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Relationships for moments of kth record values from doubly
truncated pth order exponential and generalized Weibull

distributions
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Abstract. In this paper we establish some recurrence relations satisfied by the single and the product
moments of kth upper record values from doubly truncated pth order exponential and generalized Weibull
distributions.

1. Introduction

Let {Xn, n ≥ 1} be a sequence of i.i.d. absolutely continuous random variables distributed with cdf
F (x) = P (X ≤ x) and pdf f(x). An observation Xj will be called an upper record value if its value exceeds
all the previous observations Xj > Xi for every i < j. The indices at which records occur are called record
times. Thus Xj denotes an upper record value at jth record time. Let k ≥ 1 be fixed integer. Then the

sequence {U (k)
n , n ≥ 1} of kth upper record times for the sequence {Xn, n ≥ 1} is defined as follows:

U
(k)
1 = 1

U
(k)
n+1 = min{j > U (k)

n : Xj:j+k−1 > X
U

(k)
n :U

(k)
n +k−1

}.

For k = 1 and n = 1, 2, . . . , we write U
(1)
n = Un. Then {Un, n ≥ 1} is a sequence of record times for the

sequence {Xn, n ≥ 1}. The sequence {Y (k)
n , n ≥ 1}, where Y

(k)
n = X

U
(k)
n

, is called a sequence of kth upper

record values of {Xn, n ≥ 1}. Assume Y
(k)
0 = 0, Y

(1)
n = XUn , n ≥ 1 and Y

(k)
1 = min(X1, X2, . . . , Xk) = X1:k

[cf. Ahsanullah (1995)]. The pdf of Y
(k)
n (n ≥ 1) is given by

f
Y

(k)
n

(x) =
kn

(n− 1)!
(− log(1− F (x)))n−1(1− F (x))k−1f(x), x ≥ 0.

Further, the joint probability density function of Y
(k)
m and Y

(k)
n , 1 ≤ m < n, n ≥ 2, is given by

f
Y

(k)
m ,Y

(k)
n

(x, y) =
kn

(m− 1)!(n−m− 1)!
(log(1− F (x)− log(1− F (y)))n−m−1

× (− log(1−F (x)))m−1 f(x)

1−F (x)
(1−F (y))k−1f(y), 0≤x<y<∞
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(see Dziubdziela and Kopocinski (1976), Grudzien (1982)).
Record values arise naturally in many real life applications involving data related to economics, sports,

weather and life testing problems. Many authors have studied statistical methodology of record values, since
they were first studied by Chandler (1952). The various developments on record values and related topics
are extensively studied by Glick (1978), Nevzorov (1987), Resnick (1987), Arnold and Balakrishnan (1989)
and Arnold et al. (1992, 1998). Nain (2010a, b) derived recurrence relations for single and product moments
of kth upper record values from doubly truncated generalized Weibull distribution and the similar relations
were also found for ordinary order statistics from doubly truncated pth order exponential distribution.

In this paper, we establish some recurrence relations for single and product moments of kth upper record
values from doubly truncated pth order exponential and doubly truncated generalized Weibull distributions.
These distributions have increasing failure rate for large values of x and have many applications in areas like
life testing, reliability analysis, and models related to software reliability analysis, etc. Similar results for
linear-exponential and modified Weibull distributions were derived by Saran and Singh (2008) and Sultan
(2007), respectively.

Notations

1. µr(n):k = E(Y
(k)
n )r; r, n = 1, 2, . . .

2. µr,s(m,n):k = E
(
(Y

(k)
m )r(Y

(k)
n )s

)
; 1 ≤ m ≤ n− 1 and r, s,m, n = 1, 2, . . .

2. Recurrence relations for doubly truncated pth order exponential distribution

Consider a family of exponential distributions defined by the function

f(x) = Ψ′(x)e−Ψ(x), 0 ≤ x <∞,

where Ψ(x) is some function of x satisfying Ψ(0) = 0. Expanding Ψ(x) by using Maclaurin’s theorem, we
get:

Ψ(x) = Ψ(0) + xΨ1(0) +
x2

2!
Ψ2(0) + . . . .

Putting Ψr(0) =
ar−1

(r − 1)!
, r = 1, 2, . . . and assuming (p+ 1)th derivative of Ψ(x) to be constant, we have

Ψ(x) = a0x+ a1
x2

2
+ a2

x3

3
+ . . .+ ap

xp+1

p+ 1
, ap > 0,

and the pdf of the distribution takes the form

f(x) =

( p∑
j=0

ajx
j

)
e
−

p∑
j=0

aj
xj+1

j+1

, 0 ≤ x <∞. (1)

A random variable X is said to have pth order exponential distribution [cf. Nain (2010b)] if its probability
density function (pdf) is of the form (1), where ap > 0 and p is some positive integer. The cumulative
distribution function (cdf) and pdf of random variable X, respectively, takes the form

F (x) = 1− e−
(
a0x+a1

x2

2 +a2
x3

3 +...+ap
xp+1

p+1

)
and

f(x) =

( p∑
j=0

ajx
j

)
(1− F (x)).

