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Conditional expectation of function of dual generalized order statistics
An alternative approach
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Abstract. A general form of continuous distribution has been characterized through the conditional
expectation of function of dual generalized order statistics and lower record values using Meijer’s G-
function.

1. Introduction

Burkschat et al. (2003) introduced the concept of dual generalized order statistics (dgos) as: Let Xj,
X3, ..., X, is a sequence of independent and identically distributed random variables with distribution
function (df) F(x) and with probability density function pdf f(x). Further, letn € N, n > 2, k > 0,

n—1
= (my,my, ..., M) € R, M, = ¥, mj, suchthat y, =k+n—-r+M,>0,¥re{l,2,...,n-1}. Then
j=r

X'(r,n,m,k), r=1,2,...,n are called dgos if their joint pdf is given by

n-1 n—1
k [H w] [H[F(xo]"ﬂf(xi)] [FCen)l fx) (1)

j=1 i=1

for FF1 (1) >x1 > x> ... > x, > F1(0).

Conditional expectation of dual generalized order statistics are extensively used in characterizing the
probability distributions. Various approaches are available in the literature. For detailed survey and
discussion of characterization results one may refer to Ahasanullah (2004), Mbah and Ahsanullah (2007),
Khan et al. (2009), Khan et al. (2010a, b) and Faizan and Khan (2011). In this paper we have characterized
the distribution through conditional expectation of dgos conditioned on non-adjacent dgos using Meijer’s
G-function.

The pdf of X'(r,n, m, k) with respect to a measure Pr is given by

fr(x) = Cr—lGr(F(x)lyll ceey Vr)l(a,ﬁ)(x)- )

Here 14 denotes the indicator function and G,(x) = Gf:? (xly1, ... pr) = G;:? (x‘y1 _Vi’ R ;r 3 1) is the parti-
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cular Meijer’s G-function defined by

1 s%
Gro VireeerVr - _f —dz, 3
r,r(s")/l—]_,...,')/y—]. 271t LH;=1(7/]'—1—Z) Z ( )

where L is an appropriate chosen contour of integration. See Mathai (1993, Chapter 3) for the definition of
Meijer’s G-function and its numerous properties and applications.
The joint Pr ® Pr density of X'(r,n, 11, k) and X'(s,n,11,k), 1 < r <s < n, is given by

1 (F(y)
) S—=r

frs(x y) Cs— 1 ( F( ")/r+1/ .. -/7/5) Gr(F(x)h/l/- . -/Vr)/ a<y<x< ﬁ/ (4)

where

,
Cr-1 = H%
i=1

Hence the conditional Pr density function of X'(s, n, 11, k) given X'(r,n,11,k) = x,1 <r <s <mn,is

) 1
fSIr ylx) - Gs—r (Fiy) |Vr+1, . ,)/s) %I(ﬁ,x)(y)/ asy<x=<pf, (5)

and the conditional Pr density function of X'(r, n, 11, k) given X'(s,n,1,k) =y, 1 <r <s <mn,is

Gs—r (%)YHL ey )/s) Gr(F(x)b/l/ ey yr)
F(X)GS(F(y)b/lr . /Vs)

frs(xly) = I(y,a)(x)~ (6)

Some auxiliary results

Here some results are given that are used in subsequent sections:
i) Gi(xlyr) = 27!
ll) ()/7 Vl)G (xb/lr 4 V) V 1(x|)/1/ /)/r—l) - G‘r—l(xlyZI e /VV)

iit) X*Go(xly1, - -, Vr) = Go(x|y1 +a, .. ,y,+a),a eR
1,
iv) lil’{l Ge(xly1, ..., ) = {
x—1-
if Yir > 1
z)) 111’(1)1 Gr(xh/l, .. /Vr) = ] 1 Yi-n —)/1 if Vir = 1< Yo
x—0+

if yrr =y2,=loryy, <1
0i) LG, (xly1, ..., yp) = 1 [( r = DG (Xly1, -, ) = Ga(xlyn, - Y1)
vii) %Gr(xlyl,...,yr) = )1( [1 = DG (xlya, ..., ¥r) = Gra(Xly2, . . ., Yr-1)] where y1, = min(ys,...,y,) and
I=max{l<j<r:y;=yL).

For property (i), see Mathai (1993, p. 130), for property (ii), see Cramer and Kamps (2003), and property
(iif), see Mathai (1993, p. 69). Property (iv) can easily be deduced from Lemma 2.2 of Cramer et al. (2004 b).
Whereas (vi) and (vii) can be established from (3).

2. Characterization of distribution

Theorem 2.1. Let X'(i,n,11,k), i =1,...,n be the dgos from a continuous population with the df F(x) and the pd f
f(x) over the support (a, B) and E(x) be a monotonic and differentiable function of x. If for two consecutive values r
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andr+1,1<r<s—-1<n

gs(x) = E[EX (s, n, m, YX'(I,n, 11, k) = x], l=rr+1,
exists, then

F(x)=e" [} At

94, ()

A(t) - Vr+1 [gs|r+1(t) - gs\r(t)] ’

Proof. We have from (5)

gsr(x)F(x) =

Cs—1 * F(]/)
— f &)Ger ( 6 |yret, - s |dF(y)
differentiate both the sides of (8) w.r.t. x to get

_ Cs—1 ,@ * F(y)

g;|,(X)F(x)+g5|y(x)f(x) = CLF) 5(]/)[(Vr+1_1)cs—r (%’%ﬂ, ‘e

or,

9;|r(x)P(x) + gslr(x)f(x) = _()/Hl - 1)gs|r(x)f(x) + Vr+1gs|r+l(x)f(x)

in view of property (vi) and equation (8).

