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Abstract. A multicomponent system of k components having strengths following k-independently
and identically distributed random variables and each component experiencing a random stress Y is
considered. The system is regarded as alive only if at least s out of k (s < k) strengths exceed the
stress. The reliability of such a system is obtained when strength, stress variates are given by Rayleigh
distribution with different scale parameters. The reliability is estimated using the Moment method and
ML method of estimation when samples drawn from strength and stress distributions. The reliability
estimators are compared asymptotically. The small sample comparison of the reliability estimates is made
through Monte Carlo simulation. Using real data sets we illustrate the procedure.

1. Introduction

The Rayleigh distribution is a special case of the two parameter Weibull distribution and a suitable
model for life-testing studies. The Rayleigh distribution has the most commonly used distribution in re-
liability and life testing (see Lawless (2003)). This distribution has several desirable properties and nice
physical interpretations and it has increasing failure rate. The various applications of this distribution were
studied by Polovko (1968), Gross and Clark (1975), Lee et al. (1980) and Siddiqui (1962). Having found
a considerable number of research articles about Rayleigh distribution applications in reliability published
in various periodicals of wide reputation, we motivated to study the multivariate stress-strength reliability
estimation based on this distribution. The Rayleigh distribution has the following density function

f(x;σ) =
x

σ2
e

−x2

2σ2 , x > 0, σ > 0,

and the distribution function

F (x;σ) = 1− e
−x2

2σ2 , x > 0, σ > 0,

where X is a continuous random variable defined over (0,∞) and σ is the scale parameter. The purpose
of this paper is to study the reliability in a multicomponent stress-strength based on X, Y being two
independent random variables, where X and Y follows Rayleigh distributions with parameters σ1 and σ2

respectively.

2010 Mathematics Subject Classification. Primary: 62F10; Secondary: 62F12
Keywords. Reliability estimation, stress-strength, moment method, ML estimation, confidence intervals
Received: 06 July 2011; Accepted: 29 June 2012
Email address: gaddesrao@yahoo.com (G. Srinivasa Rao)



Rao / ProbStat Forum, Volume 05, October 2012, Pages 150–161 151

A multicomponent system with k components has strengths following k−independently and identically
distributed random variables X1, X2, . . . , Xk and each component experiences a random stress Y . The
system is regarded as alive only if at least k (s < k) strengths exceed the stress. Let the random samples
Y,X1, X2, . . . , Xk be independent, G(y) be the continuous distribution function of Y and F (x) be the
common continuous distribution function of X1, X2, . . . , Xk. The reliability in a multicomponent stress-
strength model developed by Bhattacharyya and Johnson (1974) is given by

Rs,k = P [at least s of the X1, X2, . . . , Xk exceed Y ] =

k∑
i=s

(
k

i

)∫ ∞
−∞

[1−G(y)]i [G(y)](k−i) dF (y), (1)

where X1, X2, . . . , Xk are identically independently distributed (i.i.d.) with common distribution function
F (x) and subjected to the common random stress Y . The probability in (1) is called reliability in a
multicomponent stress-strength model (Bhattacharyya and Johnson (1974)). The reliability estimation of a
single component stress-strength version has been considered by several authors assuming various lifetime
distributions for the stress-strength random variates. Enis and Geisser (1971), Downtown (1973), Awad
and Gharraf (1986), McCool (1991), Nandi and Aich (1994), Surles and Padgett (1998), Raqab and Kundu
(2005), Kundu and Gupta (2005, 2006), Raqab et al. (2008), Kundu and Raqab (2009). The reliability in a
multicomponent stress-strength was developed by Bhattacharyya and Johnson (1974), Pandey and Borhan
(1985) and the references therein cover the study of estimating P (Y < X) in many standard distributions
assigned to one or both of stress and strength variates. Recently Rao and Kantam (2010) studied estimation
of reliability in multicomponent stress-strength for the log-logistic distribution and Rao (2012) developed an
estimation of reliability in multicomponent stress-strength based on generalized exponential distribution.

Suppose a system, with k identical components, functions if at least s (1 ≤ s ≤ k) or more of the
components simultaneously operate. In its operating environment, the system is subjected to a stress Y
which is a random variable with distribution function G(·). The strengths of the components, that is
the minimum stresses to cause failure, are independent and identically distributed random variables with
distribution function F (·). Then the system reliability, which is the probability that the system does not fail,
is the function Rs,k given in (1). The estimation of survival probability in a multicomponent stress-strength
system when the stress and strength variates are following Rayleigh distribution is not paid much attention.
Therefore, an attempt is made here to study the estimation of reliability in multicomponent stress-strength
model with reference to Rayleigh distribution. The expression for and maximum likelihood (ML) estimates
and Method of Moments (MOM) estimates of the parameters are provided in Section 2. The MOM and
MLE are employed to obtain the asymptotic distribution and confidence intervals for Rs,k. The small sample
comparisons made through Monte Carlo simulations in Section 3. Also, using real data, we illustrate the
estimation process. Finally, the conclusion and comments are provided in Section 4.