The table given below demonstrates a few standard distributions obtained from (1) by choosing appropriate
values of parameters p and aj , j = 0, 1, 2, . . ..
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S. No. Choice of parameters pth order exponential distribution
becomes

1 a0 > 0 and aj = 0, j ≥ 1 Exponential

2 ap > 0 and aj = 0, 0 ≤ j ≤ p− 1 Weibull

3 a0 6= 0, a1 > 0 and aj = 0, j ≥ 2 Linear-exponential

4 aj = 1, j ≥ 0 and p =∞ Power series

The doubly truncated pth order exponential distribution has pdf

f(x) =
Ψ′(x)e−Ψ(x)

P −Q
, Q1 ≤ x ≤ P1,

where Q and 1− P (Q < P ) are, respectively, the proportions of truncation on the left and right of the pdf
f(x), and P = 1− e−Ψ(P1) and Q = 1− e−Ψ(Q1).

Assuming P2 =
1− P
P −Q

and Q2 =
1−Q
P −Q

, the cdf of the doubly truncated pth order exponential distri-

bution takes the form

F (x) =

∫ x

Q1

f(θ)dθ =
1−Q
P −Q

− e−Ψ(x)

P −Q
= Q2 −

f(x)

Ψ′(x)
.

The pdf and cdf of the doubly truncated pth order exponential distribution satisfy the relation:

f(x) = (P2 + (1− F (x)))Ψ′(x), Q1 ≤ x ≤ P1,

or

f(x) = (P2 + (1− F (x)))

p∑
i=0

aix
i, ap > 0, Q1 ≤ x ≤ P1. (2)

By letting Q→ 0 (P → 1), this distribution reduces to the right (left) truncated distribution and by letting
Q→ 0, P → 1, it becomes the original non-truncated distribution.

The mathematical form of pdf, as given in (2), is very useful for deriving recurrence relations for single
and product moments of kth upper record values from doubly truncated pth order exponential distribution.

Theorem 2.1. For k > 1, n = 1, 2, . . . and r = 0, 1, . . .

µr(n):k = k

p∑
i=0

ai
i+ r + 1

{(
k

k − 1

)n−1

P2(µi+r+1
(n):k−1 − µ

i+r+1
(n−1):k−1) + (µi+r+1

(n):k − µ
i+r+1
(n−1):k)

}
. (3)

Proof. The rth order moment of Y
(k)
n is given by

µr(n):k =
kn

(n− 1)!

∫ P1

Q1

xr(− log(1− F (x)))n−1(1− F (x))k−1f(x)dx.

Substituting f(x) as given in (2), we have for all positive integral values of n and r = 0, 1, 2, . . .

µr(n):k =
kn

(n− 1)!
{P2∆(k) + ∆(k + 1)}, (4)

where

∆(k) =

p∑
i=0

ai

∫ P1

Q1

xr+i(− log(1− F (x)))n−1(1− F (x))k−1dx.
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Integrating the RHS by parts and then after little simplification, we get

∆(k) =
(n− 1)!

(k − 1)n−1

p∑
i=0

ai
i+ r + 1

(µi+r+1
(n):k−1 − µ

i+r+1
(n−1):k−1).

Substituting this expression in (4) and simplifying, it leads to (3).

Remark 2.2. By putting Q = 0, P = 1, p = 1, a0 = λ and a1 = ν in (3), we get Theorem 1 of Saran and
Singh (2008) for linear-exponential distribution.

Theorem 2.3. For k > 1, 1 ≤ m ≤ n− 1 and r, s,m, n = 0, 1, 2, . . .

µr,s(m,n):k = k

p∑
i=0

ai
i+ s+ 1

{(
k

k − 1

)n−1

P2(µr,i+s+1
(m,n):k−1 − µ

r,i+s+1
(m,n−1):k−1) + (µr,i+s+1

(m,n):k − µ
r,i+s+1
(m,n−1):k)

}
(5)

and for m ≥ 1, n = m+ 1 and r, s = 0, 1, 2, . . .

µr,s(m,m+1):k = k

p∑
i=0

ai
i+ s+ 1

{(
k

k − 1

)m
P2(µr,i+s+1

(m,m+1):k−1−µ
i+r+s+1
(m−1):k−1)+(µr,i+s+1

(m,m+1):k−µ
i+r+s+1
(m):k )

}
. (6)

Proof. The (r, s)th product moment of kth upper record values is given as

µr,s(m,n):k =
kn

(m− 1)!(n−m− 1)!

