
ProbStat Forum, Volume 05, April 2012, Pages 38–46
ISSN 0974-3235

ProbStat Forum is an e-journal.
For details please visit www.probstat.org.in

Wavelet linear estimation of a density and its derivatives from
observations of mixtures under quadrant dependence

Christophe Chesneau

Laboratoire de Mathématiques Nicolas Oresme (LMNO), Campus II, Science 3, 14032 Caen, France

Abstract. The estimation of a density and its derivatives from a finite mixture under the pairwise positive
quadrant dependence assumption is considered. A new wavelet based linear estimator is constructed. We
evaluate its asymptotic performance by determining an upper bound of the mean integrated squared error.
We prove that it attains a sharp rate of convergence for a wide class of unknown densities.

1. Introduction

The following mixture density model is considered: we observe n random variables X1, . . . ,Xn such
that, for any i ∈ {1, . . . ,n}, the density of Xi is the finite mixture:

hi(x) =

m∑
d=1

wd(i) fd(x), x ∈ [0, 1],

where

• m is a positive integer,

• (wd(i))(i,d)∈{1,...,n}×{1,...,m} are known positive weights such that, for any i ∈ {1, . . . ,n},

m∑
d=1

wd(i) = 1,

• f1, . . . , fm are unknown densities.

For a fixed ν ∈ {1, . . . ,m}, we aim to estimate fν and, more generally, its r-th derivative f (r)
ν from Pairwise

Positive Quadrant Dependent (PPQD) X1, . . . ,Xn.
Let us now present a brief survey related to this problem under various configurations. When X1, . . . ,Xn

are independent, the estimation of fν has been considered in e.g. [9], [5] and [14]. The estimation of its r-th
derivative f (r)

ν has been recently studied by [18] (this is particularly of interest to detect possible bumps,
concavity or convexity properties of fν). When X1, . . . ,Xn are identically distributed i.e. h = h1 = . . . = hn,
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the estimation of h for associated X1, . . . ,Xn (including PPQD) has been investigated in e.g. [1], [4], [11]
and [17]. The estimation of h(r) has been explored by [2]. However, to the best of our knowledge, the
combination of these two complex statistical frameworks i.e. the estimation of f (r)

ν , including fν, under
PPQD conditions is a new challenge.

Such a problem occurs in the study of medical, biological and other types of data. The most common
situation is the following: for any i ∈ {1, . . . ,n}, Xi depends on an unobserved random indicator Ii taking its
values in {1, . . . ,m}. Applying the Bayes theorem, the density of Xi is hi defined with wd(i) = P(Ii = d) and
fd the conditional density of Xi given {Ii = d}. Naturally, in some situations, X1, . . . ,Xn are not independent
and this motivates the study of various dependence structures as the PPQD one. Further details and
applications on the concept of PPQD can be found in [20], [19] and [21].

To estimate f (r)
ν , several methods are possible as kernel, splines, . . . (see e.g. [15, 16], [6] and [22]).

In this study, we focus our attention on the multiresolution analysis techniques and, more precisely, the
wavelet methodology of [14] and [18]. We construct a linear wavelet estimator and explore its asymptotic
performance by taking the mean integrated squared error (MISE) and assuming that f (r)

ν belongs to a Besov
ball. We prove that, under some specific assumptions, it attains a similar rate of convergence to the one
obtained in the independent case.

This paper is organized as follows. Assumptions on the model and some notations are introduced in
Section 2. Section 3 briefly describes the wavelet basis on [0, 1] and the Besov balls. The linear wavelet
estimator and the results are presented in Section 4. Section 5 is devoted to the proofs.

2. Assumptions

Additional assumptions on the model are presented below. The integers r and ν refer to those in f (r)
ν .

Assumption on f1, . . . , fm. Without loss of generality, for any d ∈ {1, . . . ,m}, we assume that the support of
fd is [0, 1] (our study can be extended to another compact support).

We suppose that there exists a constant C∗ > 0 such that, for any d ∈ {1, . . . ,m},

sup
x∈[0,1]

| f (r)
d (x)| ≤ C∗. (2.1)

We suppose that, for any d ∈ {1, . . . ,m} and v ∈ {0, . . . , r},

f (v)
d (0) = f (v)

d (1) = 0. (2.2)

Simple examples are densities of the form fd(x) = c−1xα(1 − x)β1d(x), x ∈ [0, 1], where α > r, β > r, 1d

is a positive function such that 1d ∈ C
r([0, 1]) and c =

∫ 1

0 xα(1 − x)β1d(x)dx. This includes some usual
distributions as Beta(α, β), Beta.mixture(α, β), . . . .

