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Abstract. A class of distribution-free tests based on U-Statistics is proposed for the one-sample loca-
tion problem. The kernel defined is based on a sub-sample of size k taken from n independent identically
distributed observations. This kernel depends on a constant a and rth, (k − r + 1)th order statistics
together with the median of the sub-sample. For given k and r, the optimal value of the constant a
is obtained by maximizing the efficacy. The performance of the test is evaluated for various symmetric
models by means of asymptotic relative efficiency relative to sign test, Wilcoxon signed-rank test and
other competitors. Using extensive simulations, performances of the tests based on the empirical power
is also studied for some standard distributions and for a typical class of heavy tailed distributions.

1. Introduction

One of the important fundamental problems extensively considered in the nonparametric inference is one-
sample location problem. The problem is to test for the location parameter that is median of a distribution
when the samples are drawn from a continuous symmetric distribution.

Let X1, . . . , Xn be a random sample of size n from an absolutely continuous symmetric distribution
with cumulative distribution function (cdf),

Fθ(x) = P [Xi < x] = G(x− θ),

where G admits density g satisfying g(x) = g(−x) for all −∞ < x <∞, θ is the location parameter and the
median of the distribution F .

The problem of interest is to test the hypothesis

H0 : θ = 0 vs H1 : θ 6= 0.

Some of the well known nonparametric tests in the literature to test the above hypothesis are Sign and
Wilcoxon signed-rank tests and their generalizations.

Madhava Rao (1990) proposed a test by using the sub-samples median. Madhava Rao (1990) proposed
a class of tests Ta by using a kernel that depends on an arbitrary constant a. For different G(·)’s they have
obtained the optimal values of a by maximizing the efficacy. Recently Pandit and Math (2011) used the test
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statistic Ta to develop nonparametric control chart for location. Shetty and Pandit (2000) have generalized
the test proposed by Mehra et al. (1990) by considering relative positions of two symmetric order statistics
taken from a sub-sample of size k. They denoted the statistic as Ua(k, r). In particular, they studied the
performance (in Pitman sense) of Ua(4, 2) and Ua(5, 2) with their optimal values and have showed that the
first one performs better. Bandyopadhyay and Datta (2007) have proposed an adaptive nonparametric tests
for a single sample location problem. Larocquea et al. (2008) have developed one-sample location tests for
multi-level data.

It is well know that sign test performs better when the underlying distributions are heavy tailed. When
the tails are moderate, Wilcoxon signed-rank test performs better (see Randles and Wolfe (1979)). Even
though the problem of location in univariate case seems to be pretty old, researchers are finding some scope
to improve the earlier proposed tests.

In this article, we propose a class of distribution-free tests based on U-statistics, which is the modification
of the test proposed by Shetty and Pandit (2000). The kernel is based on the rth, (k−r+1)th order statistics
together with the median of a sub-sample of size k taken from a random sample of size n. General expressions
for expected value and asymptotic variance of the proposed test statistics are derived for an arbitrary (k, r).
The optimal value of constant a is obtained for different values of (k, r) by maximizing the efficacy. Note
that, the proposed class of tests includes Ta and Ua(4, 2) as a special cases. The performance of the test
is evaluated by means of Asymptotic Relative Efficiency (ARE) relative to sign test, Wilcoxon signed-rank
test and other competitors. Empirical power study is carried out for some standard symmetric distributions
and for a typical class of heavy tailed distributions. Some useful results to compute expected value and
asymptotic variance with an illustrative example are given in Appendix.

