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Nonparametric test for homogeneity of scale parameters
against ordered alternatives based on subsample medians

Anil Gaur, Kalpana K. Mahajan1, Sangeeta Arora

Department of Statistics, Panjab University, Chandigarh - 160014, India

Abstract. A nonparametric test for several sample scale problem is proposed by considering the sub-
sample medians of three observations. The proposed statistic has the advantage of not requiring the
several distribution functions to have a common median, but rather any common quantile of order α,
0 ≤ α ≤ 1 (not necessarily 1/2) which is assumed to be known. Asymptotic distribution of the test statis-
tic is obtained under the null hypothesis as well as under the sequence of local alternatives. Asymptotic
relative efficiencies of this test relative to the existing tests are obtained and it is seen that the proposed
test performs better for heavy-tailed distributions.

1. Introduction

Let Xi1, Xi2, . . . , Xini
; i = 1, 2, . . . , k, be independent random samples of size ni from absolutely con-

tinuous cumulative distribution functions Fi(x) = F (xθi), i = 1, 2, . . . , k, for some F . We assume that
these distribution functions have zero as the common quantile of order α (0 ≤ α ≤ 1), i.e., Fi(0) = α for
i = 1, 2, . . . , k. It is also assumed that, Fi(x), i = 1, 2, . . . , k, are identical in all respects except possibly their
scale parameters. The hypothesis, which is of interest in this paper, could be formally stated as follows:

H0 : θ1 = θ2 = . . . = θk

against the ordered alternative

H1 : θ1 ≤ θ2 ≤ . . . ≤ θk

with at least one strict inequality.
For some earlier work on this problem, see Govindarajulu and Haller [5], Govindarajulu and Gupta [6],

Rao [18], Kochar and Gupta [10], Shanubhogue [20] and Kusum and Bagai [13]. In general, most of the tests,
except Kusum and Bagai [13] test, require the assumption that the common quantile is of order α = 1/2, i.e.,
the distributions have the same median. When the random variables take non-negative values, i.e., α = 0,
H1 implies the alternative of ordered stochastic ordering for which tests have been proposed by Jonckheere
[8], Chacko [2], Puri [16], Tryon and Hettmansperger [23], Amita and Kochar [1], Kumar, Gill and Mehta
[11] and Shetty et al. [22] among others. However, none of these tests is adequate when the common quantile
is different from median. The asymmetry of the situation is not reflected in the statistics used in the above
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tests. Deshpande and Kusum [4] and Mahajan et al. [15] proposed tests based on U -statistics for testing
homogeneity of two populations against stochastic ordering, when the assumption of a common median is
replaced by that of common quantile of order α, (0 ≤ α ≤ 1). Deshpande and Kusum [4] have discussed
with examples the necessity of such tests. Some other relevant references in this context are Deshpande and
Kochar [3], Kochar [9], Kusum [12] and Shetty and Govindarajlu [21].

Remark 1.1. It can be considered that the distribution functions have µ as the common quantile of order α
(0 ≤ α ≤ 1), i.e., Fi(µ) = α for i = 1, 2, . . . , k. Without loss of generality, we can assume that the common
known quantile µ = F−11 (α) = . . . = F−1k (α) of order α is zero for the pre-specified α.

Consider an example where more than two automatic filling machines are available to fill 500ml milk
in packets. It is known that each machine is having 2% under filling (less than 500ml) and a machine is
considered as more efficient (to attain the target value of 500ml) if the dispersion from this target value is
less. As such smaller the scale parameter more is the efficiency of that machine.

Here we propose a nonparametric distribution free test based on weighted linear combinations of Mahajan
et al. [15] type U -statistic by considering all pairs of consecutive two sample U -statistics suggested by the
alternative H1. The present paper is organized as follows. In section 2, the test procedure for multi sample
test for scale parameters against ordered alternative has been proposed. The distribution of test statistic is
discussed in Section 3. Section 4 is devoted to optimal choice of weights along with a simulated illustration.
In section 5, we consider the performance of the proposed test statistic against its other nonparametric
competitors in terms of Pitman asymptotic relative efficiency.