Assumption on the weights of the mixture. We suppose that the matrix

Γn =

1
n

n∑
i=1

wk(i)w`(i)


(k,`)∈{1,...,m}2

satisfies det(Γn) > 0. For the considered ν and any i ∈ {1, . . . ,n}, we set

aν(i) =
1

det(Γn)

m∑
k=1

(−1)k+νγn
ν,kwk(i), (2.3)

where γn
ν,k denotes the determinant of the minor (ν, k) of the matrix Γn.
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Then aν(1), . . . , aν(n) satisfy

(aν(1), . . . , aν(n)) = argmin
(u1,...,un)∈∩m

d=1Uν,d

1
n

n∑
i=1

u2
i , (2.4)

where

Uν,d =

(u1, . . . ,un) ∈ Rn;
1
n

n∑
i=1

uiwd(i) = δν,d


and δν,d denotes the Kronecker delta.

Technical details can be found in [9] and [18].

We set

zn =
1
n

n∑
i=1

a2
ν(i). (2.5)

For technical reasons, we suppose that (n/zn)1/(2r+1)
∈ (1,n).

Assumptions on X1, . . . ,Xn. We suppose that X1, . . . ,Xn are PPQD i.e. for any (i, `) ∈ {1, . . . ,n}2 with i , `
and any (x, y) ∈ [0, 1]2,

P(Xi > x,X` > y) ≥ P(Xi > x)P(X` > y). (2.6)

This kind of dependence has been introduced by [8]. Examples of PPQD variables can be found in
[21].

We suppose that, for any (i, `) ∈ {1, . . . ,n}2, there exists a constant C > 0 such that

sup
(x,y)∈[0,1]2

|hi,`(x, y) − hi(x)h`(y)| ≤ C, (2.7)

where hi,` denotes the density of (Xi,X`).

We suppose that there exists a constant C > 0 such that

n∑
i=2

i3
i−1∑
`=1

|aν(i)||aν(`)|Cov(Xi,X`) ≤ Cnzn, (2.8)

where Cov(., .) denotes the covariance, aν(1), . . . , aν(n) are (2.3) and zn is (2.5).

In particular, if there exist a constant C > 0 and a sequence of positive real numbers (bn)n∈N satisfying

•
∑
∞

n=1 bn < ∞,

• for any (i, `) ∈ {1, . . . ,n}2 with i , `, i3Cov(Xi,X`) ≤ Cb|i−`|,

then (2.8) is satisfied.

Note that (2.6), (2.7) and (2.8) include the independent case.
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3. Wavelets and Besov balls

Throughout the paper, we work with the wavelet basis on [0, 1] described below. Let φ and ψ be
the initial wavelet functions of the Daubechies wavelets db2N with N such that φ and ψ belong to Cr+1.
Furthermore, mention that φ and ψ are compactly supported. Set

φ j,k(x) = 2 j/2φ(2 jx − k), ψ j,k(x) = 2 j/2ψ(2 jx − k).

Then there exists a positive integer η satisfying 2η ≥ 2N such that, for any ` ≥ η, the collection

S = {φ`,k, k ∈ {0, . . . , 2` − 1}; ψ j,k; j ∈N − {0, . . . , ` − 1}, k ∈ {0, . . . , 2 j
− 1}},

with an appropriate treatment at the boundaries, is an orthonormal basis of L2([0, 1]) (the set of square-
integrable functions on [0, 1]).

For any integer ` ≥ η, any h ∈ L2([0, 1]) can be expanded on S as

h(x) =

2`−1∑
k=0

α`,kφ`,k(x) +

∞∑
j=`

2 j
−1∑

k=0

β j,kψ j,k(x), x ∈ [0, 1],

where

α j,k =

∫ 1

0
h(x)φ j,k(x)dx, β j,k =

∫ 1

0
h(x)ψ j,k(x)dx. (3.1)

Details can be found in [3] and [10].
In this paper we assume that f (r)

ν belongs to a subset of Besov space defined below. We say that a function
h ∈ L2([0, 1]) belongs to Bs

2,∞(M) if and only if there exists a constant M∗ > 0 (depending on M) such that
(3.1) satisfy

sup
j≥η

22 js
2 j
−1∑

k=0

β2
j,k ≤M∗.

