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Abstract. The main object of this article is to present a systematic study of probability density functions
and distributions associated with Mathieu series and their generalizations. Characteristic functions and
fractional moments related to the probability density functions of the considered distributions are derived
by means of Mathieu type series and Hurwitz–Lerch Zeta function. Special attention will be given to the
so–called Planck(p) distribution.

1. Introduction and preliminaries

The following familiar infinite series

S (r) =

∞∑
n=1

2n

(n2 + r2)2
, r ∈ R+, (1)

is named after Emile Leonard Mathieu (1835–1890), who investigated it in his 1890 work (Mathieu [17]) on
the elasticity of solid bodies. Alternative version of (1)

S̃ (r) =

∞∑
n=1

(−1)n−1
2n

(n2 + r2)2
, r ∈ R+, (2)

was introduced in Pogány et al. [18]. Its Mellin–Barnes integral representation is recently given by Saxena
et al. [20]. Integral representations of (1) and (2) are given (Elezović et al. [5] and Pogány et al. [18]) in
the form:

S(r) =
1

r

∫ ∞
0

t sin(rt)

et − 1
dt, (3)

S̃(r) =
1

r

∫ ∞
0

t sin(rt)

et + 1
dt .
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Several interesting problems and solutions dealing with integral representations and bounds for the following
mild generalization of the Mathieu series with a fractional power

Sµ(r) =

∞∑
n=1

2n

(n2 + r2)µ
, r ∈ R+, µ > 1, (4)

can be found in the recent works by Diananda [3], Tomovski and Trenčevski [27] and Cerone and Lenard
[2]. Motivated essentially by the works of Cerone and Lenard [2], in Pogány et al. [18] has been defined a
family of generalized Mathieu series

S(α,β)
µ (r;a) = S(α,β)

µ (r; {ak}∞k=1) =

∞∑
n=1

2aβn
(aαn + r2)µ

, r, α, µ ∈ R+, β ≥ 0, (5)

where it is tacitly assumed that the monotone increasing, divergent sequence of positive real numbers

a = {an}∞n=1, lim
n→∞

an = +∞ ,

is so chosen that the infinite series in definition (5) converges, that is, the following auxiliary series

∞∑
n=1

1

aµα−βn

is convergent. Comparing the definitions (1), (4) and (5), we see that S2(r) = S(r) and Sµ(r) = S
(2,1)
µ (r, {k}).

The interesting special cases like S
(2,1)
2 (r; {ak}), Sµ(r) = S

(2,1)
µ (r; {k}), Sµ(r) = S

(2,1)
µ (r; {kγ}) and Sµ(r) =

S
(α,α/2)
µ (r; {k}) were investigated by Diananda [3], Tomovski and Leškovski [26] and Cerone and Lenard [2]

among others. In Pogány et al. [18] and in Srivastava and Tomovski [25] several integral representations
have been obtained for (5) and its alternating variants in terms of the generalized hypergeometric functions
and the Bessel function of the first kind.

The generalized Hurwitz–Lerch Zeta function Φ(z, s, a) is defined e.g. in Erdélyi et al. [4, p. 27, Eq.
1.11.1] as the power series

Φ(z, s, a) =

∞∑
n=0

zn

(n+ a)s
,

where a ∈ C\Z−0 ; <{s} > 1 when |z| = 1 and s ∈ C when |z| < 1 and continues meromorphically to the
complex s–plane, except for the simple pole at s = 1, with its residue equal to 1. The function Φ(z, s, a)
has many special cases such as Riemann Zeta (Erdélyi et al. [4]), Hurwitz–Zeta (Srivastava and Choi [23])
and Lerch Zeta function (Whittaker and Watson [29, p. 280, Example 8]). Some other special cases involve
the polylogarithm (or Jonqière’s function) and the generalized Zeta function (Whittaker and Watson [29,
p. 280, Example 8], Srivastava and Choi [23, p. 122, Eq. 2.5]) discussed for the first time by Lipschitz and
Lerch.

