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A note on entropies of l-max stable, p-max stable, generalized Pareto
and generalized log-Pareto distributions
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Abstract. Limit laws of partial maxima of independent, identically distributed random variables under
linear normalization are called extreme value laws or l-max stable laws and those under power normal-
ization are called p-max stable laws. We derive entropies of these and related laws and also of associated
generalized Pareto, generalized log-Pareto and related distributions. Some illustrative graphs are also
given.

1. Entropies of limit laws of normalized partial maxima

Shannon (1948) defines entropy of an absolutely continuous random variable (rv) X with distribution
function (df) FX and probability density function (pdf) fX as

H(X) = E(− ln fX(x)) = −

∫
∞

−∞

fX(x) ln fX(x)dx, (1)

with the convention that the integral is over all real values for which the density is positive. Since then
many authors have studied entropy and its properties. A df that maximizes entropy within a class of dfs
often turns out to have favourable properties as is known that the normal df has maximum entropy in the
class of dfs having a specified variance. Johnson (2006) is a good reference to the application of entropy
and information theory to limit theorems, especially the central limit theorem. See also Barron (1986) and
Gnedenko and Korolev (1996) for important work on entropy related to limit theorems.

Extreme value laws have found applications in modelling partial maxima of independent, identically
distributed (iid) random variables (rvs). Extreme value laws are limit laws of linearly normalized partial
maxima of iid rvs. Limit laws of power normalized partial maxima of iid rvs have been called p-max stable
laws.

In this note, our main interest is to derive entropies of extreme value laws, p-max stable laws and the
related generalized Pareto, generalized log-Pareto distributions and a few of their generalizations. In the
next sub-section we state and prove a few preliminary results on entropies which will be used in subsequent
sections. Section 1.2 introduces extreme value laws followed by a sub-section on entropies of these laws.
Section 1.4 is an introduction to the p-max stable laws followed by a sub-section on their entropies. Section
2 is on entropies of generalized Pareto and generalized log-Pareto laws. After introducing generalized
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Pareto laws in Section 2.1, we discuss their entropies in Section 2.2. Section 2.3 introduces the generalized
log-Pareto laws and Section 2.4 is on the entropies of these laws. An appendix contains some illustrative
three dimensional graphs of entropies discussed in this note.

Notation 1.1. Unless otherwise specified, throughout this note, we shall use the following notations. Let X be an
absolutely continuous rv with df FX and pdf fX and let a > 0, b ∈ R, and c > 0 denote scale, location and shape
constants, respectively. The df of rv Y is denoted by FY and its pdf by fY. Let A = {x : fX(x) > 0}. The Euler’s constant
with approximate value 0.577 is denoted by γ = −

∫
∞

0 (ln u)e−udu.

1.1. A few preliminary results on entropy

Lemma 1.2. If Y = (X − b)/a, then the entropy of Y is given by H(Y) = −(ln a) +H(X).

Proof. We have

FY(y) = P
(
X ≤ ay + b

)
= FX

(
ay + b

)
, fY(y) = a fX(ay + b), so that from (1),

H(Y) = −

∫
∞

−∞

(
ln(a fX(ay + b)

)
a fX(ay + b)dy

= −

∫
∞

−∞

(ln(a fX(z))) fX(z)dz

= −(ln a) + H(X).

Lemma 1.3. If X is positive valued and Y = (Xc
− b)/a, then the entropy of Y is given by

H(Y) = −
(
ln

a
c

)
+ (c − 1)EX(ln X) + H(X).

Proof. We have

FY(y) = P
(
X ≤ (ay + b)

1
c

)
= FX

(
(ay + b)

1
c

)
, y > −

b
a
,

fY(y) =
a
c

(ay + b)
1−c

c fX
(
(ay + b)

1
c

)
, y > −

b
a
, (2)

and as in the proof of the previous lemma, we have

H(Y) = −

∫
∞

0

(
ln

(a
c

z1−c fX(z)
))

fX(z)dz, upon simplification,

= −

(
ln

a
c

)
+ (c − 1)EX(ln X) + H(X).

Lemma 1.4. If X is negative valued and Y = −((−X)c
− b)/a, then the entropy of Y is given by

H(Y) = −
(
ln

a
c

)
+ (c − 1)EX(ln(−X)) + H(X).

Proof. We have

FY(y) = P
(
X ≤ −(−ay + b)

1
c

)
= FX

(
−(−ay + b)

1
c

)
, y < b/a,

fY(y) =
a
c

(−ay + b)
(1−c)

c fX
(
−(−ay + b)

1
c

)
, y < b/a, (3)
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and as in the proof of Lemma 1.2, we have

H(Y) = −

∫ 0

−∞

(
ln

(
−

a
c

(−z)1−c fX(z)
))

fX(z)dz, upon simplification,

= −

(
ln

a
c

)
+ (c − 1)EX(ln(−X)) + H(X).