∫ P1

Q1

xr(− log(1− F (x)))m−1 f(x)

1− F (x)
J(x)dx, (7)

where

J(x) =

∫ P1

x

(
ys(log(1− F (x))− log(1− F (y)))n−m−1(1− F (y))k−1(P2 + (1− F (y)))

p∑
i=0

aiy
i

)
dy.

Let

∆i(k) =

∫ P1

Q1

xr(− log(1− F (x)))m−1 f(x)

1− F (x)

×
∫ P1

x

ys+i(log(1− F (x))− log(1− F (y)))n−m−1(1− F (y))kdydx. (8)

Then (7) takes the form

µr,s(m,n):k =
kn

(m− 1)!(n−m− 1)!

p∑
i=0

ai(P2∆i(k − 1) + ∆i(k)). (9)

Integrating the inner integral in (8) by parts and then simplifying, we get

∆i(k) =
(m− 1)!, (n−m− 1)!

kn−1

1

(i+ s+ 1)
(µr,i+s+1

(m,n):k − µ
r,i+s+1
(m,n−1):k).

Substituting it in (9), we get (5).
Proceeding in a like manner, for the case n = m+ 1, one can easily obtain equation (6).

Remark 2.4. By putting Q = 0, P = 1, p = 1, a0 = λ and a1 = ν in (5) and (6), we get Theorem 2 of
Saran and Singh (2008) for linear-exponential distribution.
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3. Recurrence relations for doubly truncated generalized Weibull distribution

Let a random variable X belong to a class of distributions, whose cdf is of the form

F (x) = 1− e−ψ1(x)·eλx , x > 0, (10)

where ψ1(x) is some function of x, differentiable in the interval (0,∞) and satisfying ψ1(0) = 0.
From (10), we have

− log(1− F (x)) = ψ1(x) · eλx.

Differentiating with respect to x, we get

f(x)

1− F (x)
= (λψ1(x) + ψ′1(x))eλx

=

(
λψ1(x) + ψ′1(x)

ψ1(x)

)
(− log(1− F (x)))

=

(
λ+

ψ′1(x)

ψ1(x)

)
(− log(1− F (x))). (11)

Now putting

(
λ+

ψ′1(x)

ψ1(x)

)
=

p∑
i=0

aix
i

x
, a0 > 0, ai ∈ R, i = 1, 2, . . . , p (12)

and then simplifying yields

ψ1(x) = c · xa0 exp(e(a1−λ)x+
a2
2 x

2+...+
ap
p x

p

).

If a0 = b, a1 = λ, c = a and a2 = a3 = . . . = ap = 0, then it implies ψ1(x) = axb and from (10), we have

F (x) = 1− exp(−axbeλx),

which is modified Weibull distribution (MWD) defined in Sultan (2007).
Equations (11) and (12) taken together imply

f(x) = (1− F (x))(− log(1− F (x)))

p∑
i=0

aix
i

x
, a0 > 0, x > 0.

Let φ(x) = Ψ1(x)eλx = − log(1−F (x)). The probability density function of doubly truncated generalized
Weibull distribution (DTGWD) is defined as

f(x) =
φ′(x)e−φ(x)

P −Q
, Q1 ≤ x ≤ P1, (13)

where P = 1 − e−φ(P1) and Q = 1 − e−φ(Q1). On letting P2 =
1− P
P −Q

and Q2 =
1−Q
P −Q

, which implies

Q2 − P2 = 1, we get the cdf of the DTGWD given by

F (x) =

∫ x

Q1

f(θ)dθ =
1− P
P −Q

− e−φ(x)

P −Q
= Q2 −

f(x)

φ′(x)
.
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And hence

f(x) = (Q2 − F (x))φ′(x), Q1 ≤ x ≤ P1

or

f(x) = (P2 + (1− F (x)))φ′(x), Q1 ≤ x ≤ P1, (14)

where

φ′(x) = φ(x)

(
λ+

ψ′1(x)

ψ1(x)

)
= φ(x)

( p∑
i=0

aix
i

x

)
= (− log(1− F (x)))

( p∑
i=0

aix
i

x

)
.

On substituting the value of φ′(x), so obtained, in (14), we get

f(x) = (P2 + (1− F (x)))(− log(1− F (x)))

p∑
i=0

aix
i

x
, a0 > 0, Q1 ≤ x ≤ P1. (15)

The form of pdf as given in (15) is very useful for deriving recurrence relations between moments of kth

upper record values from DTGWD.

Theorem 3.1. For k > 1, n = 1, 2, . . . and r = 0, 1, . . .