For more details about wavelet basis, see [12] and [10].
The next section is devoted to our estimator and its asymptotic performances in term of MISE.

4. Estimator and results

Assuming that f (r)
ν ∈ Bs

2,∞(M) and using S, we define the linear wavelet estimator f̂ (r)
ν by

f̂ (r)
ν (x) =

2 j0−1∑
k=0

α̂(r)
j0,k
φ j0,k(x), x ∈ [0, 1], (4.1)

where

α̂(r)
j0,k

=
(−1)r

n

n∑
i=1

aν(i)(φ j0,k)(r)(Xi), (4.2)

aν(1), . . . , aν(n) are (2.3), j0 is the integer satisfying

1
2

( n
zn

)1/(2s+2r+1)
< 2 j0 ≤

( n
zn

)1/(2s+2r+1)

and zn is defined by (2.5).
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The definitions of α̂(r)
j0,k

and j0, which take into account the PPQD case, are chosen to minimize the MISE

of f̂ (r)
ν .
Note that f̂ (r)

ν is close to the estimator considered by [18, equation (4.5)] in the independent case. Further
details on derivatives density estimation via wavelet methods can also be found in [2] and [7].

Theorem 4.1 below investigates the MISE of f̂ (r)
ν when f (r)

ν ∈ Bs
2,∞(M).

Theorem 4.1. Let X1, . . . ,Xn be n random variables as described in Section 1 under the assumptions of Section 2.
Suppose that f (r)

ν ∈ Bs
2,∞(M) with s > 0. Let f̂ (r)

ν be (4.1). Then there exists a constant C > 0 such that

E

(∫ 1

0
( f̂ (r)
ν (x) − f (r)

ν (x))2dx
)
≤ C

(zn

n

)2s/(2s+2r+1)
.

The proof of Theorem 4.1 uses a moment inequality on (4.2) and a suitable decomposition of the MISE.
The obtained rate of convergence is the one related to the independent case i.e. (zn/n)2s/(2s+2r+1) (see [18,

Theorem 6.1 and Remark 6.1]).
Note that Theorem 4.1 can be extended to Pairwise Negative Quadrant Dependence X1, . . . ,Xn (this is

due to the Newman inequality [13, Lemma 3] used in the proof of Theorem 4.1 which still holds in this
case).

Remark that f̂ (r)
ν is not adaptive with respect to s. Adaptivity can perhaps be achieved by using a

non-linear wavelet estimator as the hard thresholding one. This approach works in the independent case
(see [14, Theorem 4]). However, the proof of this fact uses technical tools as the Bernstein and the Rosenthal
inequalities and it is not immediately clear how to extend this to the PPQD case.

5. Proofs

In this section, C denotes any constant that does not depend on j, k and n. Its value may change from
one term to another and may depends on φ.

Proposition 5.1. Let X1, . . . ,Xn be n random variables as described in Section 1 under the assumptions of Section
2. For any k ∈ {0, . . . , 2 j0 − 1}, let α(r)

j0,k
=

∫ 1

0 f (r)
ν (x)φ j0,k(x)dx and α̂(r)

j j0 ,k
be (4.2). Then there exists a constant C > 0

such that

E((α̂(r)
j0,k
− α(r)

j0,k
)2) ≤ C22rj0 zn

n
.

Proof of Proposition 5.1. Proceeding as in [18, equation (4.6)], it follows from (2.4) and r integrations by parts
with (2.2) that

E(α̂(r)
j0,k

) =
(−1)r

n

n∑
i=1

aν(i)E((φ j0,k)(r)(Xi))

=
(−1)r

n

n∑
i=1

aν(i)
∫ 1

0
(φ j0,k)(r)(x)hi(x)dx

= (−1)r
m∑

d=1

∫ 1

0
fd(x)(φ j0,k)(r)(x)dx

1
n

n∑
i=1

aν(i)wd(i)


= (−1)r

∫ 1

0
fν(x)(φ j0,k)(r)(x)dx =

∫ 1

0
f (r)
ν (x)φ j0,k(x)dx = α(r)

j0,k
.
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Therefore

E((α̂(r)
j0,k
− α(r)

j0,k
)2) = V(α̂(r)

j0,k
)

=
1
n2

n∑
i=1

n∑
`=1

aν(i)aν(`)Cov((φ j0,k)(r)(Xi), (φ j0,k)(r)(X`))