2. The proposed test

First we consider two sample U-statistic, proposed by Mahajan et al. [15] where the assumption of the
common quantile of order α (0 ≤ α ≤ 1) is made and then extend it to the k sample problem. Define for
i < j; i, j = 1, 2, . . . , k

φij (Xi1, Xi2, Xi3;Xj1, Xj2, Xj3) =



1, if 0 ≤ med (Xi1, Xi2, Xi3) ≤ med (Xj1, Xj2, Xj3)

and Xi1, Xi2, Xi3, Xj1, Xj2, Xj3 ≥ 0

or med (Xj1, Xj2, Xj3) ≤ med (Xi1, Xi2, Xi3) < 0

and Xi1, Xi2, Xi3, Xj1, Xj2, Xj3 < 0,

−1, if 0 ≤ med (Xj1, Xj2, Xj3) ≤ med (Xi1, Xi2, Xi3)

and Xi1, Xi2, Xi3, Xj1, Xj2, Xj3 ≥ 0

or med (Xi1, Xi2, Xi3) ≤ med (Xj1, Xj2, Xj3) < 0

and Xi1, Xi2, Xi3, Xj1, Xj2, Xj3 < 0,

0, otherwise.

The two sample U -statistic corresponding to the kernel φij is

Uij (Xi1, Xi2, Xi3;Xj1, Xj2, Xj3) =
1(

ni

3

)(
nj

3

) ∑
c

φij (Xi1, Xi2, Xi3;Xj1, Xj2, Xj3)

where c denotes the summation extended over all possible
(
ni

3

)(
nj

3

)
combinations of Xi1, Xi2, . . . , Xini and

Xj1, Xj2, . . . , Xjnj
.

The statistic Uij is obviously a U -statistic (Lehman [14]) corresponding to the kernel φij . It can be seen
that the kernel takes non-zero value only when both Xi’s and Xj ’s have the same sign.

For testing H0 against H1, with Fi(0) = α for i = 1, 2, . . . , k, we propose the test statistic US based on
subsample medians of size three as

US =

k−1∑
i=1

aiUi,i+1
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where (a1, a2, . . . , ak−1) are some positive real constants to be chosen as given in (4) which maximizes (5),
the efficacy of the statistics.

For each set of values (a1, a2, . . . , ak−1), we get a distinct member of this class of test statistic. Large
values of US are significant for testing H0 against H1.

Practical implementation of this procedure may require an estimator for the common quantile µ, under
the null hypothesis, of order α = F1(µ) = . . . = Fk(µ). We suggest to use a pooled estimator of µ =
F−11 (α) = . . . = F−1k (α) for a given (predetermined values of) α. To achieve this, we pool all the observations
Xi1, Xi2, . . . , Xini

; i = 1, 2, . . . , k into a single vector Z and estimate µ by obtaining the αth quantile of Z.

3. Distribution of US

We have that E (US) =
k−1∑
i=1

aiµi,i+1, where µi,i+1 = πi1 − πi2 and

πi1 =6

3∑
j=2

(
3

j

)[∫ ∞
0

[Fi(x)− α]
j

[1− Fi(x)]
3−j

[Fi+1(x)− α] [1− Fi+1(x)] dFi+1(x)

+

∫ 0

−∞
[α− Fi(x)]

j
[Fi(x)]

3−j
Fi+1(x) [α− Fi+1(x)] dFi+1(x)

]
πi2 =6

3∑
j=2

(
3

j

)[∫ ∞
0

[Fi+1(x)− α]
j

[1− Fi+1(x)]
3−j

[Fi(x)− α] [1− Fi(x)] dFi(x)

+

∫ 0

−∞
[α− Fi+1(x)]

j
[Fi+1(x)]

3−j
Fi(x) [α− Fi(x)] dFi(x)

]
Under the hypothesis H0 we have that E(US) = 0. Let

U ′ = (U1,2, U2,3, . . . , Uk−1,k) .

Since Uij ’s are two sample U -statistics, the joint limiting normality of {Uij} follows immediately from the
following theorem due to Lehman [14].

