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Abstract. In this paper we investigate utility of conditional and marginal likelihood approach for estimat-
ing inflation parameter form zero inflated Poisson regression. We consider a hospital based prospective
study in which factors associated with number of adverse drug reactions is of interest. Further number of
Adverse Drug Reactions (ADR) depends on length of stay in hospital. In first method we consider length of
stay as an offset variable and estimate estimates of inflation parameter and factors associated with Number
of ADR. In second method we consider length of stay as a random effect which follows exponential distri-
bution and estimated estimate of inflation parameter, factors associated with mean response by considering
marginal distribution of mean response. The marginal distribution turns out to be zero inflated geomet-
ric distribution. Further simulation study was performed to investigate the validity of the exponential
distribution assumptions. Results from simulation study suggest that estimation of coverage probability
and average length of confidence interval for inflation parameter by condition likelihood method performs
better than marginal likelihood methods.

1. Introduction

In current days count regression is a wide tool among practitioners to analyze count data. We encounter
count data in various disciplines. Logistic, Poisson, negative binomial, log binomial are commonly used
models. These models do not fit if number of zero is more than determined by the corresponding probability
distribution. Zero inflated models are alternative to these models where additional probability was assigned
for occurrence of zero. The commonly used models are zero inflated Poisson (ZIP), zero inflated negative
binomial models (ZIGP) and zero inflated generalized Poisson (ZIGP). Lambert (1992) used zero inflated
Poisson regression for modeling number of defects in manufacturing. This model has received much
attention in the literature in recent times. Van den Broek (1995) demonstrated its usefulness in modeling the
frequency of urinary tract infection of HIV-infected men, where the majority of patients have zero number
of episodes. Miaou (1994) analyzed the relationship between truck accidents and the geometric design
of roads based on the ZIP structure. Bohning et al. (1999) further applied the ZIP model to study caries
prevention in dental epidemiology.

In follow up studies such as cohort studies or prospective study number of times a condition recurred or
number of adverse drug reactions (ADR) are of common interest. We consider hospital based prospective
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study by Thiyagu et al. (2011) where information of number of adverse drug reaction(ADR), length of stay
in hospital was collected. The objective of study is to find the factors associated with ADR. Further 59.2%
of subjects are not having ADR. Since ZIP model fits well to the data, We used this model to find factors
associated with ADR and to predict the proportion of people who are not having ADR. Further, Patel
VK (2011) showed that number of days of hospital stay is a factor associated with ADR. In this paper we
discuss conditional and marginal inferences for variables associated with mean response and estimation of
inflation parameter W in zero inflated Poisson regression model by both approaches. In first approach we
took length of stay as a offset variable and variables associated with mean response (λ), estimate of inflation
parameter was estimated. In second approach we assumed length of stay in hospital as a random effect
which follows exponential distribution with mean θ. Further marginal distribution of mean response with
length of stay as exponentially distributed turn out to be geometric distribution with parameter p which
depend on λ and θ. We had considered zero inflated geometric distribution to model inflation parameter W
and mean response P. Inferences obtained from conditional and marginal likelihood methods for inflation
parameter and mean response was compared. To validate the assumption of exponential distribution for
length of stay in hospital, we empirically verified exponential distribution assumption by using a chi-square
goodness of fit. Simulation study were performed to check the performance of both methods in estimating
inflation parameter W. We estimated coverage probability for inflation parameter through simulations by
generating random observation from zero inflated Poisson model with mean λ depending upon θ from
exponential distribution.

The organization of paper is as follows. In Section 2 we present the notations and estimation of
parameters by both approaches. In Section 3 we present case study and present results of estimates by both
approaches. In Section 4 we present results of simulation study, conclusion and discussion in Section 5.
Results of case study suggest that for factors associated with mean response by both methods will give same
inferences in selection of variable and direction of association. Further from simulation study estimation of
coverage probability and average length of confidence interval for inflation parameter through conditional
likelihood method is performing better than estimation through marginal likelihood approach.

2. Notation and estimation of parameters

The probability mass function of zero inflated Poisson distribution with parameter W, λ is given by

f (yi,w, λi) =

w + (1 − w)e−λi yi = 0,
(1−w)e−λiλi

yi yi , 0,
λ > 0, 0 < w < 1.