2. Proposed class of tests

Let X1, . . . , Xn be a random sample from an absolutely continuous distribution function Fθ(x) =
G(x − θ), where G(y) + G(−y) = 1. The proposed statistic to test the hypothesis H0 : θ = 0 against the
alternative H1 : θ 6= 0 is a U-statistics,

Va(k, r) =

∑
c φ(X1, X2, ..., Xk)(

n
k

)
where the summation is over all

(
n
k

)
combinations of the integers {1, 2, . . . , n}, r is fixed such that r < k−r+1

and

φa(x1, x2, . . . , xk) =


1, if x(r) > 0
a(−a), if x(r)x(k−r+1) < 0, x(r) + x(k−r+1) > (<)0, Med(x1, x2, . . . , xk) > (<)0
−1, if x(k−r+1) < 0
0, otherwise

where x(i) is the ith order statistic and Med(x1, x2, . . . , xk) is the median of a sub-sample of size k. The
test statistic rejects H0 for large values of |Va(k, r)|. When k is even (k = 2m, say), then median of X1,
X2, . . . , Xk is any number in between X(m) and X(m+1), however for definiteness one may define it to be,
(X(m) +X(m+1))/2. If k is odd (k = 2m−1, say), then median of X1, X2, . . . , Xk is X(m). In the following,
for notational simplicity we write φa(·) as φ(·).

3. The asymptotic distribution of Va(k, r)

In the following we derive general expressions for expectation and asymptotic variance for Va(k, r).
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3.1. Expectation of Va(k, r)

To obtain E[Va(k, r)] = E (φ(X1, X2, . . . , Xk)), it is enough to compute the probabilities of the following
events:

E1 =
{
X(r) > 0

}
E2 =

{
X(r)X(k−r+1) < 0, X(r) +X(k−r+1) > 0,Med(X1, X2, . . . , Xk) > 0

}
E3 =

{
X(r)X(k−r+1) < 0, X(r) +X(k−r+1) < 0,Med(X1, X2, . . . , Xk) < 0

}
E4 =

{
X(k−r+1) < 0

}
The probabilities of the above events are given by,

P [E1] =

k∑
i=k−r+1

(
k

i

)
(1−G(−θ))iGk−i(−θ) = 1−B(G(−θ); r, k − r + 1). (1)

P [E4] =

r−1∑
i=0

(
k

i

)
Gi(−θ)(1−G(−θ))k−i = B(G(−θ); k − r + 1, r). (2)

where B(·; p, q) is the beta distribution function of first kind with parameters p, q.
In further derivations we consider k is odd. We obtain P [E2] and P [E3] by considering the joint density

of X(r), X((k+1)/2) and X(k−r+1). We have that

P [E2] =

∫ 0

−∞

∫ ∞
−u

∫ w

0

f(u, v, w)dvdwdu,

where f(u, v, w) is the joint density of X(r), X((k+1)/2) and X(k−r+1). Further,

P [E2] = C

∫ 0

−∞

∫ ∞
−u

∫ w

0

[F (u)(1−F (w))]r−1 {[F (v)− F (u)][F (w)− F (v)]}
(k−2r−1)

2 dF (v)dF (w)dF (u),

where C = k!
[(r−1)!((k−2r−1)/2)!]2 .

Using the relation Fθ(x) = G(x− θ), we get,

P [E2] = C

∫ 0

−∞

∫ ∞
−u

∫ w

0

[G(u− θ)(1−G(w − θ))]r−1[G(v − θ)−G(u− θ)]
(k−2r−1)

2

×[G(w − θ)−G(v − θ)]
(k−2r−1)

2 dG(v − θ)dG(w − θ)dG(u− θ). (3)

Similarly,

P [E3] = C

∫ 0

−∞

∫ −u
0

∫ 0

u

[G(u− θ)(1−G(w − θ))]r−1[G(v − θ)−G(u− θ)]
(k−2r−1)

2

×[G(w − θ)−G(v − θ)]
(k−2r−1)

2 dG(v − θ)dG(w − θ)dG(u− θ). (4)

From Lemma 6.1 given in Appendix, we have,

Pθ[E1] = P−θ[E4] and Pθ[E2] = P−θ[E3].

Hence,

µ(θ, k, r) = E[Va(k, r)] = P [E1] + a{P [E2]− P [E3]} − P [E4]. (5)

Note that under H0 : θ = 0, P0[E1] = P0[E4] and P0[E2] = P0[E3]. Thus EH0
[Va(k, r)] = 0.
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3.2. Asymptotic variance of Va(k, r)
Since Va(k, r) is a one-sample U-statistics, from Randles and Wolfe (1979), the asymptotic distribution

of Va(k, r) follows normal with mean 0 and variance k2ζ1(k, r), where

ζ1(k, r) = Cov(φ(X1, X2, . . . , Xk)φ(X1, Xk+1, . . . , X2k−1)) = V arH0
[EH0

(φ(X1, X2, . . . , Xk)|X1 = x)] .