Theorem 3.1. The asymptotic distribution of
√
N [U − E (U)] as N → ∞ in such a way that ni

N → pi,
0 < pi < 1, for i = 1, 2, . . . , k is multivariate normal with mean vector 0 and dispersion matrix

∑
= (σij),

where N =
∑k
i=1 ni and

σij =


9
pi
ξ
(i)
i,i+1;i,i+1 + 9

pi+1
ξ
(i+1)
i,i+1;i,i+1 for i = j = 1, 2, . . . , k − 1,

9
pi+1

ξ
(i+1)
i,i+1;i+1,i+2 for j = i+ 1; i = 1, 2, . . . , k − 2,

9
pi
ξ
(i)
i−1,i;i,i+1 for j = i− 1; i = 2, 3, . . . , k − 1,

0 otherwise,

where

ξ
(i)
i,i+1:i,i+1 = E

[{
ψ
(i)
i,i+1(X)

}2
]
− E2 [Ui,i+1]

ξ
(i+1)
i,i+1:i,i+1 = E

[{
ψ
(i+1)
i,i+1 (X)

}2
]
− E2 [Ui,i+1]

ξ
(i+1)
i,i+1:i+1,i+2 = E

[{
ψ
(i+1)
i,i+1 (X) ψ

(i+1)
i+1,i+2(X)

}]
− E [Ui,i+1]E [Ui+1,i+2]

ψ
(i)
i,j (x) = E [φij (x,Xi2, Xi3;Xj1, Xj2, Xj3)]

ψ
(j)
i,j (x) = E [φij (Xi1, Xi2, Xi3;x,Xj2, Xj3)]
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After involved computations, it can be seen that under H0,

σij =


1572
1925

[
α11 + (1− α)11

] (
1
pi

+ 1
pi+1

)
for i = j = 1, 2, . . . , k − 1,

−1572
1925∗pi+1

[
α11 + (1− α)11

]
for j = i+ 1; i = 1, 2, . . . , k − 2,

−1572
1925∗pi

[
α11 + (1− α)11

]
for j = i− 1; i = 2, 3, . . . , k − 1,

0 otherwise.

(1)

In case all the sample sizes are equal i.e., p1 = p2 = . . . = pk = 1
k , then the covariance matrix given in (1)

becomes

σij =


2k∗1572
1925

[
α11 + (1− α)11

]
for i = j = 1, 2, . . . , k − 1,

−k∗1572
1925

[
α11 + (1− α)11

]
for j = i+ 1; i = 1, 2, . . . , k − 2,

−k∗1572
1925

[
α11 + (1− α)11

]
for j = i− 1; i = 2, 3, . . . , k − 1,

0 otherwise.

(2)

Since US is the linear combination of the components of U , the proof of the following theorem follows from
the transformation theorem (see Serfling [19]).

Theorem 3.2. The asymptotic distribution of N1/2 (US − E(US)) as N →∞ in such a way that ni

N → pi,
0 < pi < 1, i = 1, 2, . . . , k, is normal with mean zero and variance a′

∑
a, where a′ = (a1, a2, . . . , ak).

Under H0, E(US) = 0 and

a′
∑

a =
2k ∗ 1572

1925

[
α11 + (1− α)11

] [k−1∑
i=1

a21 −
k−2∑
i=1

aiai+1

]
,

where pi = 1/k; i = 1, 2, . . . , k.

4. Optimal choice of weights

Now we consider the problem of obtaining the optimal weights ai’s so that the test US has maximum
efficacy for the sequence of Pitman type alternatives:

HN : Fi(x) = F

(
x

θ +N−1/2δi

)
, i = 1, 2, . . . , k,

where δi and θ are some real positive constants. We assume without loss of generality that θ = 1, since all
relative orderings and hence US remains invariant if all the variables are multiplied by the same positive
constant. Further, for efficiency comparisons, we consider the equal sample sizes case, i.e., pi = 1/k;
i = 1, 2, . . . , k and the equally spaced alternatives of the type δi = iδ, δ > 0 for i = 1, 2, . . . , k. Thus
alternative HN becomes

HN : Fi(x) = F

(
x

1 +N−1/2iδ

)
, i = 1, 2, . . . , k.

Such type of alternatives are already considered by Rao [18], Kochar Gupta [10], Kusum Bagai [13] and
Shanubhogue [20] for the scale problem. The following theorem gives the asymptotic distribution of under
the sequence of local alternatives {HN}.