Remark 1.5. Note that the entropies in the above lemmata do not depend on the location parameter b.

1.2. Extreme value laws

If X1, X2, . . . , Xn, n ≥ 1, are iid rvs with common df F, Mn = X1 ∨ . . . ∨ Xn and

lim
n→∞

P(Mn ≤ anx + bn) = lim
n→∞

Fn(anx + bn) = G(x), x ∈ C(G), (4)

for some norming constants an > 0, bn ∈ R, and some non-degenerate df G, where C(G) is the set of all
continuity points of G, we then say that F belongs to the max domain of attraction of G under linear
normalization and denote it by F ∈ Dl(G). Using logarithms and the fact that limx→1

(− ln x)
1−x = 1, it is easy to

see that (4) is equivalent to

lim
n→∞

n {1 − F(anx + bn)} = − ln G(x), x ∈ {y : G(y) > 0}. (5)

Limit dfs G satisfying (4) are the well known extreme value types of distributions, namely,

the Fréchet law: Φα(x) =

{
0, x < 0,

e−x−α , 0 ≤ x;

the Weibull law: Ψα(x) =

{
e−(−x)α , x < 0,

1, 0 ≤ x;

and the Gumbel law: Λ(x) = e−e−x
, x ∈ R;

α > 0 being a parameter, with respective pdfs,

the Fréchet density: φα(x) =

{
0, x ≤ 0,

αx−(α+1)e−x−α , 0 < x;

the Weibull density: ψα(x) =

{
α|x|α−1e−|x|α , x < 0,

0, 0 ≤ x;

and the Gumbel density: λ(x) = e−xe−e−x
, x ∈ R.

Here two dfs G and H are said to be of the same type if G(x) = H(Ax + B), x ∈ R, for constants A > 0, B ∈ R.
Criteria for F ∈ Dl(G) are well known (see, for example, Embrechts et al. (1997); Galambos (1987); Resnick
(1987)).

It is well known that if G is an extreme value distribution, then G is max stable in the sense that G
satisfies Gn(anx + bn) = G(x), x ∈ R; for some constants an > 0, bn ∈ R. If rv X has a max stable distribution
G then for scale and location constants a > 0, b ∈ R, Y = X−b

a has df FY(y) = P(X ≤ ay + b) = G(ay + b), y ∈ R.
For constants cn > 0, dn ∈ R, we then have

Fn
Y(cny + dn) = Gn(a(cny + dn) + b) = Gn(acny + adn + b),

= Gn(an(ay + b) + bn) = G(ay + b) = FY(y), y ∈ R,

with an = acn > 0, and bn = adn + b(1 − an). Hence the df of Y, FY is also max stable.
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If rv X has the Fréchet law Φα, then the rv Y = Xc, c > 0, has df Φ α
c
, since P(Y ≤ y) = P(X ≤ y

1
c ) = e−y−

α
c ,

y > 0. Similarly, if rv X has the Weibull law Ψα, then the rv Y = − |X|c has df Ψ α
c
, since P(Y ≤ y) = P(− |X|c ≤

y) = P(X ≤ −
∣∣∣y∣∣∣ 1

c ) = e−|y|
α
c
, y ≤ 0.

1.3. Entropies of extreme value laws

Theorem 1.6. If rv X has

(i) Fréchet law then its entropy is given by H(X) = − lnα + α+1
α γ + 1;

(ii) Weibull law then its entropy is given by H(X) = − lnα + α−1
α γ + 1;

(iii) Gumbel law then its entropy is given by H(X) = γ + 1.

Proof. (i) From (1), we have

H(X) = −

∫
∞

0
(lnφα(x))φα(x)dx = −

∫
∞

0

(
ln

(
αx−α−1e−x−α

))
αx−α−1e−x−αdx,

= −(lnα) + (α + 1)
∫
∞

0
(ln x)αx−α−1e−x−αdx +

∫
∞

0
x−ααx−α−1e−x−αdx,

= −(lnα) −
α + 1
α

∫
∞

0
(ln u)e−udu +

∫
∞

0
ue−udu, upon simplification,

= −(lnα) +
α + 1
α

γ + 1.

(ii) As in the proof of (i) above, we have

H(X) = −

∫ 0

−∞

(
ln

(
α(−x)α−1e−(−x)α

))
α(−x)α−1e−(−x)αdx,

= −(lnα) −
α − 1
α

∫
∞

0
(ln u)e−udu +

∫
∞

0
ue−udu, upon simplification,

= −(lnα) +
α − 1
α

γ + 1.

(iii) Similar to the proof of (i) above, we have

H(X) = −

∫
∞

−∞

(
ln

(
e−xe−e−x))

e−xe−e−x
dx,

= −

∫
∞

0
(ln u)e−udx +

∫
∞

0
ue−udu, upon simplification,

= γ + 1.