To obtain the general expression of V ar [EH0
(φ(X1, X2, . . . , Xk)|X1 = x)], we consider the following cases.

Case I (When x > 0): Let (X1, X2, . . . , Xk) be denoted by (X1, Y1, . . . , Yk−1) = (X1, Y ), where Y =
(Y1, . . . , Yk−1). Let y(1) < y(2) <, . . . , < y(k−1) be the ordered values of y ∈ Rk−1. For given x, φ(x, y) takes
the respective values 1, a, −a, −1 and 0 on the sets,

E1(x) =
{
y ∈ Rk−1 : y(r) > 0

}
E2(x) =

{
y ∈ Rk−1 : {ym > 0}, and

{
0 < y(k−r+1) < x, y(r) > −x or y(k−r+1) > x, y(r) > −y(k−r+1)

}}
E3(x) =

{
y ∈ Rk−1 : {ym < 0}, and

{
0 < y(k−r+1) < x, y(r) < −x or y(k−r+1) > x, y(r) < −y(k−r+1)

}}
E4(x) =

{
y ∈ Rk−1 : y(k−r+1) < 0

}
E5(x) = Rk−1 − E1(x) ∪ E−1(x) ∪ Ea(x) ∪ E−a(x)

where ym = Med(x, y1, . . . , yk−1).
To obtain EH0(φ(X1, X2, . . . , Xk)|X1 = x), it is enough to compute the probabilities for the above

sets(events) under null by considering the joint distribution of the concerned order statistics from Y1, Y2,
. . . , Yk−1. The null probabilities are,

P [E1(x)] = 2−(k−1)
r−1∑
i=0

(
k − 1

i

)
,

since x > 0, for E1(x) there can be at most r − 1 of Y ’s negative and under H0, P [Yi > 0] = 1/2,

P [E4(x)] = 2−(k−1)
k−1∑

i=k−r+1

(
k − 1

i

)
,

since x > 0, for E4(x) there can be at least k − r − 1 of Y ’s negative,

P [E2(x)] =

∫ x

0

∫ 0

−x

∫ w

0

f(u, v, w)dvdudw +

∫ ∞
x

∫ 0

−w

∫ w

0

f(u, v, w)dvdudw, (6)

where f(u, v, w) is the density functions of Y(r), Ym = Med(x, Y1, . . . , Yk−1) and Y(k−r) in a random sample
of Y1, . . . , Yk−1 from G(·). Similarly,

P [E3(x)] =

∫ x

0

∫ 0

−∞

∫ max{−w,v}

∞
f(u, v, w)dudvdw+

∫ ∞
x

∫ −w
−∞

∫ min{|z|,−x}

−∞

∫ min{0,z}

u

f1(u, v, z, w)dvdudzdw.

where f(u, v, w) is defined in (6) and f1(u, v, z, w) is the density function of Y(r), Ym = Med(x, Y1, . . . , Yk−1, Y(k−r))
and Y(k−r+1) in a random sample of Y1, . . . , Yk−1 from G(·).

Case II: (When x < 0): From Lemma 6.2 we have that E1(x) = E4(−x) and E2(x) = E3(−x), for x < 0,
which implies that P [E1(x)] = P [E4(−x)] and P [E2(x)] = P [E3(−x)]. Therefore,

EH0
(φ(X1, . . . , Xk)|X1 = x) =

 P [E1(x)]− P [E4(x)] + a {P [E2(x)]− P [E3(x)]} , if x ≥ 0

P [E4(−x)]− P [E1(−x)] + a {P [E3(−x)]− P [E2(−x)]} , if x ≤ 0

Finally,

ζ1(k, r) = V arH0
[EH0

(φ(X1, . . . , Xk)|X1 = x)]