Finally, Fox defined the H–function in his celebrated studies of symmetrical Fourier kernels as the
Mellin–Barnes type path integral (Mathai and Saxena [16], Srivastava et al. [24])

H m,n
p,q [z] = H m,n

p,q

[
z
∣∣∣ (a1, A1), · · · , (ap, Ap)

(b1, B1), · · · , (bq, Bq)
]

:=
1

2πi

∫
L

χ(s)zs ds (6)

for all z 6= 0, where

χ(s) =

∏m
j=1 Γ(bj −Bjs) ·

∏n
j=1 Γ(1− aj +Ajs)∏p

j=n+1 Γ(aj −Ajs) ·
∏q
j=m+1 Γ(1− bj +Bjs)

.
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Here 0 ≤ n ≤ p, 1 ≤ m ≤ q, (a`, α`), (b`, β`) ∈ C × R+ such that Aj(bh + `) 6= Bh(aj − k − 1), for
`, k ∈ N0;h = 1,m, j = 1, n. The contour L in the complex s–plane extends from w − i∞ to w + i∞, w >
max1≤h≤m |={bh}|/Bh separating the points B−1h (bj + `), h = 1,m, ` ∈ N0, which are the poles of Γ(bj −
Bjs), j = 1,m, from the points A−1j (aj−k−1), j = 1, n, k ∈ N0 which are the poles of Γ(1−aj+Ajs), j = 1, n,
(Mathai and Saxena [16], Srivastava et al. [24]).

The sufficient conditions for the absolute convergence of the contour integral (6) is given by Mathai and
Saxena [16], Srivastava et al. [24] as

Λ =

m∑
j=1

Bj +

n∑
j=1

Aj −
q∑

j=m+1

Bj −
p∑

j=n+1

Aj > 0 .

The region of absolute convergence of the contour integral (6) is | arg z| < πΛ/2.
The main objective of this article is to introduce, develop and investigate probability density functions

(PDF) and cumulative distribution functions (CDF) associated with the Mathieu series and their generali-
zations. We consider also separately the expressibility of the related statistical functions connected with the
Hurwitz–Lerch Zeta function, together with another related numerical characteristics and basic functions
associated with the PDF of the considered distributions, such as general fractional order moments EXs and
related characteristic functions (CHF).

2. Probability distributions associated with Mathieu series and Planck’s law

Special functions and integral transforms are useful in the development of the theory of probability
density functions (PDF). In this connection, one can refer to the books e.g. by Mathai and Saxena [15, 16]
or by Johnson and Kotz [11, 12]. Due to usefulness and popularity of Planck distribution in quantum
physics, statistical inference etc. the authors are motivated to study the connections between the Planck’s
probability distribution law and the Mathieu series, investigating its important properties.

The celebrated Planck’s law is related to the radiation of black body, namely it describes the electro-
magnetic radiation emitted from a black body at absolute temperature T . As a function of frequency ν,
Planck’s law represents the emitted power per unit area of emitting surface in the normal direction, per
unit solid angle, per unit frequency; in other words it gives the specific radiative intensity in the function
of the frequency ν. Also, Planck’s law is sometimes written in terms of the spectral energy density per unit
volume of thermodynamic equilibrium cavity radiation (Brehm and Mullin [1]). Then we have the celebrated
frequency spectral density

u(ν) =
8πhν3

c3
1

e
hν
kT − 1

, ν > 0 ,

where constants h, c, k possess the physical meanings as Planck constant, speed of light and Boltzmann
constant respectively. Further generalizations of the Planck’s law were considered recently e.g. by Souza
and Tsallis [22, Eqs. (2), (3)].