Therefore,
f(x) g, (%)
— = = A(x).
F(x)  yralgsprr(x) = gor(x)] )
Alsofors=r+1
m _ g;+1lr(x) _ A(x)

F(x) a Vr+1 [é(JC) - gs\Hl(x)]

and hence the Theorem. [

Remark 2.2. If
EL(X' (s, n, 17, D)X (1, n, 17, k) = x] = a5 + b, = g ()
then
F(x) = [ax + b]°
and
E[E(X (s, n, 17, k)X (r, n, 7, k) = x] = %, £(x) + b,
if and only if
F(x) = [a&(x) + b]

7 )/s)_ Gs—r—l (

Fy)
F(x)

|7/r+2/

82

...,ys) ]dF(y)
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where

sIr - H 1 +CV 4 sIr (1 s\r)

j=r+1

and &(x) be a monotonic and continuous function of x.

A number of distributions can be characterized by the proper choice of a,b,c and &(x) and the results can be
deduced for order statistics and lower records, Khan et al. (2010a).

Theorem 2.3. Let X'(i,n,1,k), i =1,...,n be the dgos from a continuous population with the df F(x) and the pdf
f(x) over the support (a, B) and &(x) be a monotonic and differentiable function of x. If for two consecutive values
s—lands,1<r<s—-1<n

gni(y) = E[E{X (r,n, 1w, NX' (I, n, 1, k) = yl, I=s-1,s )

then
y .

GS(F(y)lyl — Vs + 1/ e Vs — )/s + 1) = ﬂ(s)(S) eXP |:_f D(t)dt] ’ lf Vl:s—l > y51 (10)

and
y .
Gs(F(Wly1—ys+1,...,ys—ys +1) =exp [—f D(t)dt], if V1s-1 < Ys. (11)
p

To prove (11), we note that log F(y), @ < y < p is a non-decreasing function in (—oo, 0), therefore exists a
p,a < p < B, such that

—logF(p) =1 (12)
and

7,0
[grls(t) - grls—l(t)] '

Proof. We have,

D(t) =

OG-0 = [ HGe (B G EOI - ) 13
differentiate both the sides of (13) w.r .t. y, to get
TnsGsEWy1, -, 7s) = g(y) s-1 (F@Iy1, -+ ys-1)ns(y) = JFCE ; Gt FW[y1, - ys-1)gs-1 (1)
%Mﬁﬁ@mw,m—ﬁﬁSMWWMW%JWM%%H@]
7yY) W) G (FW)ly, -, ys-1)

[9:0) — 9] F(y) wawhuyo

ands=r+1

f@) G F@Iy - ys1) Ty
F(y) Gr+1(F(3/)|7/1/ ce er) [gr|r+1 (y) - é(]/)] .
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Now using the property (vi), we have

f@)  HGEWI-- 7 7,00

R o N CR (7 SR Wl PR s Sy

integrating both the sides w.r.t. y over («, y), to get

F) 7" G(EWyr, ..., ys) [_ y ]
[F(a)] GF@, -,y P fa D(t)dt

or

Yy
Gs(FWly1—ys+1,...,ys —ys +1) = ag exp [—f D(t)dt] , if Y1521 > Vs,

or

Gs(F(a)b/l — Vst 1,.. s Ys— Vst 1) - a(s)(s)

when y15-1 < ¥, then exists a p which satisfied (12). Hence

Yy
Gs(FWly1 —ys+1,...,ys—ys +1) =exp [—f D(t)dt] , if Y151 < ys.
p

Corollary 2.4. Formy =mp =...=My_1 =m

1 _
Gs(1 _xb/l — Vs + 1r'~/)/s - Vs + 1) = M[gm(x)]s !

where

L1 -1 -2 ifm# -1
— ) m+1
n(x) = {—log(l - X) ifm=-1

and hence (10) and (11) can be rewritten as follows:

Fly) = [1 —exp {— fy D(if)dif}]m+1 , m>-1
F(x) = exp [— exp {— fy D(t)dt}] , m=-1
p

as obtained by Khan et al. (2010a).

Remark 2.5.
gr|5(y) = E[{X,(T, 1’l, ﬁlr k)}lx,(sl n, ﬁ/l/ k) = y] = ”:|sy + b:|5
if and only if

1—[FI"™*! = [ay + DI, a<y<pm>-1,

84
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where F(y) is df over (o, B) and

6-pD . __ b, .
H1+c(s—]) b a(l )

and —log F(y) = [ay + b]° at m = =1 with —log F(p) = 1.

For the proof and the related results for order statistics and lower records one may refer to Khan ef al.

(2010a).
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