Theorem 4.1. Let Xij be independent random variables with cumulative distribution function Fi(x), j =

1, 2, . . . , ni; i = 1, 2, . . . , k, where Fi(x) = F
(

x
1+N−1/2iδ

)
. Under the following assumptions, the limiting

distribution of N1/2 [U − 0] is (k−1) dimensional multivariate normal with mean vector µJk−1 and variance-
covariance matrix

∑
= (σij) given by (2):
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(i) F is absolutely continuous with density f(x).

(ii)
∣∣∣ f(x)−f(x+h)h

∣∣∣ ≤ g(x), for small h and
∫∞
−∞ x [g(x)]

i
f(x)dx <∞, i = 1, 2, . . . , k − 1.

Here Jk−1 = [1]1×(k−1) and µ = 72 δ I, where

I =

{∫ 0

−∞
xF 2(x)[α− F (x)]2f2(x)dx−

∫ ∞
0

x[F (x)− α]2[1− F (x)]2f2(x)dx

}
. (3)

Proof. The proof follows using the asymptotic theory of U -statistic (see Lehman [14], Kochar and Gupta
[10]). Proceeding as in Rao [18], the following theorem identifies optimum weights ai’s in the proposed test
in terms of Pitman efficacy.

Theorem 4.2. Under the assumptions of Theorem 4.1 and under the sequence of alternative {HN}, the
efficacy of the test US is maximized if

ai =
i(k − i)

2k
, i = 1, 2, . . . , k − 1. (4)

Proof. Since US is a linear combination of U -statistics, it follows from Theorem 4.1, N1/2[US − 0] is asymp-

totically normally distributed with mean µ

(
k−1∑
i=1

ai

)
and variance a′

∑
a.

Let θ = N1/2δ. Then efficacy of US is given by

e(US) =

[
∂
∂θEHN

(US)
∣∣∣
θ=0

]2
a′
∑
a

=

(
k∑
i=1

ai

)2

831600 I2

131 (a′
∑
a) [α11 + (1− α)11]

(5)

where I is given by (3), also
∑∗

= (σ∗ij) and

σ∗ij =


2k if j = i; i = 1, 2, . . . , k − 1,

−k if j = i+ 1; i = 1, 2, . . . , k − 2,

−k if j = i− 1; i = 2, 3, . . . , k − 1,

0 otherwise.

Now e(US) is maximized when

(
k−1∑
i=1

ai

)2

a′
∑
a is maximized with respect to a. This is maximized when

a =

∗−1∑
J ′k−1 (see p. 60 of Rao [17]).

Also it is known that
∑∗−1

= (σ∗ij), where

σ∗ij =

{
i(k − j)/k2 if i ≤ j,
j(k − i)/k2 if i ≥ j.

(see Graybill [7]).

Therefore, it follows that the optimum choice of ai’s is

ai =
i(k − i)

2k
, i = 1, 2, . . . , k − 1 and Jk−1

∗−1∑
J ′k−1 = a′

∗∑
a =

k2 − 1

12

and the efficacy of the optimum test US with these weighting coefficients is

e(US) =
(k2 − 1) ∗ 69300I2

131 [α11 + (1− α)11]
,
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where

I =

{∫ 0

−∞
xF 2(x)[α− F (x)]2f2(x)dx−

∫ ∞
0

x[F (x)− α]2[1− F (x)]2f2(x)dx

}
.

4.1. Simulated example

Let there be four samples (i.e., k = 4) from Laplace distribution with following parameters: I ∼ Laplace
(0, 10), II ∼ Laplace (0, 20), III ∼ Laplace (0, 30) and IV ∼ Laplace (0, 40) based on sample of size 10
each, α = 0.5 and we want to test the null hypothesis:

H0 : θ1 = θ2 = θ3 = θ4

against the ordered alternative

H1 : θ1 ≤ θ2 ≤ θ3 ≤ θ4

with at least one strict inequality.
The test statistics, US is computed with the help of following data generated from Laplace distribution:

L(0, 10) : −4.4561488,−10.2308858, 18.6193195, 5.1828056, 3.9386745,

− 8.9269792, 19.3548134, 16.9797951,−1.5658773, 0.3191516.