Remark 1.7. If U ∼ Φα, then V = − 1
U ∼ Ψα, and W = α ln U ∼ Λ. Note that H(V) = H(U) − 2γ

α , and H(W) =

H(U) +(lnα) − γα . Also, H(U) and H(V) decrease as α increases which can also be seen from the graphs given in the
Appendix.

Theorem 1.8. If rv X has

(a) Fréchet law, then the entropy of Y = Xc
−b
a is given by

H(Y) = −
(
ln

aα
c

)
+

c + α
α

γ + 1;
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(b) Weibull law, then the entropy of Y = − |X|
c
−b

a is given by

H(Y) = −
(
ln

aα
c

)
+
α − c
α

γ + 1;

(c) Gumbel law, then the entropy of Y = X−b
a is given by

H(Y) = −(ln a) + γ + 1.

Proof. Using Lemma 1.3 and (i) of Theorem 1.6, we have

H(Y) = −

(
ln

a
c

)
+ (c − 1)EX(ln X) + H(X),

= −

(
ln

aα
c

)
+

c − 1
α

γ +
α + 1
α

γ + 1,

= −

(
ln

aα
c

)
+

c + α
α

γ + 1,

since EX(ln X) =
∫
∞

0 αx−α−1e−x−α (ln x)dx = − 1
α

∫
∞

0 (ln u)e−udu =
γ

α
, proving (a).

To prove (b), we use Lemma 1.4 and (ii) of Theorem 1.6, to get

H(Y) = −

(
ln

a
c

)
+ (c − 1)EX(ln(−X)) + H(X),

= −

(
ln

aα
c

)
+
α − c
α

γ + 1,

since EX(ln(−X)) =
∫ 0

−∞
α(−x)α−1e−(−x)α (ln(−x))dx = −

γ
α .

Similarly, to prove (c), we use Lemma 1.2 and (iii) of Theorem 1.6, to get

H(Y) = −(ln a) + H(X) = −(ln a) + 1 + γ.

1.4. The p-max stable laws

If the normalization in (4) is of the form
(
δn | x |βn sign(x)

)
with sign(x) = −1, 0 or 1 according as

x < 0, = 0 or > 0 instead of (anx + bn), for some norming constants δn > 0, βn > 0, then

lim
n→∞

P(Mn ≤ δn |x|βn sign(x)) = lim
n→∞

Fn(δn |x|βn sign(x)) = K (x), x ∈ C(K ), (6)

for some non-degenerate dfK and we say that F belongs to the p-max domain of attraction ofK and denote
it by F ∈ Dp(K ). Similar to (5), note that (6) is equivalent to

lim
n→∞

n{1 − F(δn |x|βn sign(x))} = − lnK (x), x ∈ {y : K (y) > 0}. (7)

The limit lawsK satisfying (6) are the p-types of the six p-max stable laws, namely,

the log-Fréchet law: K1,α(x) =

{
0, x < 1,

e−(ln x)−α , 1 ≤ x;

the log-Weibull law: K2,α(x) =


0, x < 0,

e−(− ln x)α , 0 ≤ x < 1,
1, 1 ≤ x;

the standard Fréchet law: K3(x) = Φ1(x), x ∈ R;
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the negative log Fréchet law: K4,α(x) =


0, x < −1,

e−(− ln(−x))−α , −1 ≤ x < 0,
1, 0 ≤ x;

the negative log-Weibull law: K5,α(x) =

{
e−(ln(−x))α x < −1,

1, −1 ≤ x;

the standard Weibull law: K6(x) = Ψ1(x), x ∈ R;

α > 0 being a parameter, with pdfs,

the log-Fréchet density: κ1,α(x) =

{
αx−1(ln x)−α−1e−(ln x)−α x ≥ 1,

0, x < 1;

the log-Weibull density: κ2,α(x) =

{
αx−1(− ln x)α−1e−(− ln x)α 0 ≤ x < 1,

0, x < 0, 1 ≤ x;

the standard Fréchet density: κ3(x) = φ1(x), x ∈ R;

the negative log Fréchet density: κ4,α(x) =

{
α(−x)−1(− ln(−x))−α−1e−(− ln(−x))−α , −1 ≤ x < 0,

0, x < −1, 0 ≤ x;

the negative log-Weibull density: κ5,α(x) =

{
α(−x)−1(ln(−x))α−1e−(ln(−x))α , x < −1,

0, −1 ≤ x;

the standard Weibull density: κ6(x) = ψ1(x), x ∈ R.

Here two dfsK and Ł are said to be of the same p-type ifK (x) = Ł(A|x|Bsign(x)), x ∈ R, for constants A > 0,
B > 0.

Pancheva (1984) studied limit laws of partial maxima of iid rvs under non-linear normalization and in
particular, power normalization. For criteria for a df to belong to a p-max domain, we refer to Mohan and
Ravi (1993), wherein it was also shown that if a df F ∈ Dl(G) for some max stable law G then there always
exists a p-max stable law K such that F ∈ Dp(K ) and that the converse need not hold always. This shows
that p-max stable laws attract more dfs to their max domains than the l-max stable laws. See also Falk et al.
(2004) for criteria for dfs to belong to p-max domain of p-max stable laws.