Bearing in mind the well–known identity∫ ∞
0

xz−1

eαx − 1
dx = α−zζ(z)Γ(z), α,<(z) > 0 ,

where ζ,Γ stand for the Riemann Zeta and Gamma function respetively, we recognize that the random
variable X defined on some fixed standard probability space (Ω,F,P), possessing PDF

u(x) =
αp+2

ζ(p+ 2)Γ(p+ 2)
· xp+1

eαx − 1
· χR+

(x),

is distributed according to Planck’s law with parameter p > −1. We write this correspondence as X ∼
Planck(p). Here, and in what follows χS(x) denotes the indicator function of the set S. The related CDF
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reads

U(x) =


αp+2

ζ(p+ 2)Γ(p+ 2)

∫ x

0

tp+1

eαt − 1
dt, x > 0,

0, x ≤ 0.

Now, we are interested in CHF φ(r) = E eirX , r ∈ R for the r.v. X having Planck distribution.

Theorem 2.1. The CHF associated with the r.v. X ∼ Planck(p) reads, as follows

φ(r) =
1

ζ(p+ 2)
Φ

(
1, p+ 2, 1− ir

α

)
, r ∈ R . (7)

Moreover, there holds the estimate∣∣φ(r)
∣∣ ≤ 1

2 ζ(p+ 2)
S
(2,0)
p/2+1

( r
α

; {k}
)
, r ∈ R . (8)

Proof. By direct calculations we have

φ(r) = E eirX =
αp+2

ζ(p+ 2)Γ(p+ 2)

∫ ∞
0

eirx
xp+1

eαx − 1
dx

=
αp+2

ζ(p+ 2)Γ(p+ 2)

∞∑
n=0

∫ ∞
0

xp+1e−((n+1)α−ir)x dx

=
1

ζ(p+ 2)

∞∑
n=0

1(
n+ 1− ir

α

)p+2 ,

which proves (7) being the Hurwitz–Lerch series convergent (p+1 > 0). Now, evaluating the last expression
we deduce∣∣φ(r)

∣∣ ≤ 1

ζ(p+ 2)

∞∑
n=0

1∣∣n+ 1− ir
α

∣∣p+2 =
1

2 ζ(p+ 2)
lim
β→0

S
(2,β)
p/2+1

( r
α

; {k}
)
,

which proves (8).

We point out that φ(0) = 1 such that is one of the main properties of CHFs. Another kind of expression
for CHF φ(r) we obtain in terms of derivatives of Mathieu series S(r).

Differentiating p ∈ N0 times with respect to r both sides of the formula [19]∫ ∞
0

x cos(rx)

eαx − 1
dx =

1

2r2
− π2

2α2

1

sinh2
(
rπ
α

) ,
we get∫ ∞

0

xp+1

eαx − 1
cos
(
rx+ p

π

2

)
dx =

(−1)p(p+ 1)!

rp+2
− π2

2α2

(
sinh−2

(rπ
α

))(p)
,

which one expands into

cos
(
p
π

2

) ∫ ∞
0

xp+1 cos(rx)

eαx − 1
dx− sin

(
p
π

2

) ∫ ∞
0

xp+1 sin(rx)

eαx − 1
dx

=
(−1)p(p+ 1)!

2 r2+p
− π2

2α2

(
sinh−2

(rπ
α

))(p)
. (9)
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Differentiating now p times both sides of (3) with respect to r, we have∫ ∞
0

xp+1

eαx − 1
sin
(
rx+ p

π

2

)
dx =

1

α3

(
rS
( r
α

))(p)
.

By the Leibnitz rule for differentiating the product on the right we have

sin
(
p
π

2

) ∫ ∞
0

xp+1 cos(rx)

eαx − 1
dx+ cos

(
p
π

2

) ∫ ∞
0

xp+1 sin(rx)

eαx − 1
dx

=
1

α3

{
rS(p)

( r
α

)
+ pS(p−1)

( r
α

)}
. (10)

Solving the system of equations (9), (10) with respect to cosine and sine integrals we obtain∫ ∞
0

xp+1 cos(rx)

eαx − 1
dx = cos

(
p
π

2

) { (−1)p(p+ 1)!