L(0, 20) : 9.749923,−9.635786, 41.050384, 9.435219,−63.327310,−4.063156,

− 2.150284, 3.645873,−5.557018, 31.241888.

L(0, 30) : 15.4840725, 24.4739366, 28.3412521,−0.1752271, 13.2166460,

12.6338077, 2.9113102, 54.7771157, 2.3159054, 82.3187221.

L(0, 40) : 37.641418,−2.913782,−18.085598,−88.314433, 1.147270, 32.142406,

− 16.624027,−189.899069, 28.834246, 53.03192.

where, L(a, b) denotes Laplace distribution with location (scale) parameter a(b).
Here one can compute,

(
10
3

) (
10
3

)
U12 = 60,

(
10
3

) (
10
3

)
U23 = 280,

(
10
3

) (
10
3

)
U34 = 700. Also, the optimal

weights are: a1 = 0.375, a2 = 0.500 and a3 = 0.375. With these values, we can find
(
10
3

) (
10
3

)
US = 425.

Using Theorem 3.2 and 4.2, we can see that var(US) = 0.0009968545 and calculated standard normal deviate
of US is 5.912083 which exceeds 1.645 (at 5% level of significance). Therefore, we reject null hypothesis of
homogeneity of scale parameters of Laplace distribution for the above data against simple ordered alternative.

5. Asymptotic relative efficiencies

In this section, we compare the asymptotic relative efficiency of proposed test relative to the tests
proposed by Kochar and Gupta [10], Kusum and Bagai [13] and Shanubhogue [20].

Kochar and Gupta [10] developed a class of distribution free tests based on Wc,d, where the statistic
Wc,d is based on maxima and minima of (Xi1, Xi2, . . ., Xic, Xj1, Xj2, . . . , Xjd) for two fixed integers c and
d. In their case, Fi(0) = 1/2, i = 1, 2, . . . , k. However, with Fi(0) = α and c = d, the efficacy of the Kochar
and Gupta’s test W ∗c,c with optimum weights is given by Kusum and Bagai [13]

e
(
W ∗c,c

)
=

(k2 − 1)G2
2c

24ρ2c
,

where

G2c =

∫ ∞
−∞

x
[
F 2c−2(x)− F 2c−2

(x)
]
f2(x)dx
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and

ρ2c =
1

(2c− 1)2

[
1

4c− 1
− 2

4c2
+

((2c− 1)!)2

(4c− 1)!

]
.

The efficacies of Kusum and Bagai [13] and Shanubhogue [20] tests are given by

e(Tk) =
(k2 − 1)

[∫∞
−∞ |x|f(x)dF (x)

]2
3α2 − 3α+ 1

,

e(Ac,c) =
1

3
(k2 − 1)(4c− 1)c2

[∫ ∞
−∞

xf2(x)F 2c−2(x)dx

]2
.

For different distributions viz., uniform distribution, exponential distribution, Cauchy distribution, Laplace
distribution and logistic distribution, the values of ARE of US with respect to W ∗c,c, Ac,c and Tk test are
given in Table 1, Table 2 and Table 3 respectively.

Table 1: ARE of US with respect to W ∗
c,c for uniform, exponential, Cauchy, Laplace and logistic distributions

Distribution c
α

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Uniform

2 0.32 0.29 0.26 0.25 0.36 0.25 0.26 0.29 0.32
3 0.26 0.23 0.21 0.2 0.29 0.2 0.21 0.23 0.26
4 0.21 0.18 0.16 0.16 0.23 0.16 0.16 0.18 0.21
5 0.17 0.15 0.13 0.13 0.19 0.13 0.13 0.15 0.17

Exponential

2 1.67 0.72 0.36 0.24 0.42 0.36 0.3 0.27 0.24
3 1.48 0.62 0.3 0.2 0.35 0.29 0.24 0.22 0.2
4 1.29 0.53 0.25 0.17 0.28 0.23 0.19 0.17 0.16
5 1.15 0.46 0.21 0.14 0.24 0.19 0.16 0.14 0.13