It is well known that if K is a p-max stable law, then K satisfies Kn(δn |x|βn sign(x)) = K (x), x ∈ R; for
some constants δn > 0, βn > 0. If rv X has a p-max stable distributionK then for scale and shape constants

a > 0 and c > 0, the rv Y = |X|c

a sign(X), has df FY(y) = P(X ≤ a
∣∣∣y∣∣∣ 1

c sign(y)) = K (a
∣∣∣y∣∣∣ 1

c sign(y)), y ∈ R. For
constants δ∗n > 0, β∗n > 0, we then have

Fn
Y(δ∗n

∣∣∣y∣∣∣β∗n sign(y)) = K
n
(
a(δ∗n)

1
c

∣∣∣y∣∣∣ β∗nc sign(y)
)
, (8)

= K
n
(
δn

(
a
∣∣∣y∣∣∣ 1

c

)βn

sign(y)
)
,

= K (a
∣∣∣y∣∣∣ 1

c sign(y)) = FY(y), y ∈ R,

with δn = a1−βn (δ∗n)
1
c , and βn = β∗n. Hence the df of Y, FY is also p-max stable.

1.5. Entropies of p-max stable laws
The following theorem gives the entropies of the p-max stable laws.

Theorem 1.9. If rv X has

(i) the log-Fréchet law, then its entropy is given by

H(X) = −(lnα) +
α + 1
α

γ + Γ
(
1 −

1
α

)
+ 1, α > 1;
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(ii) the log-Weibull law, then its entropy is given by

H(X) = −(lnα) +
α − 1
α

γ − Γ
(
1 +

1
α

)
+ 1;

(iii) the negative log-Fréchet law, then its entropy is given by

H(X) = −(lnα) +
α + 1
α

γ − Γ
(
1 −

1
α

)
+ 1, α > 1;

(iv) the negative log-Weibull law, then its entropy is given by

H(X) = −(lnα) +
α − 1
α

γ + Γ
(
1 +

1
α

)
+ 1.

Remark 1.10. Note that in the above and the next theorem, for α ≤ 1, the entropies of the log-Fréchet and the negative
log-Fréchet laws do not exist.

Proof. (i) From (1), we have

H(X) = −

∫
∞

1
(lnκ1,α(x))κ1,α(x)dx,

= −

∫
∞

1
ln

(
αx−1(ln x)−α−1e−(ln x)−α

) (
αx−1(ln x)−α−1e−(ln x)−α

)
dx,

= −

∫
∞

0
ln

(
αe−uu−α−1e−u−α

) (
αu−α−1e−u−α

)
du, upon simplification,

= −(lnα) +
α + 1
α

γ + 1 + Γ
(
1 −

1
α

)
, α > 1.

(ii) As in the proof of (i), we get

H(X) = −

∫ 0

−∞

ln
(
αe−u(−u)α−1e−(−u)α

) (
α(−u)α−1e−(−u)α

)
du, upon simplification,

= −(lnα) +
α − 1
α

γ + 1 − Γ
(
1 +

1
α

)
.

(iii) Similar to the proof of (i), we observe that

H(X) = −

∫
∞

0
ln

(
αeuu−α−1e−u−α

) (
αu−α−1e−u−α

)
du, upon simplification,

= −(lnα) +
α + 1
α

γ + 1 − Γ
(
1 −

1
α

)
, α > 1.

(iv) Here we get

H(X) = −

∫ 0

−∞

ln
(
αeu(−u)α−1e−(−u)α

) (
α(−u)α−1e−(−u)α

)
du, upon simplification,

= −(lnα) +
α − 1
α

γ + 1 + Γ
(
1 +

1
α

)
.
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Theorem 1.11. If rv X has

(a) the log-Fréchet distribution, then the entropy of Y = Xc
−b
a is given by

H(Y) = −
(
ln

aα
c

)
+ cΓ

(
1 −

1
α

)
+ 1 +

α + 1
α

γ, α > 1;

(b) the log-Weibull distribution, then the entropy of Y = Xc
−b
a is given by

H(Y) = −
(
ln

aα
c

)
− cΓ

(
1 +

1
α

)
+ 1 +

α − 1
α

γ;

(c) the standard Fréchet distribution, then the entropy of Y = Xc
−b
a is given by

H(Y) = −
(
ln

a
c

)
+ (c + 1)γ + 1.

(d) the negative log-Fréchet distribution, then the entropy of Y = −
(−X)c

−b
a is given by

H(Y) = −
(
ln

aα
c

)
− cΓ

(
1 −

1
α

)
+ 1 +

α + 1
α

γ, α > 1;

(e) the negative log-Weibull distribution, then the entropy of Y = −
(−X)c

−b
a is given by

H(Y) = −
(
ln

aα
c

)
+ cΓ

(
1 +

1
α

)
+ 1 +

α − 1
α

γ;

(f) the standard Weibull distribution, then the entropy of Y = −
(−X)c

−b
a is given by

H(Y) = −
(
ln

a
c

)
+ (1 − c)γ + 1.