2 r2+p
− π2

2α2

(
sinh−2

(rπ
α

))(p)}

+
sin
(
p
π

2

)
α3

{
rS(p)

( r
α

)
+ pS(p−1)

( r
α

)}
∫ ∞
0

xp+1 sin(rx)

eαx − 1
dx = − sin

(
p
π

2

) { (−1)p(p+ 1)!

2 r2+p
− π2

2α2

(
sinh−2

(rπ
α

))(p)}

+
cos
(
p
π

2

)
α3

{
rS(p)

( r
α

)
+ pS(p−1)

( r
α

)}
.

Hence the following result.

Theorem 2.2. The CHF related to r.v. X ∼ Planck(p), p ∈ N0 is

φ(r) =
αp+2(−i)p

ζ(p+ 2) (p+ 1)!

{
(−1)p(p+ 1)!

2 r2+p
− π2

2α2

(
sinh−2

(rπ
α

))(p)
+

1

α3

(
rS(p)

( r
α

)
+ pS(p−1)

( r
α

))}
. (11)

Now, obvious calculations lead us to the next result.

Theorem 2.3. Let X ∼ Planck(p), p > −1. Then the fractional moment EXs of order s is given by

EXs =
Γ(s+ p+ 2)ζ(s+ p+ 2)

αsΓ(p+ 2)ζ(p+ 2)
, s > −p− 1 . (12)

Example 2.4. Consider the r.v. X0 ∼ Planck(0), when parameter α = 1. The associated PDF takes the
form

u0(x) =
6x

π2(ex − 1)
χR+(x) ,

and the related CDF will be

U0(x) =
6

π2
χR+

(x)

∫ x

0

t

et − 1
dt .

According to Theorem 2.1 we express the CHF as

φ0(r) =
6

π2
Φ
(
1, 2, 1− ir

)
, r ∈ R .
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Further, by virtue of Theorems 2.2 and 2.3, the another form CHF and the moment of general fractional
order s > −1 are respectively

φ0(r) =
6

π2

(
1

2r2
− π2

2 sinh2(πr)
+ ir S(r)

)
EXs

0 =
6

π2
Γ(s+ 2)ζ(s+ 2) .

Example 2.5. Now, we consider the r.v. X2 ∼ Planck(2), when α = h
kT , which corresponds to the

celebrated Planck’s spectral distribution. The related PDF is

u2(x) =
15α4

π4

x3

ex − 1
χR+

(x) ,

and formula (12) one reduces to

EXs
2 =

15

α4π4
Γ(s+ 4)ζ(s+ 4), s > −3 .

The characteristic function take, via Theorem 2.1, the form:

φ2(r) =
90

π4
Φ
(

1, 4, 1− i
r

α

)
, r ∈ R .

Further, by Theorem 2.2 we obtain another form for the CHF which reads as follows

φ2(r) =
15
(
3 + 2 sinh2

(
rπ
α

) )
sinh4

(
rπ
α

) − 45α4

π4r4
− 15α

π4

(
r S′′

( r
α

)
+ 2S′

( r
α

))
.

Example 2.6. Consider the r.v. Xg having PDF

g(x) =
12

π2

x

ex + 1
χR+(x) ;

the corresponding CDF will be

G(x) =
12

π2
χR+(x)

∫ x

0

t

et + 1
dt .

The characteristic function expressed via Hurwitz–Lerch Zeta becomes

φg(r) =
12

π2
Φ(−1, 2, 1− ir) .

Indeed, repeating this procedure of Theorem 2.1 we easily confirm this result. Furtheron, the CHF via
alternating Mathieu series S̃(r) reads

φg(r) =
12

π2

(
π2 cosh(πr)

2 sinh2(πr)
− 1

2r2

)
+ i

12

π2
rS̃(r)

=
6 cosh(πr)

sinh2(πr)
− 6

π2r2
+ i

12

π2
rS̃(r) ,

while

EXs
g =

12

π2
η(s+ 2) Γ(s+ 2) ,

where

η(q) =

∞∑
n=1

=
(−1)n−1

nq
=
(
1− 21−q

)
ζ(q), <(q) > 0 ,

denotes the Dirichlet Eta–function.
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Example 2.7. Using the result [8]∫ ∞
0

S(r) dx =
π3

12

we define a r.v. X possessing PDF

p(x) =
12

π3
S(x)χR+

(x) .

