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Parameter estimation and dependence characterization
of the MAR(1) process
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Abstract. Classical linear ARMA with normal distributed noises are not suitable for heavy tailed
phenomena. MARMA processes obtained by replacing summation by the maximum operator are more
appropriate. We consider unit Fréchet first order MARMA, denoted MAR(1), and present a characteriza-
tion based on ordinal autocorrelation. An estimator of the model’s parameter and respective consistency
and asymptotic normality properties are also stated.

1. INTRODUCTION

It is now well recognized that heavy tailed phenomena occurs in nature and society and cannot be
described by the normal distribution. A useful class of processes for modeling heavy tails and extremal
structures of dependent events are the max-ARMA or MARMA processes introduced in Davis and Resnick
[4], which are analogous to ARMA by replacing summation by the maximum operator:

Xn =

(
p∨

i=1

αiXn−i

)∨ q∨
j=0

βjZn−j


where parameters αi, βj ≥ 0, 1 ≤ i ≤ p, 0 ≤ j ≤ q, are non-negative independent and identically distributed
(i.i.d.) innovations. Besides a more suitable formulation than heavy tailed ARMA given easily definable
finite dimensional distributions, they have a wide application to various natural phenomena (Helland and
Nielsen [7], Daley and Haslett [5], Hooghiemstra and Scheffer [8], Todorovic and Gani [13], Coles [3]),
reliability (Davis and Resnick ([4]) or financial series (Zhang and Smith [14]).

Several first order max-autoregressive formulations that include random coefficients and power transfor-
mations have also been considered in literature (Alpuim [1], Alpuim and Athayde [2], Ferreira and Canto e
Castro [6]).

Stationary MARMA processes with Fréchet marginal d.f. are maximum-stable and thus convenient for
calculations. Here we focus on first order max-autoregressive MARMA. Indeed, since our procedures also
apply to continuous strictly increasing functions of the process and that the values can be normalized so
that they come from an unit Fréchet model, we shall consider unit Fréchet margins, i.e., F (x) = exp(−1/x).
For more details, see Lebedev ([11], [12]).
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Given the maximum stability property satisfied by independent unit Fréchet distributed r.v.’s, ξ1, ξ2 and
ξ, i.e.,

c1ξ1
∨
c2ξ2 = (c1 + c2)ξ

we shall define the first order max-autoregressive process, denoted MAR(1), as

Xi = cXi−1
∨

(1− c)Zi, 0 ≤ c < 1 (1)

with margins and noises having unit Fréchet d.f. F .

An estimation procedure for model’s parameter c have been stated in Lebedev [11] based on fluctuation
probabilities,

f1 := P (Xn−1 < Xn) =
1

2− c
.

We derive estimators for cm (m ≥ 1) using a similar methodology and state consistency and asymptotic
normality (Section 2). In particular, m can be chosen in order to obtain the smallest variance.

A drawback of very heavy tailed processes is that first and second order moments do not exist and
the usual auto-correlation function (ACF) of classical linear models cannot be used. Alternatively, we
consider ordinal autocorrelation based on Spearman’s rho coefficient. Besides an alternative estimator for
the parameter, it provides a characterization for MAR(1) processes (Section 3).

2. Estimation of the model’s parameter

In the following we use the m-step (m ≥ 1) transition probability function (tpf) of the process, given by

Qm(x, ]0, y]) = P (Xn+m ≤ y|Xn = x) =

{ ∏m−1
j=0 F

(
y

cj(1−c)
)

, x ≤ y/cm

0 , x > y/cm,

=

{
exp

(
− 1−cm

y

)
, x ≤ y/cm

0 , x > y/cm.

(2)

Proposition 2.1. Let {Xi}i≥1 be a MAR(1) process. Then, for each m ≥ 1,

cm = 2− 1/fm.

Proof. Observe that the m-step fluctuation probabilities fm := P (Xn−m < Xn) are given by

fm : = P (Xn ≤ Xn−m) =

∫ ∞
0

P (Xn ≤ x|Xn−m = x)dFX(x)

=

∫ ∞
0

Qm(x, ]0, x]dFX(x) =

∫ ∞
0

F (x)1−c
m

dFX(x)

=
1

2− cm
.

(3)
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The fluctuation probabilities can be used to estimate the process parameter, c. Considering

f̂m =
1

n−m

n∑
j=m+1

1{Xj≤Xj−m}, m ≥ 1,

we will see that estimator
ĉm = 2− 1/f̂m

is consistent and asymptotically normal.

Proposition 2.2. Let {Xi}i≥1 be a MAR(1) process. Then, for each m ≥ 1,

n1/2(ĉm − cm)
D→ N(0, σ2

m/f
4
m) (4)

where

σ2
m = fm(1− fm)(1− 2fm + χm)/(1− χm), (5)

with fm given in (3) and

χm = c(2−cm)
2

(
1

cm−2c−2 −
2

cm−2c−1 + 1
cm+2c

)
.

Proof. Just observe that f̂m corresponds to the mean of Bernoulli trials with Markov dependence and results

on this can be found in Klotz [10]. More precisely, we have that, n1/2(f̂m − fm)
D→ N(0, σ2

m) holds for σ2
m

given in (5), where χm = P (Xj−m < Xj |Xj−m−1 < Xj−1) with max(0, (2fm − 1)/fm) ≤ χm ≤ 1. The

result in (4) is now straightforward by the Delta Method, i.e., n1/2(g(f̂m) − g(fm))
D→ N(0, σ2

m(g′(fm))2),
with g(x) = 2− x−1. In the following we compute the variance, σ2

m

P (Xm+j ≤ Xj , Xm+j−1 ≤ Xj−1) =

∫ ∞
0

∫ ∞
0

∫ x

0

Q(w, ]−∞, y])Qm−1(y, dw)Q(x, dy)K(dx).