Proof. Using Lemma 1.3 and (i) of Theorem 1.9, we have

H(Y) = −

(
ln

a
c

)
+ (c − 1)EX(ln X) + H(X),

= −

(
ln

aα
c

)
+ cΓ

(
1 −

1
α

)
+ 1 +

α + 1
α

γ,

since EX(ln X) =
∫
∞

1 αx−1(ln x)−α−1e−(ln x)−αdx = Γ
(
1 − 1

α

)
, α > 1, proving (a).

To prove (b), we use Lemma 1.3 and (ii) of Theorem 1.9, to get

H(Y) = −

(
ln

a
c

)
+ (c − 1)EX(ln X) + H(X),

= −

(
ln

aα
c

)
− cΓ

(
1 +

1
α

)
+ 1 +

α − 1
α

γ,

since EX(ln X) =
∫ 1

0 α(ln x)x−1(− ln x)α−1e−(− ln x)αdx = −Γ
(
1 + 1

α

)
.

We prove (c) by using Lemma 1.3 and (i) of Theorem 1.6, to get

H(Y) = −

(
ln

a
c

)
+ (c − 1)EX(ln X) + H(X),

= −

(
ln

a
c

)
+ (c + 1)γ + 1,
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since EX(ln X) =
∫
∞

0 x−2e−x−1
ln xdx = γ.

(d) is proved by using Lemma 1.4 and (iii) of Theorem 1.9, to get

H(Y) = −

(
ln

a
c

)
+ (c − 1)EX(ln(−X)) + H(X),

= −

(
ln

aα
c

)
− cΓ

(
1 −

1
α

)
+ 1 +

α + 1
α

γ,

since EX(ln(−X)) =
∫ 0

−1 α ln(−x)(−x)−1(− ln(−x))−α−1e−(− ln(−x))−αdx = −Γ
(
1 − 1

α

)
, α > 1.

To prove (e), we use Lemma 1.4 and (iv) Theorem 1.9, and get

H(Y) = −

(
ln

a
c

)
+ (c − 1)EX(ln(−X)) + H(X),

= −

(
ln

aα
c

)
+ cΓ

(
1 +

1
α

)
+ 1 +

α − 1
α

γ,

since EX(ln(−X)) =
∫
−1

−∞
α ln(−x)(−x)−1(ln(−x))α−1e−(ln(−x))αdx = Γ

(
1 + 1

α

)
.

Finally, (f) is proved by using Lemma 1.4 and (ii) of Theorem 1.6, to get

H(Y) = −

(
ln

a
c

)
+ (c − 1)EX(ln(−X)) + H(ψ1),

= −

(
ln

a
c

)
− (c − 1)γ + 1,

since EX(ln(−X)) =
∫ 0

−∞
ex ln(−x)dx = −γ.

2. Entropies of generalized Pareto laws

2.1. The generalized Pareto laws

The generalized Pareto distributions (gPDs) are limit laws of linearly normalized conditional excesses
over a high threshold as the threshold tends to infinity. These have been used to model exceedances over
high thresholds and were first studied by Balkema and de Haan (1974). It is well known that the extreme
value laws or l-max stable laws and the gPDs are related by the relation W(x) = 1 + ln G(x), x ∈ R, where
G is an extreme value law and W is the corresponding gPD. Because of this relationship, it is easy to see
that location and scale versions of gPDs are gPDs and introduction of a shape parameter in a gPD will
again lead to a gPD as is true for extreme value laws as seen earlier in Section 1.2. The gPDs also satisfy
stability relations similar to the extreme value laws and we omit these details as these can be derived from
the corresponding stability relations for the l-max stable laws given in Section 1.2.

We give below the gPDs and their entropies are given in the next section. Corresponding to the three
types of extreme value laws, there are three possible types of gPDs, namely,

the Pareto law: W1,α(x) =

{
0, x < 1,

1 − x−α, 1 ≤ x;

the negative Beta (1,1) law: W2,α(x) =


0, x < −1,

1 − (−x)α, −1 ≤ x < 0,
1, 0 ≤ x;

and the standard exponential law: W3(x) =

{
0, x < 0,

1 − e−x, 0 ≤ x;
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α > 0 being a parameter, with respective pdfs

the Pareto density: w1,α(x) =

{
0, x < 1,

αx−α−1, 1 ≤ x;

the negative Beta (1,1) density: w2,α(x) =

{
0, x < −1 & 0 ≤ x,

α(−x)α−1, −1 ≤ x < 0,

and the standard exponential density: w3(x) =

{
0, x < 0,

e−x, 0 ≤ x.