=

∫ ∞
0

[P [E1(x)]− P [E4(x)] + a {P [E2(x)]− P [E3(x)]}]2 dG(x)

+

∫ 0

−∞
[P [E4(−x)]− P [E1(−x)] + a {P [E3(−x)]− P [E2(−x)]}]2 dG(x). (7)
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3.3. Expectation and asymptotic variance for particular cases

One can show that

µ(θ, 5, 1) = E[φ(X1, X2, X3, X4, X5, )]

= G5(θ)−G5(−θ) + 5a
{

(1− 2G(−θ))G(−θ) + (2−G(−θ))G4(−θ)

+

−θ∫
−∞

G(−t− 2θ)
{

4G3(t)− 6G2(t)G(−t− 2θ) + 4G(t)G2(−t− 2θ)−G3(−t− 2θ)
}
dG(t)

 , (8)

and

V ar[Va(5, 1)] = 25

(
1

256
+

9a

320
+

197a2

2880

)
.

Similarly for (k, r) = (3, 1) one can show that,

µ(θ, 3, 1) = E[φ(X1, X2, X3)]

= G3(θ)−G3(−θ) + 3a
{

(1− 2G(−θ))G(−θ) +G3(−θ)

−
∫ −θ
−∞

G(−t− 2θ)(G(−t− 2θ)− 2G(t))dG(t)

}
, (9)

and

V ar[Va(3, 1)] = 9

(
1

16
+

a

12
+
a2

20

)
. (10)

4. Performance of the tests based on ARE

Let T be a sequence of test statistics for testing the hypothesis that the median is equal to zero. Let
E(T ) = µn(θ) and V ar(T ) = σ2

n(θ). Under certain regularity conditions (see Randles and Wolfe (1979), pp.
147-149) the efficacy of T is given by

eff [T ] = lim
n→∞

µ′n(0)√
nσn(0)

.

By considering T = Va(k, r), µn(θ) = µ(θ, k, r), we will have

eff2 [Va(k, r)] =
[µ′(0, k, r)]

2

k2ζ1(k, r)
, (11)

which depends on the G(.) and the constant a. For given G(·), the optimal value a∗(k,r) of a is obtained by

solving (d/da)eff2(Va(k, r)) = 0 and verifying (d2/da2)eff2(Va(k, r)) < 0 at the solution obtained.

4.1. Efficacies for particular cases

From (9) we have,

µ′(0, 3, 1) =
3

2
g(0) + 12aI1,

where I1 =
∫ 0

−∞(1− 2G(t))g2(t)dt, hence from (11),

eff2[Va(3, 1)] =
[µ′(0, 3, 1)]

2

k2ζ1(3, 1)
= 60[g(0)+8aI1]

2

(15+20a+12a2)
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and the optimal a∗(3,1) is,

a∗(3,1) =

(
60I1 − 5g(0)

6g(0)− 40I1

)
.

Similarly, efficacy of Va(5, 1) is given by,

eff2[Va(5, 1)] =
45 [2g(0) + a{5g(0) + 384I2 − 1}]2

(45 + 324a+ 788a2)
,

as

µ′(0, 5, 1) =
5

8
g(0) +

5

16
a{5g(0) + 384I2 − 1},

where I2 = (1/3)
∫ 0

−∞(1− 2G(t))3g2(t)dt.

The optimal value a∗(5,1) is,

a∗(5,1) =

(
45 + 99g(0)− 17325I2

1576− 7718g(0)− 606760I2

)
In Table 1, optimal values a∗(3,1), a

∗
(5,1) together with efficacies of Va∗

(3,1)
(3, 1), Va∗

(5,1)
(5, 1) and other

competitors for various models are given.
From Table 1, we observe that Va∗

(3,1)
(3, 1) performs better than other competitors for almost all the

models. For logistic model efficacy of Va∗
(3,1)

(3, 1) is closer to Wilcoxon signed-rank test, the one known to

be locally most powerful for this model.
Under H0 it is known that G(·) is symmetric about zero. Hence the choice of a should not depend

on a specified model. Whatsoever be the symmetric model, we recommend a = 2.5088, the optimal value
corresponding to the logistic model. For the tests proposed by Mehra et al. (1990) and Shetty and Pandit
(2000) we consider the values corresponding to normal model which are respectively, 1.2426 and 2.0933.