Mean λ is model to set of covariates with offset variable ti using log link function and is given by

λi = (1/ti) exp(B′Xi).

With B = (B0,B1, . . . ,Bk−1) a k dimensional vector of regression coefficients and Xi = (Xi0,Xi1, . . . ,Xi,k−1) is a
vector of covariates.

The conditional log likelihood function for zero inflated Poisson distribution with parameters w, λwith
ti as offset variable based on random sample of size n is given by

log(L(Y,w, λi, ti)) =

n∑
i=1

di log(w + (1 − w) exp(− exp(B′Xi)/ti))

+

n∑
i=1

(1 − di)(log(1 − w) − exp(B′Xi)/ti + yi log(exp(B′Xi)/ti) − log(yi!)

where di = 1 if yi = 0 else di = 0.
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The Maximum likelihood (ML) equations for estimation of w, B0, . . . ,Bk−1 is given by

∂ log L
∂w

=
∑ di{1 − exp(− exp(B′Xi)/ti)}

[w + (1 − w) exp(− exp(B′Xi)/ti)]
−

∑ (1 − ∂i)
1 − w

∂ log L
B j

= −
∑ di(1 − w) exp(− exp(B′Xi)t−1

i ) exp(B′Xi)t−1
i Xi j}

[w + (1 − w) exp(− exp(B′Xi)t−1
i )]

−

∑
(1 − di)(yiXi j − exp(B′Xi)t−1

i Xi j).

Solving above ML equation by equating it to zero yields ML estimator of regression parameters and inflation
parameters. Newton Raphson iterative method was used for estimation. The estimate of standard errors of
regression parameters and inflation parameters can be obtained from inverse of observed fisher information
matrix O. The elements in O given by

∂2 log L
∂w2 =

∑ di(1 − exp(t−1
i exp(−B′i Xi)))2

[w + (1 − w) exp(− exp(B′Xi)t−1
i )]2

−

∑ (1 − di)
(1 − p)2

∂2 log L
∂w∂B j

= −
∑ di(exp(ti exp(−BiXi))t−1

i Xi j exp(B′i Xi)

[w + (1 − w) exp(− exp(B′Xi)t−1
i )]2

∂2 log L
∂B2

j

=
∑ di{(1 − w) exp(− exp(B′Xi)t−1

i ) exp(B′i Xi)t−1
i Xi j

[w + (1 − w) exp(− exp(B′Xi)t−1
i )]2

−

∑ di(1 − w) exp(− exp(B′Xi)t−1
i ) exp(2B′Xi)t−1

i X2
i j{1 − t−1

i }

[w + (1 − w) exp(− exp(B′Xi)t−1
i )]

−

∑
(1 − di)(exp(B′Xi)t−1

i X2
i j)

∂ log L
∂B j∂Bk

=
∑ di{(1 − w) exp(− exp(B′Xi)t−1

i ) exp(B′Xi)t−1
i }

2Xi jXik

[w + (1 − w) exp(−exp(B′Xi)t−1
i )]2

−

∑ di(1 − w) exp(− exp(B′Xi)t−1
i ) exp(2B′Xi)t−1

i Xi jXik{1 − t−1
i }

[w + (1 − w) exp(− exp(B′Xi)t−1
i )]∑

(1 − di)(exp(B′Xi)t−1
i Xi jXik)

Taking the distribution of length of stay as exponential with mean θ, the marginal distribution of Count
outcome variable follow zero inflated geometric distribution with parameters W, λ, θ and is given by

f (yi,w, λi, θ) =

w + (1 − w)Pi yi = 0
(1 − w)Pi(1 − Pi)yi yi , 0

0 < w, Pi < 1, Pi =
θi

λi + θi

We will model P to set of covariates using logit link as

lo1it(Pi) = log(Pi/(1 − Pi)) = G′Xi

With G = (G0,G1, . . . ,Gk−1) a k dimensional vector of regression coefficients and Xi = (Xi0,Xi1, . . . ,Xik−1)
is a vector of covariates. We had used different notations for representing regression parameters used in
conditional and marginal approach. Here we use G for regression parameters.