2.2. Entropies of the gPDs

Theorem 2.1. If rv X has

(i) the Pareto law then its entropy is given by H(X) = −(lnα) + α+1
α ;

(ii) the negative Beta(1,1) law then its entropy is given by H(X) = −(lnα) + α−1
α ;

(iii) the standard exponential law then its entropy is given by H(X) = 1.

Proof. For proving (i), we have, from (1),

H(X) = −

∫
∞

1
ln w1,α(x)w1,α(x)dx = −

∫
∞

1

(
ln

(
αx−α−1

))
αx−α−1dx,

= −(lnα) +
α + 1
α

∫
∞

0
ue−udu, upon simplification,

= −(lnα) +
α + 1
α

.

(ii) follows since

H(X) = −(lnα) − (α − 1)
∫ 0

−1
(ln(−x))α(−x)α−1dx,

= −(lnα) +
α − 1
α

, upon simplification.

Similarly, (iii) follows since H(X) =
∫
∞

0 xe−xdx = 1.

Theorem 2.2. If rv X has

(a) the Pareto law, then the entropy of Y = Xc
−b
a is given by

H(Y) = −
(
ln

aα
c

)
+

c + α
α

;

(b) the negative Beta(1,1) law, then the entropy of Y = − |X|
c
−b

a is given by

H(Y) = −
(
ln

aα
c

)
+
α − c
α

;

(c) the standard exponential law, then the entropy of Y = X−b
a is given by

H(Y) = − (ln a) + 1.
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Proof. From Lemma 1.3 and (i) of Theorem 2.1,

H(Y) = −

(
ln

a
c

)
+ (c − 1)EX(ln X) + H(X),

= −

(
ln

aα
c

)
+

c − 1
α

+
α + 1
α

,

= −

(
ln

aα
c

)
+
α + c
α

,

since EX(ln X) =
∫
∞

1 αx−α−1(ln x)dx =
1
α
, proving (a).

To prove (b), we use Lemma 1.4 and (ii) of Theorem 2.1, to get

H(Y) = −

(
ln

a
c

)
+ (c − 1)EX(ln(−X)) + H(X),

= −

(
ln

aα
c

)
+
α − c
α

,

since EX(ln(−X)) =
∫ 0

−1 α(−x)α−1(ln(−x))dx = − 1
α .

For proving (c), from Lemma 1.2 and (iii) of Theorem 2.1, we get

H(Y) = − (ln a) + H(X) = − (ln a) + 1.

2.3. The generalized log-Pareto laws

Similar to the gPDs, one can introduce the generalized log-Pareto distributions or the glPDs using the p-
max stable laws in place of the extreme value laws. Some properties of the glPDs were studied in Cormann
and Reiss(2009). Properties satisfied by the scale and shape versions of the p-max stable laws similar to
those discussed in Section 1.4 are also satisfied by the glPDs and we omit the details as these are straight
forward. We list out the glPDs below and give their entropies in the next section. The glPDs are p-types of
the following laws:

the log-Pareto law: Q1,α(x) =

{
0, x < e,

1 − (ln x)−α, x ≥ e;

the log-negative Beta(1,1) law: Q2,α(x) =


0, x < e−1,

1 − (− ln x)α, e−1
≤ x < 1,

1, 1 ≤ x;

the standard Pareto law: Q3(x) =

{
0, x < 1;

1 − x−1, x ≥ 1,

the negative log-Pareto law: Q4,α(x) =


0, x < −e−1,

1 − (− ln(−x))−α, −e−1
≤ x < 0,

1, 0 ≤ x;

the negative log-negative Beta(1,1) law: Q5,α(x) =


0, x < −e,

1 − (ln(−x))α, −e ≤ x < −1,
1, −1 ≤ x;

the standard negative Beta(1,1) law: Q6(x) =


0, x < −1,

1 + x, −1 ≤ x < 0,
1, 0 ≤ x;
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α > 0 being a parameter, with respective pdfs,

q1,α(x) =

 α
x

(ln x)−α−1, x ≥ e,
0, x < e;

q2,α(x) =

 α
x

(− ln x)α−1, e−1
≤ x < 1,

0, x < e−1 & 1 ≤ x;

q3(x) =

{
0, x < 1;

x−2, x ≥ 1,

q4,α(x) =

 −αx (− ln(−x))−α−1, −e−1
≤ x < 0,

0, x < −e−1 & 0 ≤ 1;

q5,α(x) =

 −αx (ln(−x))α−1, −e ≤ x < −1,

0, x < −e & − 1 ≤ x;

q6(x) =

{
1, −1 ≤ x < 0,
0, x < −1 & 0 ≤ x.