≤
1
n2

n∑
i=1

a2
ν(i)V((φ j0,k)(r)(Xi)) +

2
n2

n∑
i=2

i−1∑
`=1

|aν(i)||aν(`)||Cov((φ j0,k)(r)(Xi), (φ j0,k)(r)(X`))|. (5.1)

Let us bound the first term in (5.1). For any i ∈ {1, . . . ,n}, using (2.1) which implies supx∈[0,1] hi(x) ≤ C∗, the
equality (φ j0,k)(r)(x) = 2 j0/22rj0φ(r)(2 j0 x − k) and making the change of variable y = 2 j0 x − k, we have

V((φ j0,k)(r)(Xi)) ≤ E(((φ j0,k)(r)(Xi))2) =

∫ 1

0
((φ j0,k)(r)(x))2hi(x)dx

≤ C∗22rj0

∫
(φ(r)(y))2dy ≤ C22rj0 .

Therefore

1
n2

n∑
i=1

a2
ν(i)V((φ j0,k)(r)(Xi)) ≤ C22rj0 1

n2

n∑
i=1

a2
ν(i) = C22rj0 zn

n
. (5.2)

Let us now investigate the bound of the covariance term in (5.1) via two different approaches.

Bound 1. By a standard covariance equality and (2.7), for any (i, `) ∈ {1, . . . ,n}2 with i , `, we have

|Cov((φ j0,k)(r)(Xi), (φ j0,k)(r)(X`))|

=

∣∣∣∣∣∣
∫ 1

0

∫ 1

0
(hi,`(x, y) − hi(x)h`(y))(φ j0,k)(r)(x)(φ j0,k)(r)(y)dxdy

∣∣∣∣∣∣
≤

∫ 1

0

∫ 1

0
|hi,`(x, y) − hi(x)h`(y)||(φ j0,k)(r)(x)||(φ j0,k)(r)(y)|dxdy

≤ C
(∫ 1

0
|(φ j0,k)(r)(x)|dx

)2

.

Moreover, since (φ j0,k)(r)(x) = 2 j0/22rj0φ(r)(2 j0 x − k) , by the change of variables y = 2 j0 x − k, we obtain

∫ 1

0
|(φ j0,k)(r)(x)|dx = 2rj0 2− j0/2

∫
|φ(r)(y)|dy.

Therefore

|Cov((φ j0,k)(r)(Xi), (φ j0,k)(r)(X`))| ≤ C22rj0 2− j0 . (5.3)

Bound 2. Since X1, . . . ,Xn are PPQD, it follows from [13, Lemma 3] that, for any (i, `) ∈ {1, . . . ,n}2 with i , `,

|Cov((φ j0,k)(r)(Xi), (φ j0,k)(r)(X`))| ≤

 sup
x∈[0,1]

|(φ j0,k)(r+1)(x)|

2

Cov(Xi,X`).



C. Chesneau / ProbStat Forum, Volume 05, April 2012, Pages 38–46 44

Since (φ j0,k)(r+1)(x) = 2(2r+3) j0/2φ(r+1)(2 j0 x − k) and supx∈[0,1] |φ
(r+1)(x)| ≤ C, we have sup

x∈[0,1]
|(φ j0,k)(r+1)(x)|

2

≤ C2 j0(2r+3).

Therefore

|Cov((φ j0,k)(r)(Xi), (φ j0,k)(r)(X`))| ≤ C2 j0(2r+3)Cov(Xi,X`). (5.4)

Combining (5.3) and (5.4), for any (i, `) ∈ {1, . . . ,n}2 with i , `, we obtain

|Cov((φ j0,k)(r)(Xi), (φ j0,k)(r)(X`))| ≤ C min(2 j0(2r+3)Cov(Xi,X`), 22rj0 2− j0 ).
(5.5)

It follows from (5.5) and 2 j0 < n that the second term in (5.1) can be bound as

2
n2

n∑
i=2

i−1∑
`=1

|aν(i)||aν(`)||Cov((φ j0,k)(r)(Xi), (φ j0,k)(r)(X`))| ≤ C(E + F), (5.6)

where

E =
1
n2 22rj0 2− j0

2 j0−1∑
i=2

i−1∑
`=1

|aν(i)||aν(`)|

and

F =
1
n2 2 j0(2r+3)

n∑
i=2 j0

i−1∑
`=1

|aν(i)||aν(`)|Cov(Xi,X`).