Applying the Fourier sine and cosine transforms of S(x) [5], we get

φ(r) =
6

π2

∫ ∞
r

xdx

ex − 1
+

6i

π3
PV

∫ ∞
0

x

ex − 1
ln

∣∣∣∣x+ r

x− r

∣∣∣∣ dx ,
where the Cauchy Principal Value PV of the last integral is assumed to exist.

It is well–known that∫ ∞
0

sinx

xs
dx = cos

(πs
2

)
Γ(1− s), 0 < <(s) < 2 ,

accordingly∫ ∞
0

sin(qx)

x1−s
dx =

Γ(s)

qs
sin
(πs

2

)
, |<(s)| < 1 .

Hence, we get

EXs =

∫ ∞
0

xs p(x) dx =
12

π3

∫ ∞
0

xs−1
(∫ ∞

0

t sin(tx)

et − 1
dt

)
dx

=
12

π3

∫ ∞
0

t

et − 1

(∫ ∞
0

sin(tx)

x1−s
dx

)
dt =

12

π3
Γ(s) sin

(πs
2

) ∫ ∞
0

t1−s

et − 1
dt

=
12

π3
Γ(s) sin

(πs
2

)
Γ(2− s)ζ(2− s) .

Finally, reductions give us

EXs =
6

π2

(1− s)ζ(2− s)
cos
(
πs
2

) .

3. Distributions associated with generalized Mathieu series

Special functions play a highly significant roles in the study of probability distribution and further
statistical inference see, for example the monographs (Lebedev [13], Mathai and Saxena [15, 16], Mathai
[14], Johnson and Kotz [11, 12]). Bivariate distributions are studied by Gupta et al. [9]. Hurwitz–Lerch Zeta
distribution is introduced and applied in reliability theory by Gupta et al. [10], Garg et al. [7] and others.
Very recently, Saxena et al. [21] proposed and studied two new statistical distributions named as, generalized
Hurwitz–Lerch Zeta Beta prime distribution and generalized Hurwitz–Lerch Zeta Gamma distribution and
investigate their statistical functions, such as moments, distribution and survivor function, characteristic
function, the hazard rate function and the mean residue life functions, see [21] and the references therein.

In this chapter we consider Fourier sine and cosine and Mellin integral transform formulæ for few kind
of generalized Mathieu type series belonging to Cerone and Lenard [2] and to Srivastava and Tomovski
[25]. Making use of these formulæ, one defines various type PDFs and in the same time one introduces
appropriate probability distributions.
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3.1.

Cerone and Lenard reported [2] that∫ ∞
0

Sµ+1(x) dx =

√
π Γ(µ+ 1

2 )

Γ(µ+ 1)
ζ(2µ), µ >

1

2
.

So, we define a new r.v. Xµ associated with the PDF

fµ(x) =
Γ(µ+ 1)Sµ+1(x)
√
π Γ(µ+ 1

2 )ζ(2µ)
χR+(x) .

Obviously, the related CDF becomes

Fµ(x) =
Γ(µ+ 1)

√
π Γ(µ+ 1

2 )ζ(2µ)
χR+

(x)

∫ x

0

Sµ+1(t) dt .

By virtue of the Fourier sine and cosine transforms of Sµ+1(x) (Elezović et al. [5]), we obtain the related
CHF. Also, making use of the Mellin–transform formula for Sµ+1(x) (Elezović et al. [5]) we derive the sth
moment.