From Table 2, we note that still the efficacy of Va(3, 1) with a obtained under the logistic setup continues
to be more as compared to sign test and other competitors for various distributions.

In the next section, we perform empirical power study to assess the performances of the proposed tests
Ta, Ua(4, 2) and Va(3, 1) with t-test, Sign and Wilcoxon signed-rank tests.

5. Performance of the asymptotic tests based on the empirical power

Under H0, the statistics Va(3, 1) is asymptotically normal with mean 0 and variance given by (10). Thus
the criterion to test H0 versus H1 at level α is,

reject H0 if

√
(n)|Va∗

(3,1)
(3, 1)|

k
√
ζ1(3, 1)

≥ zα/2

where zα/2 is the upper (α/2)th percentile of standard normal distribution. Similarly, the criterion for the
test statistics Ta and Ua(k, r) proposed by Mehra et al. (1990) and Shetty and Pandit (2000) are also defined.

An empirical study was carried out for moderate sample size n = 25, using the samples from first seven
standard models given in Table 1 and two models from a family of heavy tailed distributions with density
h(x, p).

The pdf h(x, p) is defined as

h(x, p) =
sin(πp )p

π
.

1

1 + |x|p
, −∞ < x <∞ and p > 1.



Rattihalli and Raghunath / ProbStat Forum, Volume 05, October 2012, Pages 112–123 118

Note that, Cauchy distribution is a member of h(x, p). For the above family of distributions, it appears
obtaining optimal value of ‘a’ that maximizes the efficacy is difficult, as it involves solving the complicated
integrals when p 6= 2. We propose the test using optimal value of a corresponding to the Cauchy model. In
Table 3, empirical powers of the tests for various models are given.

We have also studied the performances of Va(3, 1) based on empirical power using optimal a corresponding
to the logistic model, i.e. a = 2.5088. The results are tabulated in the Table 4.

From Table 3, we observe that the empirical power of Va∗
(3,1)

(3, 1) is higher than the Sign test, which is

known to perform better for heavy tailed models. Though for other models, the performance of Va∗
(3,1)

(3, 1)

is not the best, its performance is pretty close to the superior ones from the class of tests considered. From
Table 4 we observe that, in practice one can safely use V2.5088(3, 1).

6. Conclusion

In this article, we proposed a class of distribution-free tests for one-sample location problem, which
includes test statistics Ta and Ua(4, 2) proposed by Mehra et al. (1990) and Shetty and Pandit (2000)
respectively. The proposed test statistics is of U-Statistics type, depends on a constant a and rth, (k−r+1)th

order statistics taken from sub-sample of size k together with its median. Expressions for expected value
and asymptotic variance are obtained for any (k, r). The optimal value of a is obtained by maximizing the
efficacy (in Pitman sense) of the test.

Though the optimal a depends on (k, r), symmetric model G(·), from practical point of view one can
safely use (k, r) = (3, 1) and the corresponding optimal value a∗(3,1) = 2.5088, obtained under logistic model.
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Appendix

We illustrate the computation of P [Ei] and P [Ei(x)], i = 1, 2, 3, 4, only for the case when (k, r) = (5, 1),
as the case (k, r) = (3, 1) follows similar steps.

When k = 5 and r = 1, from (1), (2) we have that P [E1] = (1 − G(−θ))5 and P [E4] = G5(−θ). From
(3), (4), we have

P [E2] = 5!

∫ 0

−∞

∫ ∞
−u

∫ w

0

{[G(v − θ)−G(u− θ)][G(w − θ)−G(v − θ)]} dG(v − θ)dG(w − θ)dG(u− θ).