Cauchy

2 10.33 2.95 1.44 0.97 1.11 0.97 1.44 2.95 10.33
3 10.96 3.12 1.53 1.02 1.17 1.02 1.53 3.12 10.96
4 15.08 4.31 2.11 1.42 1.62 1.42 2.11 4.31 15.08
5 15.26 4.36 2.14 1.43 1.64 1.43 2.14 4.36 15.26

Laplace

2 3.6 1.2 1.2 1.12 1.57 1.12 1.2 1.2 3.6
3 3.46 1.76 1.16 1.08 1.51 1.08 1.16 1.76 3.46
4 3.37 1.71 1.12 1.05 1.47 1.05 1.12 1.71 3.37
5 3.34 1.69 1.11 1.04 1.46 1.04 1.11 1.69 3.34

Logistic

2 1.72 1.03 0.73 0.6 0.78 0.6 0.73 1.03 1.72
3 1.65 0.99 0.69 0.58 0.74 0.58 0.69 0.99 1.65
4 1.59 0.96 0.67 0.56 0.72 0.56 0.67 0.96 1.59
5 1.57 0.94 0.66 0.55 0.71 0.55 0.66 0.94 1.57

6. Conclusion

It is interesting to note that the proposed test based on subsample medians performs better than all the
above three tests for heavy-tailed distributions like the Laplace distribution and Cauchy distribution while
the ARE of the proposed test with respect to Shanubhogue test is greater than one for all the values of
α ≥ 0.5 even for light-tailed distributions like logistic and exponential. Also, the proposed test is better
than Kochar Gupta test at tails i.e. when α is 0.1 or 0.9 for light-tailed distributions.
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Table 2: ARE of US with respect to Ac,c for uniform, exponential, Cauchy, Laplace and logistic distributions

Distribution c
α

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Uniform

2 0.31 0.39 0.51 0.83 2.33 4.55 41.34 46.07 5.83
3 0.19 0.22 0.28 0.43 1.03 1.48 4.57 82.55 23.21
4 0.14 0.16 0.19 0.28 0.66 0.86 2.14 13.18 18.42
5 0.11 0.13 0.15 0.22 0.48 0.60 1.37 6.19 9.33

Exponential

2 0.84 0.96 1.2 2.19 13.22 95.96 245 19.42 6.49
3 0.78 0.83 0.94 1.44 6.21 16.61 104 373 23.49
4 0.78 0.81 0.87 1.25 4.86 10.59 34.37 416 71.78
5 0.79 0.81 0.85 1.18 4.37 8.66 22.54 174 229

Cauchy

2 1.59 1.59 1.77 2.5 7.14 34.81 110 9.07 3.32
3 2.22 1.89 1.78 2.04 4.17 8.21 85.65 63.45 8.23
4 3.4 2.68 2.35 2.52 4.67 7.68 39.55 544 17.55
5 4.86 3.39 2.69 2.62 4.29 5.8 17.81 407 53.66

Laplace

2 4.08 13.77 1458 25.57 10.09 25.57 1458 13.77 4.08
3 11.16 226.6 33.3 7.45 5.34 7.45 33.3 226.6 11.16
4 31.3 382 12.65 4.93 4.23 4.93 12.65 382 31.3
5 97.15 65.49 8.42 4.04 3.8 4.04 8.42 65.49 97.15

Logistic

2 0.83 0.94 1.15 1.76 4.99 14.74 166 15.12 4.13
3 1.65 1.45 1.37 1.51 2.62 2.91 5.6 17.51 379
4 0.81 0.79 0.82 1.02 2.06 2.89 8.82 163 31.85
5 0.85 0.8 0.81 0.96 1.85 2.37 6.01 42.07 101.19

Table 3: ARE of US with respect to Tk for uniform, exponential, Cauchy, Laplace and logistic distributions

Distribution
α

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Uniform 0.59 0.54 0.47 0.44 0.61 0.44 0.47 0.54 0.59

Exponential 0.88 0.73 0.51 0.38 0.66 0.59 0.54 0.55 0.56
Cauchy 1.19 1.08 0.95 0.84 1.04 0.84 0.95 1.08 1.19
Laplace 1.15 1.11 1.08 1.23 1.82 1.23 1.08 1.11 1.15
Logistic 0.95 0.88 0.77 0.71 0.93 0.71 0.77 0.88 0.95
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