The log likelihood function is given by

log(L) =
∑

d(yi) log(w +
(1 − w) exp(G′Xi)

1 + exp(G′Xi)
) +
∑

(1−d(yi))(log(1−w) + G′Xi− (yi + 1) log(1 + exp(G′Xi))).

The Maximum likelihood equation for estimating regression parameter is given by

∂ log L
∂w

=
∑ d(yi)

w + exp(G′Xi)
−

∑ (1 − d(y))
(1 − w)

∂ log L
∂G j

=
∑ d(yi)Xi j exp(G′Xi)(1 − w)

w + exp(G′Xi)
+
∑ (1 − d(yi))Xi j exp(G′Xi)(1 − yi exp(G′Xi))

(1 + exp(G′Xi))
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Solving above ML equation by equating it to zero yields ML estimators of regression parameters G and
inflation parameters w. Newton Raphson iterative method was used for estimation. The estimate of
standard errors of regression parameters and inflation parameters can be obtained from inverse of observed
fisher information matrix O1. The elements in O1 is given by

∂2 log L
∂w2 = −

∑ d(yi)
(w + exp(G′Xi))2 −

∑ (1 − d(y))
(1 − w)2

∂2 log L
∂w∂G j

= −
∑ d(yi) exp(G′Xi)Xi j

(w + exp(G′Xi))2

∂2 log L
∂Gk∂G j

=
∑ d(yi)(1 − w) exp(G′Xi)Xi jXik

(w + exp(G′Xi))2 −

∑ (1 − d(yi)) exp(G′Xi)(yi + 1)Xi jXik

(1 + exp(G′Xi))2

∂2 log L
∂G2

j j

=
∑ d(yi)(1 − w) exp(G′Xi)X2

i j

(w + exp(G′Xi))2 −

∑ (1 − d(yi)) exp(G′Xi)(yi + 1)X2
i j

(1 + exp(G′Xi))2

3. Case study

In this section we consider prospective study of Thiyagu (2011) in which factors associated with Adverse
drug reaction (ADR) is studied. The outcome variable of interest is number of Adverse drug reaction and
covariates used were age, gender and different types of drugs given. The identity of the drugs has been
hidden in the data. For sake of simplicity we call these drugs as D1, D2, D3, and D4. Our intention is
to estimate the proportion of no drug reactions. We had used chi-square goodness of fit for testing zero
inflated Poisson, exponential distribution assumption for number of ADR and length of stay in hospital.
Both distribution fit well with the observed data (p = 0.901 for Number of ADR and P = 0.752 for
length of stay in hospital). There were 959 participants with 59.8% of people not having ADR. We used
both conditional and marginal approaches for estimating inflation parameter and factors associated with
number of ADR .The results obtained from both approaches are given in table 1.

Table 1: Estimate of inflation parameter and covariates associated with number of ADR by conditional and marginal likelihood
Conditional approach Marginal Approach

Variable B(standard error) P value G(standard error) P value
Inflation Parameter w 0.58 (0.05) < 0.001 0.61 (0.07) < 0.001

Age 0.036 (0.006) P < 0.001 0.59 (0.23) 0.005
Gender (Females) 0.35 (0.16) 0.032 0.027 (0.003) < 0.001

D1 -0.74 (0.29) .012 -0.47 (0.13) < 0.001
D2 -1.03 (0.24) P < 0.001 -0.77 (0.32) 0.008
D3 0.42 (0.19) .024 0.32 (0.065) P < 0.001
D4 0.41 (0.12) .038 0.28 (0.03) P < 0.001

We can observe that in both methods estimate of inflation parameter are very close to observed one.
Further the regression parameters obtained from both methods have same direction of magnitude. Also we
adopted backward selection criteria for selection of variable. The probability of removal of variable at each
step was fixed at 0.25 (Hosmer & Lemshow). Both methods arrive at same set of regression parameters in
final step. In next section we present the results of simulation study for estimating coverage probability
and average length of confidence interval when distribution of length of stay is correctly specified and
misspecified.