Thus integrating w.r.t. v and w, we get,

P [E2] = 10G4(−θ)− 10G2(−θ) + 5G(−θ)−
∫ −θ
−∞

[
5G4(−t− 2θ)− 20G(t)G3(−t− θ)

−
(
G2(−θ)− 2G(t)G(−θ)

)
G2(−t− θ) + 20

(
2G3(−θ)− 3G(t)G2(−θ)

)
G(−t− θ)

]
dG(t)

and

P [E3] = 5G5(−θ) +

∫ −θ
−∞

[
30
(
G2(−θ)− 2G(t)G(−θ) +G2(t)

)
G2(−t− θ)

−20
(
2G3(−θ)− 3G(t)G2(−θ) +G3(t)

)
G(−t− θ)

]
dG(t)

Now, substituting the above probabilities in (5) yields (8).
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Next, we compute P [Ei(x)], i = 1, 2, 3, 4 under null hypothesis. We have P [E1(x) = 1/16 and P [E4(x)] =
0. To obtain P [E2(x)], P [E3(x)], substituting the joint density function of Y1, Y3 and Y4 obtained from a
random sample of Y1, Y2, Y3,Y4, in (6), we get,

P [E2(x)] = 4!

{∫ x

0

∫ 0

−x

∫ w

0

[G(v)−G(u)] dG(v)dG(u)dG(w) +

∫ ∞
x

∫ 0

−w

∫ w

0

[G(v)−G(u)] dG(v)dG(u)dG(w)

}
= 4G4(x)− 8G3(x) + 6G2(x)− 2G(x) + (5/8).

and

P [E3(x)] = 4!

{∫ ∞
x

∫ −w
−∞

∫ 0

u

[G(v)−G(u)] dG(v)dG(u)dG(w) +

∫ x

0

∫ −x
−∞

∫ 0

u

[G(v)−G(u)] dG(v)dG(u)dG(w)

+

∫ 0

−x

∫ w

u

∫ 0

u

[G(v)−G(u)] dG(v)dG(u)dG(w) +

∫ −x
−∞

∫ w

u

∫ 0

u

[G(v)−G(u)] dG(v)dG(u)dG(w)

}
= −4G4(x) + 8G3(x)− 6G2(x) + 2G(x).

Similarly, for x < 0, from Lemma 6.2, if we replace x by −x in the above we get P [E1(−x) = 0 and
P [E4(−x)] = 1/16,

P [E2(−x)] = −4G4(x) + 8G3(x)− 6G2(x) + 2G(x),

P [E3(−x)] = 4G4(x)− 8G3(x) + 6G2(x)− 2G(x) + (5/8).

Thus, putting P [Ei(x)] and P [Ei(−x)], i = 1, 2, 3, 4, in (7), we get,

ζ1(5, 1) =

∫ ∞
0

[
(1/16) + a

{
8G4(x)− 16G3(x) + 12G2(x)− 4G(x) + (5/8)

}]2
dG(x)

+

∫ 0

−∞

[
a
{
−8G4(x) + 16G3(x)− 12G2(x) + 4G(x)− (5/8)

}
− (1/16)

]2
dG(x),

=
1

256
+

9a

320
+

197a2

2880
.

Lemma 6.1. Following are the relations between probabilities of the events Ei, i = 1, 2, 3, 4,

(i) Pθ[E1] = P−θ[E4],

(ii) Pθ[E2] = P−θ[E3].

Proof. (i) From (1), we have,

Pθ[E1] = 1−
∫ G(−θ)

0

xr−1(1− x)(k−r)

β(r, k − r + 1)
dx =

∫ 1

G(−θ)

xr−1(1− x)(k−r)

β(r, k − r + 1)
dx.

Putting 1− x = y, we have

Pθ[E1] =

∫ G(θ)

0

yk−r(1− y)(r−1)

β(k − r + 1, r)
dy = P−θ[E4].

(ii) This can be established similarly by transforming u, v, w to −x, −y and −z respectively in (4).

Hence the proof.