µr(n):k = n

{ p∑
i=0

ai
i+ r

[
P2

(
k

k − 1

)n
(µi+r(n−1):k−1 − µ

i+r
(n):k−1) + (µi+r(n+1):k − µ

i+r
(n):k)

]}
. (16)

Proof. Let {Y (k)
n , n ≥ 1}, where Y

(k)
n = X

U
(k)
n

, be a sequence of kth upper record values from the distribution

given in (13). Then the rth order moment of Y
(k)
n is given by

µr(n):k =
kn

(n− 1)!

∫ P1

Q1

xr(− log(1− F (x)))n−1(1− F (x))k−1f(x)dx .

Substituting for f(x), as given in (15), we have for all positive integral values of n and r = 0, 1, 2, . . .

µr(n):k =
kn

(n− 1)!

p∑
i=0

ai(P2∆i(k − 1) + ∆i(k)), (17)

where

∆i(k) =

∫ P1

Q1

xi+r−1(− log(1− F (x)))n(1− F (x))kdx .

Integrating by parts, treating (− log(1− F (x)))n(1− F (x))k for differentiation, we get

∆i(k) =
n!

(i+ r) kn
(µi+rn+1:k − µ

i+r
n:k ),

which on substituting in (17) gives (16).

Remark 3.2. By putting P2 = 0, p = 1, a0 = b, a1 = λ in (16), we get Relation 2.1 of Sultan (2007) for
modified Weibull distribution.
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Theorem 3.3. For k > 1, 1 ≤ m ≤ n− 1 and r, s,m, n = 0, 1, 2, . . .

µr,s(m,n):k =

{ p∑
i=0

ai
i+ s

[
P2

(
k

k − 1

)n
((n−m) · (µr,i+s(m,n+1):k−1 − µ

r,i+s
(m,n):k−1)

+m.(µr,i+s(m+1,n+1):k−1 − µ
r,i+s
(m+1,n):k−1))

+ (n−m) · (µr,i+s(m,n+1):k − µ
r,i+s
(m,n):k)

+m.(µr,i+s(m+1,n+1):k − µ
r,i+s
(m+1,n):k)

]}
(18)

and for m ≥ 1, n = m+ 1 and r, s = 0, 1, 2, . . .

µr,s(m,m+1):k =

{ p∑
i=0

ai
i+ s

[
P2

(
k

k − 1

)m+1

(m.(µr+s+i(m+1):k−1 + µr,i+s(m+1,m+2):k−1)

+ (µr,i+s(m,m+2):k−1 − µ
r,i+s
(m,m+1):k−1))−m(µr+s+i(m+1):k + µr,i+s(m+1,m+2):k)

+ (µr,i+s(m,m+2):k − µ
r,i+s
(m,m+1):k)

]}
. (19)

Proof. The (r, s)th product moment of kth upper record values is given as

µr,s(m,n):k =
kn

(m− 1)!(n−m− 1)!

∫ P1

Q1

xr(− log(1− F (x))m−1 f(x)

1− F (x)
L(x)dx, (20)

where

L(x) =

∫ P1

x

(
ys(log(1− F (x))− log(1− F (y)))n−m−1(1− F (y))k−1

· (P2 + (1− F (y)))(− log(1− F (y)))

p∑
i=0

aiy
i

y

)
dy. (21)

Putting − log(1− F (y)) = {(log(1− F (x))− log(1− F (y))) + (− log(1− F (x)))} in (21), we get from (20)

µr,s(m,n):k =
kn

(m− 1)!(n−m− 1)!

p∑
i=0

ai{P2(∆i(m, k−1)+∆i(m+1, k−1))+(∆i(m, k)+∆i(m+1, k))}, (22)

where

∆i(m, k) =

∫ P1

Q1

xr(− log(1−F (x)))m−1 f(x)

1− F (x)

(∫ P1

x

ys+i−1(log(1−F (x))−log(1−F (y)))n−m(1−F (y))kdy

)
dx.

Integrating the inner integral by parts, treating (log(1−F (x))− log(1−F (y)))n−m(1−F (y))k for differen-
tiation, we get after simplification

∆i(m, k) =
(m− 1)!(n−m)!

kn
(µr,i+s(m,n+1):k − µ

r,i+s
(m,n):k).

Substituting it in (22), it is easy to see that (18) holds.
Proceeding in a similar manner for the case n = m+ 1, one can easily establish (19).

4. Conclusion

In the study presented above, we demonstrate the recurrence relations for the single and the product
moments of kth upper record values from doubly truncated pth order exponential distribution and generalized
Weibull distribution. These results generalize the corresponding results of Saran and Singh (2008), Saran
and Pushkarna (2000) and Sultan (2007).
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