4. Simulation study

A confidence interval for estimating a parameter of a probability distribution must show two basic
properties. First, it must contain the value of the parameter with a prescribed probability (the confidence
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level) and second, it must be as narrow as possible in order to be useful. In practice a precise confidence
interval is a one which has better coverage probability and smaller average length. In this section we
estimate coverage probability (CP) and average length (AL) for the interval estimate of inflation parameter
in ZIP by conditional and marginal likelihood approach by simulation study. We estimated CP and AL
for inflation parameter in presence of discrete, continuous and no covariates for mean response. Further
we had checked the validity of exponential distribution in estimating CP and AL by mispecifying the
distribution. The simulation configuration for estimating CP and AL is as follows.

Table 2: Estimated coverage probability (CP) and average length of interval (AL) for inflation parameter with no covariates for mean
response and distribution for length of stay is correctly specified

N = 50 λ = 2, t ∼ exp(7) λ = 4, t ∼ exp(7)
W Marginal CP(AL) Conditional CP(AL) Marginal CP(AL) Conditional CP(AL)
0.2 0.941 (0.22) 0.945 (0.21) 0.93 (0.23) 0.945 (0.21)
0.3 0.939 (0.25) 0.943 (0.23) 0.932 (0.26) 0.943 (0.23)
0.4 0.935 (0.29) 0.944 (0.24) 0.931 (0.27) 0.944 (0.24)
0.5 0.938 (0.28) 0.942 (0.27) 0.94 (0.29) 0.942 (0.27)
0.6 0.937 (0.27) 0.941 (0.23) 0.937 (0.23) 0.941 (0.23)
N = 100
0.2 0.942 (0.18) 0.947 (0.14) 0.942 (0.17) 0.947 (0.14)
0.3 0.944 (0.2) 0.945 (0.17) 0.944 (0.18) 0.945 (0.17)
0.4 0.947 (0.21) 0.948 (0.15) 0.947 (0.19) 0.948 (0.15)
0.5 0.944 (0.18) 0.944 (0.13) 0.944 (0.19) 0.944 (0.13)
0.6 0.945 (0.19) 0.942 (0.14) 0.945 (0.17) 0.942 (0.14)

Level of Significance was fixed at 5% and sample size used for estimating AL and CP was 50, 100.
The value of inflation parameter considered was 0.2, 0.3, 0.4, 0.5, 0.6. The value of mean response was
set at l = 2, 4 in without covariates case. For discrete covariates we considered following two models
namely log(l) = (1/t) exp(−0.69 + .9X1), log(l) = (1/t) exp(−0.69 − 0.28X2) with X1, X2 binary covariates
generated from Bernoulli distribution with probability 0.6, 0.3.For continuous covariate we considered
log(l) = (1/t) exp(−0.6 + .5X3), log(l) = (1/t) exp(−0.6 − 0.15X4), with X3,X4 generated from standard
normal distribution. Distribution of length of stay was considered to be Exponential with mean 7 under
correct specification and uniform (0,7) under misspecification. Total number of simulations carried out for
estimation was 1,00,000. Matlab software was used for simulations.

Table 3: Estimated coverage probability (CP) and average length of interval (AL) for inflation parameter with no covariates for mean
response and distribution for length of stay is misspecified

N = 50 λ = 2, t ∼ Uniform (0,7) λ = 4, t ∼ Uniform (0,7)
W Marginal CP(AL) Conditional CP(AL) Marginal CP(AL) Conditional CP(AL)
0.2 0.89 (0.27) 0.94 (0.21) 0.87 (0.31) 0.942 (0.21)
0.3 0.92 (0.29) 0.939 (0.22) 0.91 (0.32) 0.944 (0.23)
0.4 0.91 (0.24) 0.944 (0.25) 0.89 (0.28) 0.941 (0.24)
0.5 0.88 (0.29) 0.942 (0.28) 0.86 (0.31) 0.943 (0.27)
0.6 0.91 (0.27) 0.943 (0.24) 0.88 (0.29) 0.942 (0.23)
N = 100
0.2 0.92 (0.22) 0.948 (0.17) 0.91 (0.25) 0.947 (0.14)
0.3 0.93 (0.24) 0.946 (0.16) 0.93 (0.28) 0.945 (0.12)
0.4 0.93 (0.2) 0.948 (0.17) 0.91 (0.27) 0.946 (0.14)
0.5 0.92 (0.22) 0.944 (0.18) 0.92 (0.25) 0.946 (0.15)
0.6 0.92 (0.25) 0.942 (0.16) 0.91 (0.24) 0.945 (0.12)
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Table 2–3 presents the results of simulation study for estimation CP and AL for inflation parameter with
no covariates for mean response with distribution of length of stay correctly specified and misspecified.
Further the estimated CP and AL for estimation of inflation parameter with discrete, continuous covariate
for mean response when distribution of length of stay is correctly specified and misspecified is given in
Table 4–7.