Theorem 3.1. Let <(µ) > 1
2 . Then the CHF of the r.v. Xµ equals

φµ(r) =
21/2−µ

Γ(µ+ 1
2 )ζ(2µ)

(∫ ∞
r

tµ+
1
2

et − 1
Θc(µ; r, t) dt+i

∫ r

0

tµ+
1
2

et − 1
Θ(1)
s (µ; r, t) dt+i

∫ ∞
r

tµ+
1
2

et − 1
Θ(2)
s (µ; r, t) dr

)
,

where

Θc(µ; r, t) =

√
π(t2 − r2)

2µ−1/2tµ−1 Γ(µ)
, t > r,

Θ(1)
s (µ; r, t) =

tµ−1/2

2µ−1/2 r Γ(µ+ 1/2)
2F1

[ 1, 1
2

µ+ 1
2

∣∣∣ t2
r2

]
, 0 < t < r,

Θ(2)
s (µ; r, t) =

rtµ−5/2

2µ−3/2Γ(µ− 1/2)
2F1

[ 1, 3
2 − µ

3
2

∣∣∣r2
t2

]
, t > r .

Moreover, for all 0 < <(s) < 2µ− 1 the sth moment of Xµ is

EXs
µ =

Γ(µ+ 1)
√
π Γ(µ+ 1

2 )ζ(2µ)
B
(s+ 1

2
, µ− s− 1

2

)
ζ(2µ− s) ,

where B(·, ·) stands for the familiar Euler’s Beta function.

3.2.

Recall another result reported in (Elezović et al. [5]), that is∫ ∞
0

S(α,β)
µ (r; {k2/α}) dr =

√
π Γ(µ− 1

2 )

Γ(µ)
ζ
(

2
[
µ− β

α

]
− 1
)

defined for the parameter space α, β ∈ R+, µ− β
α >

1
2 .

Having in mind this result we can define a r.v. Xσ with the related PDF of the form

fσ(x) =
Γ(µ)S

(α,β)
µ (x; {k2/α})

√
π Γ(µ− 1

2 )ζ
(
2
[
µ− β

α

]
− 1
) χR+

(x) .

Applying the Fourier cosine and sine transforms and separately the Mellin transform of S
(α,β)
µ (x; {k2/α})

[5] we obtain the related CHF and the sth moment respectively.
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Theorem 3.2. Assume that parameters of the distribution of r.v. Xσ satisfy condition µ > max
{

2β
α ,

β
α +

1
2 , 0
}
. Then the related CHF is of the form

φσ(r) =
Γ(µ)

√
π Γ(µ− 1

2 )ζ
(
2
[
µ− β

α

]
− 1
)
Γ
(
2
[
µ− β

α

]) ∫ ∞
r

tµ−
1
2

et − 1
Φc

[
µ, µ− β

α

µ− β
α + 1

2

;
r

2
,
t

2

]
dt

+
2Γ(µ)i

√
π Γ(µ− 1

2 )ζ
(
2
[
µ− β

α

]
− 1
)
Γ
(
2
[
µ− β

α

]){∫ r

0

t2(µ−
β
α )−1

et − 1
Φ(1)
s

[ µ, µ− β
α

µ− β
α + 1

2

;
r

2
,
t

2

]
dt

+

∫ ∞
r

t2(µ−
β
α )−1

et − 1
Φ(1)
s

[
µ, µ− β

α

µ− β
α + 1

2

;
r

2
,
t

2

]
dt

}
,

where, for 0 < <(ρ) < <(σ + τ)− 1
2 , it is

Φc

[
ρ, σ
τ

; a, b
]

=

√
π

2b

Γ(ρ− 1
2 )Γ(σ)Γ(τ)

Γ(ρ)Γ(σ − 1
2 )Γ(τ − 1

2 )
2F1

[ 3
2 − σ,

3
2 − τ

3
2 − ρ

∣∣∣a2
b2

]
+

√
π

2a

(a2
b2

)α Γ( 1
2 − ρ)Γ(σ)Γ(τ)

Γ(ρ)Γ(σ − ρ)Γ(τ − ρ)
2F1

[ 1 + ρ− σ, 1 + ρ− τ
1
2 + ρ

∣∣∣a2
b2

]
,

which holds for 0 < a < b.