Lemma 6.2. Under H0, when x > 0 and for the events Ei(x), i = 1, 2, 3, 4, we have

(i) PH0 [E2(x)] = PH0 [E3(−x)],

(ii) PH0 [E1(x)] = PH0 [E4(−x)].
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Proof. (i) For simplicity we give the proof when x < 0 and k = 2m− 1, as a consequence of this, one can
prove for x > 0.

We have,

E2(x) =
{
{y(m−1) > 0} : y(r−1) < 0, y(k−r) > 0 : {y(r) < x} ∩ {y(k−r) > y(r)}

or {x < y(r) < 0} ∩ {y(k−r) > −max{y(r−1), x}
}
.

By using the fact that, Y and −Y have same distribution, transforming −Yr to U(k−r), putting t = −x,
we have

E2(−t) =
{
{u(m) < 0} : u(r) < 0, u(k−r+1) > 0 : {u(k−r) > t} ∩ {u(r) < u(k−r)}

or {t > u(k−r) < 0} ∩ {u(r) < max{u(k−r+1), t}
}

= E3(t).

This implies P [E2(x)] = P [E3(−x)], when x < 0.

(ii) One can establish this similar to the above.

Hence the proof.
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Table 3: Empirical Power of the Tests for various models with α = 0.05, n = 25 and number of Monte Carlo simulations is
10000.

Models Tests θ= 0 θ=0.2 θ=0.4 θ=0.6 θ=0.8 θ= 1.0

Cauchy t 0.019 0.026 0.052 0.091 0.145 0.202
B 0.042 0.083 0.206 0.386 0.583 0.735
W 0.046 0.083 0.175 0.321 0.476 0.618
Ta∗ 0.042 0.083 0.206 0.386 0.584 0.735
Ua∗

(4,2)
(4, 2) 0.046 0.092 0.220 0.406 0.604 0.754

Va∗
(3,1)

(3, 1) 0.049 0.095 0.228 0.412 0.606 0.755

Laplace t 0.045 0.077 0.171 0.325 0.513 0.683
B 0.044 0.094 0.211 0.389 0.579 0.736
W 0.045 0.091 0.212 0.392 0.594 0.752
Ta∗ 0.044 0.094 0.211 0.389 0.578 0.736
Ua∗

(4,2)
(4, 2) 0.044 0.094 0.211 0.389 0.578 0.736

Va∗
(3,1)

(3, 1) 0.044 0.094 0.211 0.389 0.578 0.736

Logistic t 0.046 0.155 0.499 0.825 0.965 0.996
B 0.042 0.125 0.409 0.722 0.914 0.982
W 0.046 0.160 0.517 0.840 0.971 0.997
Ta∗ 0.050 0.169 0.533 0.848 0.972 0.998
Ua∗

(4,2)
(4, 2) 0.062 0.144 0.523 0.829 0.967 0.996

Va∗
(3,1)

(3, 1) 0.046 0.154 0.500 0.822 0.959 0.993

Normal t 0.053 0.165 0.488 0.814 0.969 0.998
B 0.048 0.113 0.329 0.623 0.859 0.965
W 0.052 0.151 0.467 0.796 0.963 0.997
Ta∗ 0.054 0.161 0.478 0.807 0.963 0.997
Ua∗

(4,2)
(4, 2) 0.058 0.170 0.462 0.765 0.942 0.992

Va∗
(3,1)

(3, 1) 0.053 0.153 0.445 0.762 0.901 0.980

Parabolic t 0.051 0.499 0.984 1.000 1.000 1.000
B 0.042 0.167 0.628 0.981 1.000 1.000
W 0.046 0.451 0.944 1.000 1.000 1.000
Ta∗ 0.051 0.590 0.976 1.000 1.000 1.000
Ua∗

(4,2)
(4, 2) 0.055 0.398 0.898 1.000 1.000 1.000

Va∗
(3,1)

(3, 1) 0.049 0.622 0.977 1.000 1.000 1.000

Triangular t 0.051 0.156 0.477 0.826 0.973 0.999
B 0.044 0.110 0.301 0.577 0.816 0.946
W 0.049 0.145 0.436 0.780 0.956 0.997
Ta∗ 0.053 0.154 0.453 0.796 0.962 0.997
Ua∗