Now considering (2), the following development holds:

P (Xm+j ≤ Xj , Xm+j−1 ≤ Xj−1) =

∫ ∞
0

∫ ∞
0

∫ min(x,y/c)

0

F (y)Qm−1(y, dw)Q(x, dy)F (dx)

=

∫ ∞
0

{∫ xc

0

F (y)Qm−1(y, ]−∞, y/c])+
∫ ∞

xc

F (y)Qm−1(y, ]−∞, x])

}
Q(x, dy)F (dx)

=

∫ ∞
0

{∫ xc

0

F (y)[F (y/c)]1−cm−1
) +

∫ x/cm−1

xc

F (y)[F (x)]1−cm−1

}
Q(x, dy)F (dx).

Considering f the density function of the unit Fréchet d.f. F , the transition density of Q(x, ]0, y]) is given
by q(x, y) = f(y)1{xc<y} + F(xc)1{xc=y}. Hence we have,

P (Xm+j ≤ Xj , Xm+j−1 ≤ Xj−1) =

∫ ∞
0

{
F (xc)[F (x)]1−c

m−1

+
[F (x/cm−1)]2 − [F (xc)]2

2
[F (x)]1−c

m−1
}
F (dx)

=
c

2

( 1

cm − 2c− 2
− 2

cm − 2c− 1
+

1

cm + 2c

)
.

Observe that, after some calculations, we obtain the variance of ĉm given by

σ2

m/f
4
m = − (cm − 2)2(cm − 1)2(c2m − 2c− 2cm(1 + c)))

2c+ c3m + cm(2 + c+ 6c2 + 4c3)− c2m(3 + 2c(1 + c))
.

In particular, m can be chosen in order to obtain the smallest variance, provided that f̂m ∈ [1/2, 1).

Note also that no definite results can be obtained for f̂m < 1/2 since fm ∈ [1/2, 1). Indeed, as observed in
Lebedev [11], the probability of such events goes to zero, as n →∞, and this may also be an indication of
an inconsistency in our choice of the model.
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3. Ordinal autocorrelation

The main drawback of a max-autoregressive modeling is that the usual analysis methods based on the
autocorrelation function (ACF) of classical linear models cannot be used here, since the first and second
moments do not exist. Alternatively, we can use ordinal correlation. We consider the Spearman’s rho coeffi-
cient which corresponds to the Pearson correlation coefficient applied to marginal transform (F1(X), F2(Y ))
of random pairs (X,Y ) with marginal d.f.’s F1 and F2, respectively, and thus also stated in Joe [9]

ρS = ρS(X,Y ) = 12EF1(X)F2(Y )− 3.

For lag-m random pairs, we denote the lag-m Spearman’s rho coefficient,

ρS,m = ρS,m(X1, X1+m).

Observe that, if Yi = F (Xi) and Ui = F (Zi), then MAR(1) process given in (1) can be rewritten as

Yi = Y
1/c
i−1

∨
U

1/(1−c)
i , 0 ≤ c < 1 (6)

where all the r.v.’s Yi and Ui are uniformly distributed in the interval (0, 1) (standard uniform).

Proposition 3.1. The lag-m Spearman’s rho coefficient of MAR(1) process is

ρS,m =
3cm

2 + cm
.

Proof. We shall use a similar approach of Lebedev [11], who has only consider the case m = 1.
Note that, for any constants a > 0 and 0 ≤ b ≤ 1, and W an r.v. with standard uniform d.f., we have

P
(
W 1/a

∨
b ≤ x

)
= xa1{x>b} + ba1{x=b}

and hence

E
(
W 1/a

∨
b
)

=

∫ 1

b

axadx+ ba+1 =
a+ ba+1

a+ 1
. (7)

Now observe that process (6) correspond to

Y1+m = Y
1/cm

1

∨m+1∨
j=2

U
1/(cm+1−j(1−c))
j


and that

P

m+1∨
j=2

U
1/(cm+1−j(1−c))
j ≤ x

 = x
∑m−1

k=1 ck(1−c) = x1−c
m

i.e.,
∨m+1

j=2 U
1/(cm+1−j(1−c))
j

d
=W 1/(1−cm ). Now we calculate

EY1Y1+m = EY1
E(Y1(Y

1/cm

1

∨∨m+1
j=2 U

1/(cm+1−j(1−c))
j )|Y1)

= EY1E(Y1(Y
1/cm

1

∨
W 1/(1−cm))|Y1)

= EY1
1−cm+Y

2/cm−1
1

2−cm

where the last equality is due to (7). We have

EY1
1− cm + Y

2/cm−1
1

2− cm
=

1

2− cm
(

(1− cm)EY1 +EY
2/cm

1

)
=

1

2− cm
(1− cm

2
+

cm

2 + cm

)
=

1 + cm

2(2 + cm)
.
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Thus, we can also estimate cm from the ordinal Spearman’s rho correlation coefficient.

Corollary 3.2. In the MAR(1) process we have, for ρS,m ∈ [0, 1),

cm =
2ρS,m

3− ρS,m
.

The following characterization relationship of MAR(1) is useful for model identification.

Corollary 3.3. In the MAR(1) process we have, for fm ∈ [1/2, 1),

ρS,m =
3

2

(
1− 7

4fm

)
.
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