Using |xy| ≤ (1/2)(x2 + y2), (x, y) ∈ R2, we have

E ≤ C
1
n2 22rj0 2− j0

2 j0−1∑
i=2

i−1∑
`=1

(
a2
ν(i) + a2

ν(`)
)

≤ C
1
n2 22rj0 2− j0 2 j0

n∑
i=1

a2
ν(i) = C22rj0 zn

n
. (5.7)

Using (2.8), it comes

F ≤
1
n2 22rj0

n∑
i=2

i3
i−1∑
`=1

|aν(i)||aν(`)|Cov(Xi,X`) ≤ C22rj0 zn

n
. (5.8)

Putting (5.1), (5.2), (5.6), (5.7) and (5.8) together, we obtain

E((α̂(r)
j0,k
− α(r)

j0,k
)2) ≤ C22rj0 zn

n
.

This ends the proof of Proposition 5.1. �

Proof of Theorem 4.1. We expand the function f (r)
ν on S as

f (r)
ν (x) =

2 j0−1∑
k=0

α(r)
j0,k
φ j0,k(x) +

∞∑
j= j0

2 j
−1∑

k=0

β(r)
j,kψ j,k(x), x ∈ [0, 1],
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where

α(r)
j0,k

=

∫ 1

0
f (r)
ν (x)φ j0,k(x)dx, β(r)

j,k =

∫ 1

0
f (r)
ν (x)ψ j,k(x)dx.

We have, for any x ∈ [0, 1],

f̂ (r)
ν (x) − f (r)

ν (x) =

2 j0−1∑
k=0

(α̂(r)
j0,k
− α(r)

j0,k
)φ j0,k(x) −

∞∑
j= j0

2 j
−1∑

k=0

β(r)
j,kψ j,k(x).

Since S is an orthonormal basis of L2([0, 1]), we have

E

(∫ 1

0
( f̂ (r)
ν (x) − f (r)

ν (x))2dx
)

= A + B,

where

A =

2 j0−1∑
k=0

E((α̂(r)
j0,k
− α(r)

j0,k
)2), B =

∞∑
j= j0

2 j
−1∑

k=0

(β(r)
j,k)2.

Using Proposition 5.1 and the definition of j0, we obtain

A ≤ C2 j0 22rj0 zn

n
≤ C

(zn

n

)2s/(2s+2r+1)
.

Since f (r)
ν ∈ Bs

2,∞(M), we have

B ≤ C
∞∑

j= j0

2−2 js
≤ C2−2 j0s

≤ C
(zn

n

)2s/(2s+2r+1)
.

Therefore

E

(∫ 1

0
( f̂ (r)
ν (x) − f (r)

ν (x))2dx
)
≤ C

(zn

n

)2s/(2s+2r+1)
.

The proof of Theorem 4.1 is complete. �
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[13] Newman, C.M. (1980) Normal fluctuations and the FKG inequalities, Commun. Math. Phys. 74, 119-128.
[14] Pokhyl’ko, D. (2005) Wavelet estimators of a density constructed from observations of a mixture, Theor. Prob. and Math. Statist.

70, 135-145.
[15] Prakasa Rao, B.L.S. (1983) Nonparametric functional estimation, Academic Press, Orlando.
[16] Prakasa Rao, B.L.S. (1999) Nonparametric functional estimation: an overview, Asymptotics, Nonparametrics and Time Series,

Ed. Subir Ghosh, 461-509, Marcel Dekker Inc., New York.
[17] Prakasa Rao, B.L.S. (2003) Wavelet linear density estimation for associated sequences, Journal of the Indian Statistical Association

41, 369-379.
[18] Prakasa Rao, B.L.S. (2010) Wavelet linear estimation for derivatives of a density from observations of mixtures with varying

mixing proportions, Indian Journal of Pure and Applied Mathematics 41(1) 275-291.
[19] Prakasa Rao, B.L.S., Dewan, I. (2001) Associated sequences and related inference problems, Handbook of Statistics, 19, Stochastic

Processes: Theory and Methods, (eds. C.R. Rao and D.N. Shanbag), 693-728, North Holland, Amsterdam.
[20] Roussas, G.G. (1999) Positive and negative dependence with some statistical applications, Asymptotics, nonparametrics and

time series (ed. S. Ghosh), 757-788, Marcel Dekker, New York.
[21] Sancetta, A. (2009) Strong law of large numbers for pairwise positive quadrant dependent random variables, Statistical Inference

for Stochastic Processes 12(1) 55-64.
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