Table 4: Estimated coverage probability (CP) and average length of interval (AL) for inflation parameter with binary covariates for
mean response and distribution for length of stay is correctly specified

N = 50 log(λ) = (1/t) exp(−0.69 + 0.9X1), log(λ) = (1/t) exp(−0.69 − 0.28X2),
t ∼ exp (7) t ∼ exp (7)

W Marginal CP(AL) Conditional CP(AL) Marginal CP(AL) Conditional CP(AL)
0.2 0.931 (0.26) 0.942 (0.25) 0.932 (0.25) 0.943 (0.24)
0.3 0.935 (0.25) 0.941 (0.24) 0.937 (0.26) 0.945 (0.25)
0.4 0.917 (0.29) 0.943 (0.27) 0.924 (0.29) 0.941 (0.27)
0.5 0.927 (0.25) 0.941 (0.23) 0.932 (0.24) 0.942 (0.23)
0.6 0.933 (0.27) 0.944 (0.25) 0.939 (0.27) 0.944 (0.23)
N=100
0.2 0.942 (0.25) 0.947 (0.24) 0.941 (0.24) 0.947 (0.21)
0.3 0.944 (0.23) 0.946 (0.23) 0.943 (0.23) 0.949 (0.23)
0.4 0.937 (0.25) 0.946 (0.24) 0.945 (0.27) 0.948 (0.24)
0.5 0.939 (0.24) 0.945 (0.211) 0.943 (0.21) 0.947 (0.21)
0.6 0.942 (0.29) 0.948 (0.21) 0.943 (0.23) 0.949 (0.22)

Table 5: Estimated coverage probability (CP) and average length of interval (AL) for inflation parameter with binary covariates for
mean response and distribution for length of stay is misspecified

N = 50 log(λ) = (1/t) exp(−0.69 + 0.9X1), log(λ) = (1/t) exp(−0.69 − 0.28X2),
t ∼ Uniform (0,7) t ∼ Uniform (0,7)

W Marginal CP(AL) Conditional CP(AL) Marginal CP(AL) Conditional CP(AL)
0.2 0.88 (0.27) 0.941 (0.26) 0.87 (0.28) 0.942 (0.26)
0.3 0.89 (0.29) 0.942 (0.25) 0.89 (0.27) 0.944 (0.25)
0.4 0.91 (0.29) 0.941 (0.26) 0.88 (0.29) 0.942 (0.27)
0.5 0.91 (0.26) 0.943 (0.25) 0.91 (0.25) 0.943 (0.24)
0.6 0.92 (0.26) 0.947 (0.25) 0.90 (0.26) 0.944 (0.24)
N=100
0.2 0.91 (0.24) 0.949 (0.24) 0.911 (0.26) 0.947 (0.24)
0.3 0.91 (0.27) 0.948 (0.23) 0.917 (0.25) 0.948 (0.23)
0.4 0.92 (0.27) 0.947 (0.23) 0.912 (0.26) 0.947 (0.24)
0.5 0.92 (0.23) 0.947 (0.21) 0.933 (0.23) 0.948 (0.21)
0.6 0.93 (0.23) 0.949 (0.21) 0.921 (0.23) 0.949 (0.21)

We can observe from above tables that the coverage probability for estimating inflation parameter is more
for conditional likelihood method than marginal likelihood in all cases. Further coverage probability for
marginal likelihood method reduces with distribution of length of stay is misspecified. The average length
of interval is shorter for conditional likelihood approach in most of cases under different combinations of
covariates specified for mean response l.