2.4. Entropies of the generalized log-Pareto laws

Theorem 2.3. If rv X has

(i) the log-Pareto law then its entropy is given by

H(X) = −(lnα) +
2α2
− 1

α(α − 1)
, α > 1;

(ii) the log-negative Beta (1,1) law then its entropy is given by

H(X) = −(lnα) −
1

α(α + 1)
;

(iii) the standard Pareto law then its entropy is given by H(X) = 2;

(iv) the negative log-Pareto law then its entropy is given by

H(X) = −(lnα) −
1

α(α − 1)
, α > 1;

(v) the negative log-negative Beta (1,1) law then its entropy is given by

H(X) = −(lnα) +
2α2
− 1

α(α + 1)
;

(vi) the standard negative Beta (1,1) law then its entropy is given by H(X) = 0.

Remark 2.4. Note that in the above and the next theorem, for α ≤ 1, the entropies of the log-Pareto and the negative
log-Pareto laws do not exist.
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Proof. From (1), for α > 1, we have

H(X) = −

∫ 1

0

(
ln

(
αe−u−

1
α u

α+1
α

))
du, upon simplification,

= −(lnα) +

∫ 1

0
u−

1
α du −

α + 1
α

∫ 1

0
(ln u)du,

= −(lnα) +
α

α − 1
+
α + 1
α

,

= −(lnα) +
2α2
− 1

α(α − 1)
, proving (i).

For proving (ii), from (1), we have

H(X) = −

∫ 1

0

(
ln

(
αeu

1
α u

α−1
α

))
du, upon simplification,

= −(lnα) −
α

α + 1
+
α − 1
α

= −(lnα) −
1

α(α + 1)
.

Similarly, from (1), we have

H(X) = 2
∫
∞

1
(ln x)x−2dx = −2

∫ 1

0
(ln u)du = 2,proving (iii).

Again from (1), for α > 1, we have

H(X) = −

∫ 1

0

(
ln

(
αeu−

1
α u

α+1
α

))
du, upon simplification,

= −(lnα) −
α

α − 1
+
α + 1
α

,

= −(lnα) −
1

α(α − 1)
, proving (iv).

For proving (v), we have, from (1),

H(X) = −

∫ 1

0

(
ln

(
αe−u

1
α u

α−1
α

))
du, upon simplification,

= −(lnα) +
α

α + 1
+
α − 1
α

= −(lnα) +
2α2
− 1

α(α + 1)
.

Similarly, for proving (vi), we have, from (1), H(X) = 0.

Theorem 2.5. If rv X has

(a) the log-Pareto distribution, then the entropy of Y = Xc
−b
a is given by

H(Y) = −
(
ln

aα
c

)
+
α(c − 1)
α − 1

+
2α2
− 1

α(α − 1)
, α > 1;

(b) the log-negative Beta(1,1) distribution, then the entropy of Y = Xc
−b
a is given by

H(Y) = −
(
ln

aα
c

)
−
α(c − 1)
α + 1

−
1

α(α + 1)
;
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(c) the standard Pareto distribution, then the entropy of Y = Xc
−b
a is given by

H(Y) = −
(
ln

a
c

)
+ c + 1;

(d) the negative log-Pareto distribution, then the entropy of Y = −
(−X)c

−b
a is given by

H(Y) = −
(
ln

aα
c

)
−
α(c − 1)
α − 1

−
1

α(α − 1)
, α > 1;

(e) the negative log-negative Beta(1,1) distribution, then the entropy of Y = −
(−X)c

−b
a is given by

H(Y) = −
(
ln

aα
c

)
+
α(c − 1)
α + 1

+
2α2
− 1

α(α + 1)
;

(f) the standard negative Beta(1,1) distribution, then the entropy of Y = −
(−X)c

−b
a is given by

H(Y) = −
(
ln

a
c

)
− c + 1.

Proof. Using Lemma 1.3 and (i) of Theorem 2.3, for α > 1, we have

H(Y) = −

(
ln

a
c

)
+ (c − 1)EX(ln X) + H(X),

= −

(
ln

aα
c

)
+
α(c − 1)
α − 1

+
2α2
− 1

α(α − 1)
,

since EX(ln X) =
∫
∞

e αx−1(ln x)−α−1dx =
∫ 1

0 u−
1
α = α

α−1 , for proving (a).
For proving (b), we use Lemma 1.3 and (ii) of Theorem 2.3, to get

H(Y) = −

(
ln

a
c

)
+ (c − 1)EX(ln X) + H(X),

= −

(
ln

aα
c

)
− (c − 1)

α
α + 1

−
1

α(α + 1)
,

since EX(ln X) =
∫ 1

e−1 α(ln x)x−1(− ln x)α−1dx = −
∫ 1

0 u
1
α = − α

α+1 .
To prove (c), we use Lemma 1.3 and (iii) of Theorem 2.3, to get

H(Y) = −

(
ln

a
c

)
+ (c − 1)EX(ln X) + H(X),

= −

(
ln

a
c

)
+ (c − 1) + 2 = −

(
ln

a
c

)
+ c + 1,

since EX(ln X) =
∫
∞

1 x−2(ln x)dx = −
∫ 1

0 (ln u)du = 1.
For proving (d), from Lemma 1.4 and (iv) of Theorem 2.3, for α > 1, we get