(4,2)
(4, 2) 0.058 0.143 0.405 0.732 0.931 0.991

Va∗
(3,1)

(3, 1) 0.048 0.149 0.457 0.810 0.961 0.998
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Models Tests θ= 0 θ=0.2 θ=0.4 θ=0.6 θ=0.8 θ= 1.0

Uniform t 0.050 0.154 0.470 0.823 0.976 0.998
B 0.042 0.080 0.191 0.392 0.659 0.863
W 0.046 0.143 0.417 0.743 0.939 0.992
Ta∗ 0.053 0.183 0.500 0.816 0.962 0.996
Ua∗

(4,2)
(4, 2) 0.051 0.154 0.357 0.644 0.863 0.976

Va∗
(3,1)

(3, 1) 0.046 0.173 0.497 0.816 0.961 0.997

h(x, 1.4) t 0.048 0.093 0.223 0.445 0.690 0.866
B 0.042 0.092 0.220 0.404 0.605 0.748
W 0.046 0.096 0.228 0.441 0.672 0.842
Ta∗ 0.042 0.092 0.220 0.404 0.605 0.748
Ua∗

(4,2)
(4, 2) 0.046 0.099 0.238 0.451 0.669 0.824

Va(3, 1) 0.049 0.100 0.230 0.410 0.607 0.758
h(x, 2.2) t 0.049 0.546 0.992 1.000 1.000 1.000

B 0.045 0.260 0.796 0.994 1.000 1.000
W 0.047 0.481 0.974 1.000 1.000 1.000
Ta∗ 0.045 0.260 0.796 0.994 1.000 1.000
Ua∗

(4,2)
(4, 2) 0.049 0.342 0.898 0.995 1.000 1.000

Va(3, 1) 0.051 0.261 0.784 0.992 1.000 1.000

Table 4: Empirical power of (T1.22426), (U2.0938(4, 2)) and V2.5088(3, 1) with α = 0.05 , n = 25 and number of Monte Carlo
simulations is 10000.

Models Tests θ= 0 θ=0.2 θ=0.4 θ=0.6 θ=0.8 θ= 1.0

Cauchy T1.22426 0.050 0.082 0.162 0.292 0.431 0.553
U2.0938(4, 2) 0.054 0.105 0.209 0.367 0.530 0.654
V2.5088(3, 1) 0.046 0.074 0.141 0.245 0.353 0.449

Laplace T1.22426 0.056 0.088 0.214 0.373 0.571 0.733
U2.0938(4, 2) 0.058 0.082 0.183 0.322 0.477 0.596
V2.5088(3, 1) 0.051 0.084 0.200 0.342 0.528 0.684

Parabolic T1.22426 0.052 0.590 0.976 1.000 1.000 1.000
U2.0938(4, 2) 0.058 0.398 0.898 1.000 1.000 1.000
V2.5088(3, 1) 0.046 0.548 0.967 1.000 1.000 1.000

Triangular T1.22426 0.048 0.149 0.448 0.798 0.961 0.998
U2.0938(4, 2) 0.053 0.118 0.322 0.575 0.733 0.784
V2.5088(3, 1) 0.046 0.149 0.451 0.808 0.966 0.998

Uniform T1.22426 0.049 0.165 0.474 0.798 0.958 0.996
U2.0938(4, 2) 0.053 0.139 0.353 0.656 0.887 0.976
V2.5088(3, 1) 0.046 0.174 0.497 0.817 0.961 0.997

h(x, 1.4) T1.22426 0.051 0.080 0.218 0.438 0.606 0.764
U2.0938(4, 2) 0.050 0.105 0.238 0.442 0.673 0.824
V2.5088(3, 1) 0.050 0.091 0.248 0.455 0.687 0.850

h(x, 2.2) T1.22426 0.052 0.524 0.982 1.000 1.000 1.000
U2.0938(4, 2) 0.053 0.342 0.764 0.803 0.954 1.000
V2.5088(3, 1) 0.049 0.370 0.899 0.998 1.000 1.000