5. Discussion and conclusion

It is practice to use Poisson regression to estimate relative risk for count outcome in follow up studies.
Further Guangyong and Zou suggested modified Poisson regression for estimating relative risk in prospec-
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Table 6: Estimated coverage probability (CP) and average length of interval (AL) for inflation parameter with continuous covariates
for mean response and distribution for length of stay is correctly specified

N = 50 log(λ) = (1/t) exp(−0.6 + 0.5X3), log(λ) = (1/t) exp(−0.6 − 0.15X4),
t ∼ exp(7) t ∼ exp(7)

W Marginal CP(AL) Conditional CP(AL) Marginal CP(AL) Conditional CP(AL)
0.2 0.93(0.25) 0.941(0.21) 0.87(0.28) 0.941(0.25)
0.3 0.917(0.24) 0.937(0.23) 0.89(0.27) 0.942(0.21)
0.4 0.924(0.27) 0.942(0.24) 0.88(0.29) 0.943(0.27)
0.5 0.918(0.26) 0.941(0.24) 0.91(0.25) 0.942(0.24)
0.6 0.931(0.24) 0.939(0.22) 0.937(0.23) 0.941(0.22)
N=100
0.2 0.940(0.23) 0.949(0.18) 0.939(0.23) 0.947(0.24)
0.3 0.931(0.21) 0.946(0.19) 0.942(0.21) 0.949(0.2)
0.4 0.937(0.24) 0.948(0.21) 0.937(0.27) 0.947(0.22)
0.5 0.933(0.23) 0.947(0.19) 0.935(0.22) 0.948(0.21)
0.6 0.942(0.21) 0.946(0.21) 0.941(0.23) 0.946(0.21)

Table 7: Estimated coverage probability (CP) and average length of interval (AL) for inflation parameter with continuous covariates
for mean response and distribution for length of stay is correctly misspecified

N = 50 log(λ) = (1/t) exp(−0.6 + 0.5X3), log(λ) = (1/t) exp(−0.6 − 0.15X4),
t ∼ Uniform(0,7) t ∼ Uniform(0,7)

W Marginal CP(AL) Conditional CP(AL) Marginal CP(AL) Conditional CP(AL)
0.2 0.912(0.29) 0.942(0.24) 0.891(0.27) 0.941(0.25)
0.3 0.907(0.25) 0.941(0.23) 0.912(0.24) 0.942(0.23)
0.4 0.903(0.38) 0.944(0.25) 0917(0.28) 0.945(0.27)
0.5 0.917(0.29) 0.943(0.26) 0.920(0.26) 0.947(0.23)
0.6 0.891(0.28) 0.942(0.24) 0.897(0.26) 0.943(0.23)
N=100
0.2 0.920(0.27) 0.949(0.23) 0.922(0.26) 0.947(0.24)
0.3 0.927(0.23) 0.948(0.21) 0.929(0.24) 0.948(0.23)
0.4 0.93(0.27) 0.949(0.22) 0.931(0.27) 0.949(0.21)
0.5 0.932(0.24) 0.946(0.24) 0.937(0.23) 0.949(0.19)
0.6 0.910(0.26) 0.94(0.22) 0.932(o.23) 0.949(0.19)

tive studies. Also one can use random effect Poisson regression for estimating relative risk. It is practice
to assume distribution of random effects as normal. In real situations this may not be appropriate. We
considered a case study of number of hospitalized adverse drug reaction from 959 subjects where proba-
bility of zero is more than expected through Poisson regression model. Further number of adverse drug
reactions depends on length of stay in hospital. We had used Zero inflated Poisson regression to model this
data with length of stay as an offset variable and random effect. In later we assumed the distribution of
random effect as exponential distribution. The parameters were estimated using conditional and marginal
likelihood approach and results were compared. Both methods give same set of covariates and precise
estimate of inflation parameter. Further to validate the assumption of exponential distribution for random
effect we performed simulation study to investigate coverage probability and average length of confidence
interval of inflation parameter when distribution of random effect is correctly specified and misspecified.
Results indicate that estimate of coverage probability and average length of confidence interval of inflation
parameter was better for conditional likelihood approach than marginal likelihood approach. Further when
distribution of random effects in misspecified, conditional likelihood method performs better than marginal
likelihood method. In marginal likelihood approach, the coverage probability for interval estimate of infla-
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tion parameter drops down substantially when distribution of random effects is misspecified. In practice
we recommend to use conditional likelihood method to model count outcome from a prospective study.
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