H(Y) = −

(
ln

a
c

)
+ (c − 1)EX(ln(−X)) + H(X),

= −

(
ln

aα
c

)
−
α(c − 1)
α − 1

−
1

α(α − 1)
,

since EX(ln(−X)) =
∫ 0

−e−1 α(ln(−x))(−x)−1(− ln(−x))−α−1dx = −
∫ 1

0 u−
1
α = − α

α−1 .
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To prove (e), using Lemma 1.4 and (v) Theorem 2.3, we have

H(Y) = −

(
ln

a
c

)
+ (c − 1)EX(ln(−X)) + H(X),

= −

(
ln

aα
c

)
+
α(c − 1)
α + 1

+
2α2
− 1

α(α + 1)
,

since EX(ln(−X)) =
∫
−1

−e α(ln(−x))(−x)−1(ln(−x))α−1dx =
∫ 1

0 u
1
α du = α

α+1 .
Finally, to prove (f), using Lemma 1.4 and (vi) of Theorem 2.3, we have

H(Y) = −

(
ln

a
c

)
+ (c − 1)EX(ln(−X)) + H(X) = −

(
ln

a
c

)
− c + 1,

since EX(ln(−X)) =
∫ 0

−1(ln(−x))dx = −1.

We next give an appendix giving several graphs for chosen values of the α and the shape parameters.
Some remarks about the behaviour of entropies discussed in the text are also made .

3. Appendix

3.1. Graphs of entropies of l-max stable laws

(a) Entropy of Fréchet law with 1 ≤ c ≤ 10, 1 ≤ α ≤ 10 (b) Entropy of Weibull law with 1 ≤ c ≤ 10, 1 ≤ α ≤ 10

Remark 3.1. Observe that the entropy of the Fréchet law decreases as the parameter α increases for fixed c and the
entropy of the Weibull law is decreasing as the parameter α increases for fixed c.
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3.2. Graphs of entropies of p-max stable laws

(a) Entropy of log-Fréchet law 1 ≤ c ≤ 10, 1 ≤ α ≤ 10 (b) Entropy of Log-Weibull law with 1 ≤ c ≤ 10, 0.5 ≤
α ≤ 10

Remark 3.2. Observe that the entropy of the Log-Fréchet law is increasing as c increases for fixed α and the entropy
of the log-Weibull law is decreasing as c increases for fixed α.

(a) Negative log-Fréchet law with 1 ≤ c ≤ 10, 1 ≤ α ≤ 10.(b) Negative log-Weibull law with 1 ≤ c ≤ 10, 0.5 ≤ α ≤
10

Remark 3.3. Note that the entropy of the negative log-Fréchet law decreases as c increases for fixed α and the entropy
of the negative log-Weibull law is increasing as c increases for fixed α.
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3.3. Graphs of entropies of generalized Pareto laws

(a) Entropy of Pareto law with 1 ≤ c ≤ 10, 1 ≤ α ≤ 10. (b) Entropy of negative Beta with 1 ≤ c ≤ 10, 1 ≤ α ≤ 10.

Remark 3.4. Observe that the entropy of the Pareto law is increasing as c increases for α fixed and the entropy of the
negative Beta law is decreasing as α increases for fixed c.

3.4. Graphs of entropies of generalized log-Pareto laws

(a) Entropy of Log-Pareto with 1 ≤ c ≤ 10, 1 ≤ α ≤ 10. (b) Entropy of Log-negative-Beta with 1 ≤ c ≤ 10, 0.5 ≤
α ≤ 10
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(a) Negative log-Pareto with 1 ≤ c ≤ 10 and 1 ≤ α ≤ 10 (b) Negative log-negative-Beta with 1 ≤ c ≤ 10 and 0.5 ≤
α ≤ 10.

Remark 3.5. Observe that the entropy of the log-Pareto law is increasing as c increases for α fixed and the entropy
of the negative log-Pareto law decreases as c increases for fixed α.
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[6] Galambos, J. (1987) The Asymptotic Theory of Extreme Order Statistics, Krieger Pub. Co.
[7] Gnedenko, B.V., Korolev, V. (1996) Random Summation: Limit Theorems and Applications, CRC Press, Boca Raton, Florida.
[8] Johnson, O. (2006) Information Theory and the Central Limit Theorem, Imperical College Press.
[9] Mohan, N.R., Ravi, S. (1993) Max domains of attraction of univariate and multivariate p-max stable laws, Theory of Probability

and its Applications - Translated from Russian Journal 4(37), 632–643.
[10] Pancheva, E.I. (1984) Limit Theorems for Extreme Order Statistics under Nonlinear Normalization, Lecture Notes in Math 1155,

284-309.
[11] Resnick, S.I. (1987) Extreme Values, Regular Variation and Point Processes, Springer Verlag.
[12] Shannon, C.E. (1948) A mathematical theory of communication, Bell Syst. Tech. J. 27, 379–423.