Also

Φ(1)
s

[
ρ, σ
τ

; a, b
]

=
1

2a
3F2

[ 1
2 , 1, ρ
σ, τ

∣∣∣ b2
a2

]
for 0 < b < a.

Finally

Φ(2)
s

[ ρ, σ
τ

; a, b
]

=
a

b2
(σ − 1)(τ − 1)

ρ− 1
3F2

[ 1, 2− σ, 2− τ
3
2 , 2− ρ

∣∣∣a2
b2

]
+

√
π

2a

(a2
b2

)α Γ(1− ρ)Γ(σ)Γ(τ)

Γ( 1
2 + ρ)Γ(σ − ρ)Γ(τ − ρ)

2F1

[ 1 + ρ− σ, 1 + ρ− τ
1
2 + ρ

∣∣∣a2
b2

]
,

under 0 < a < b.

Moreover, the sth moment of the r.v. Xσ becomes

EXs
σ = B

(s+ 1

2
, µ− s+ 1

2

)
ζ
(

2
[
µ− β

α

]
− s− 1

)
, −1 < s < 2

(
µ− β

α
− 1
)
.

3.3.

Finally, bearing in mind the formula (Elezović et al., [5])∫ ∞
0

S(α,β)
µ (x; {kγ}) dx =

√
π Γ(µ− 1

2 )

Γ(µ)
ζ
(
γ(µα− β)− γα

2

)
such that holds true for all

α, β, γ ∈ R+, µ >
1
2 and γα(2µ− 1) > 2(1 + βγ) ,

we define the r.v. Xγ possessing PDF

h(x) =
Γ(µ)S

(α,β)
µ (x; {kγ})

√
π Γ(µ− 1

2 ) ζ(γ(µα− β)− γα
2 )

χR+
(x) .
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The Fourier sine and cosine transform of S
(α,β)
µ (x; {kγ}) have been established in terms of the Fox’s H1,2

3,2–
function (Tomovski and Tuan, [28]):

∫ ∞
0

{ sin(rx)
cos(rx)

}
S(α,β)
µ (r; {kγ}) dr

=
2
√
π

xΓ(µ)

∫ ∞
0

tγ(µα−β)−1

et − 1


H1,2

3,2

[4tγα

x2

∣∣∣ (0, 1), (1− µ, 1), ( 1
2 , 1)

(0, 1), (1− γ(µα− β), γα)

]

H1,2
3,2

[4tγα

x2

∣∣∣ ( 1
2 , 1), (1− µ, 1), (0, 1)

(0, 1), (1− γ(µα− β), γα)

]
 dt ,

which holds true for all α, β, γ ∈ R+; 1 < γ(µα− β).
Calculating now the CHF with the aid of previous formulæ, and deriving the fractional order moments

by the Mellin transform of the generalized Mathieu series S
(α,β)
µ (r; {kγ}), we arrive at the following results.

Theorem 3.3. Let α, β, γ ∈ R+; 1 < γ(µα− β). Then the CHF for the r.v. Xγ having PDF h(x), equals

φγ(r) = C(α,β)
µ

∫ ∞
0

tγ(µα−β)−1

et − 1

{
H1,2

3,2

[4tγα

x2

∣∣∣ ( 1
2 , 1), (1− µ, 1), (0, 1)

(0, 1), (1− γ(µα− β), γα)

]
+ iH1,2

3,2

[4tγα

x2

∣∣∣ (0, 1), (1− µ, 1), ( 1
2 , 1)

(0, 1), (1− γ(µα− β), γα)

]}
dt ,

where

C(α,β)
µ =

2

Γ(µ− 1
2 )ζ(γ(µα− β)− γα

2 )
.

Moreover, for all α, β, γ, µ− 1
2 > 0 and

−1 < s < min
{

2µ− 1,
2

αγ

(
γ(µα− β)− 1

)
− 1
)}
,

there holds true

EXs
γ = B

(s+ 1

2
, µ− s+ 1

2

)
ζ

(
γ (µα− β)− γα (s+ 1)

2

)
.
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