, 1, . . . , c − 1}. Thus we have to show that

Qc(s) =
m − (m − 1)sc

(m − (m − 1)s)
1
c

is a p.g.f. for the ALM property to be satisfied. But, if Qc(s) is a p.g.f. Qc(1) = 1 and it should be absolutely
monotone, see Feller [4, p. 223]. Clearly, Qc(1) = 1 only if c = 1, that is, the negative binomial distribution
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reduces to the geometric distribution. Hence there is no ALM property for the above negative binomial
distribution. It may also be noted that for absolute monotonicity Q(n)

c (s) ≥ 0, for all n ≥ 1 integer. Now,

Q(1)
c (s) =

(m − 1)(m − (m − 1)s)
1
c −1

(m − (m − 1)s)
2
c

{
m
c
+ (m − 1)sc

(
c2 − 1

c

)
− cmsc−1

}
.

But Q(1)
c (s) ≥ 0 only if m

c + (m − 1)sc
(

c2−1
c

)
− cmsc−1 ≥ 0; that is when

m − 1
m
≥ c2sc−1 − 1

(c2 − 1)sc .

This is possible only if

1 ≥ 1
m
+

1
s

(
c2

c2 − 1

)
− 1

(c2 − 1)sc .

But letting c = 2 and s = 0.5, we get

1
s

(
c2

c2 − 1

)
− 1

(c2 − 1)sc =
4

0.5(4 − 1)
− 1

(0.5)2(4 − 1)
=

4
3
> 1.

Thus Q(1)
c (s) is negative for these values of c and s and consequently Qc(s) cannot be a p.g.f. Hence negative

binomial distribution does not have ALM property. Consequently, Harris distribution also does not have
ALM property by Theorem 3.3.

4. Infinite divisibility of discrete distributions with ALM property

We have seen that the r.v. X with p.g.f P(s) is said to have ALM property if P(s) = Qc(s)( 1−α
1−αsc ). Since

Qc(s) corresponds to the p.g.f of a r.v. on {0, 1, . . . , c − 1} we can write Qc(s) = 1 + sp1 + s2p2 + · · · + sc−1pc−1,
and we have

P(s) =
c−1∑
i=0

si 1 − α
1 − αsc pi. (7)

This is a finite mixture of geometric distributions on {0, c, 2c, . . .}, {1, 1 + c, 1 + 2c, . . .}, {2, 2 + c, 2 + 2c, . . .}
respectively. Here the question is: is this mixture infinite divisible (i.d)? The question arises because of the
already known result in Feller [5, p. 464] that every mixture of geometric distributions is infinitely divisible,
where the mixture is of the type

G(s) =
c−1∑
i=0

1 − αi

1 − αis
pi. (8)

. For P(s) to be i.d. it is necessary that p0 > 0. Suppose that c = 2. Then we have

G(s) = (1 − α)

 1∑
i=0

sipi



∞∑
j=0

(αs2) j

 =
∞∑

n=0

qnsn, (9)

where q0 = (1 − α)p0, q1 = (1 − α)p1 and q2 = (1 − α)α2p0. For P(s) to be i.d. it is necessary that 2q2q0 ≥ q2
1.

That is, 2α2p2
0 ≥ p2

1. This obviously does not hold always. Take for example, α = 1
2 = p0.

It is worth mentioning here that a geometric distribution on {0,1,2, . . . } has ALM property and is i.d.
The discussion above leads to a natural question (open) whether this characterizes geometric distribution.
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