2. Different methods of estimation of parameters in Rs,k

Let X, Y be two independent random variables follows Rayleigh distributions with parameters σ1 and
σ2 respectively. The reliability in multicomponent stress-strength for Rayleigh distribution using (1), we get

Rs,k =

k∑
i=s

(
k

i

)∫ ∞
0

[
e

−y2

2σ22

]i [
1− e

−y2

2σ22

]k−i
y

σ2
1

e
−y2

2σ21 dy

=

k∑
i=s

(
k

i

)∫ 1

0

[tλ
2

]i [1− tλ
2

]k−idt, where t = e
−y2

2σ21 and λ =
σ2

1

σ2
2

=
1

λ2

k∑
i=s

(
k

i

)∫ 1

0

[1− z]k−i [z](1+ 1
λ2
−1)dz, if z = tλ

2

=
1

λ2

k∑
i=s

(
k

i

)
B

(
k − i+ 1, i+

1

λ2

)
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After the simplification we get

Rs,k =
1

λ2

k∑
i=s

k!

i!

 k∏
j=1

(
1

λ2
− j)

−1

, since k and i are integers. (2)

The probability in (2) is called reliability in a multicomponent stress-strength model. If σ1 and σ2 are
not known, it is necessary to estimate σ1 and σ2 to estimate Rs,k. In this paper we estimate σ1 and σ2

by moment method and ML method. The estimates are substituted in λ to get an estimate of Rs,k using
equation (2). The theory of methods of estimation is explained below.

It is well known that the method of Maximum Likelihood Estimation (MLE) has invariance property.
When the method of estimation of parameter is changed from ML to any other traditional method, this
invariance principle does not hold good to estimate the parametric function. However, such an adoption
of invariance property for other optimal estimators of the parameters to estimate a parametric function is
attempted in different situations by different authors. Travadi and Ratani (1990), Kantam and Rao (2002)
and the references therein are a few such instances. In this direction, we have proposed some estimators for
the reliability of multicomponent stress-strength model by considering the estimators of the parameters of
stress and strength distributions by ML method and Moment method of estimation in Rayleigh distribution.

2.1. Method of maximum likelihood estimation (MLE)

Let X1, X2, . . . , Xn; Y1, Y2, . . . , Ym be two ordered random samples of size n, m respectively on strength
and stress variates each following Rayleigh distribution with scale parameters σ1 and σ2. The log-likelihood
function of the observed sample is

L(σ1, σ2) = −2n lnσ1 − 2m lnσ2 −
1

2σ2
1

n∑
i=1

xi −
1

2σ2
2

m∑
j=1

yj +

n∑
i=1

lnxi +

m∑
j=1

ln yj .

The MLEs σ̂1 and σ̂2 of σ1 and σ2 respectively can be obtained as

∂L

∂σ1
= 0⇒ σ̂1 =

√√√√ 1

2n

n∑
i=1

x2
i ,

∂L

∂σ2
= 0⇒ σ̂2 =

√√√√ 1

2m

m∑
i=1

y2
i .

Once we obtain σ̂1 and σ̂2 the ML estimator of Rs,k becomes R̂s,k with λ is replaced by λ̂ in (2).

2.2. Method of moment estimation (MOM)

We know that, if x and y are the sample means of samples on strength and stress variates then moment

estimators of σ1 and σ2 are σ̃1 = x
√

2
Π and σ̃2 = y

√
2
Π , respectively. The MOM estimator of Rs,k, we

propose here is R̃s,k with λ is replaced by λ̃ = σ̃1

σ̃2
in (2).

To obtain the asymptotic confidence interval for Rs,k, we proceed as follows. The asymptotic variance
of the MLEs are given by

V (σ̂1) =

[
E

(
−∂

2L

∂σ2
1

)]−1

=
σ2

1

4n
and V (σ̂2) =

[
E

(
−∂

2L

∂σ2
2

)]−1

=
σ2

2

4m
.

Under central limit property for i.i.d. variates, the asymptotic distribution of the moment estimators are
normal with the asymptotic variances are given by

V (σ̃1) = V

 x√
Π
2

 =

(
4−Π

Π

)
σ2

1

n
and V (σ̃2) = V

 y√
Π
2

 =

(
4−Π

Π

)
σ2

2

m
.
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The asymptotic variance (AV) of an estimate of Rs,k which a function of two independent statistics (say)
σ̂1 and σ̂2 is given by Rao (1973) as

AV (R̂s,k) = V (σ̂1)

[
∂Rs,k
∂σ1

]2

+ V (σ̂2)

[
∂Rs,k
∂σ2

]2

, (3)

where t1 and t2 are to be taken in two different ways namely, ML and MOM estimators of σ1 and σ2

respectively. Thus from (3), the asymptotic variance of R̂s,k can be obtained by replacing t1 and t2 with

ML estimators of σ1 and σ2 whereas asymptotic variance of R̃s,k can be obtained by replacing t1 and t2
with MOM estimators of σ1 and σ2.

To avoid the difficulty of derivation of Rs,k, we obtain the derivatives of Rs,k for (s, k)=(1,3) and (2,4)
separately, they are given by

∂R1,3

∂σ1
=

−12λ̂5
(

11λ̂4 + 12λ̂2 + 3
)

σ2

[(
λ̂2 + 1

)(
2λ̂2 + 1

)(
3λ̂2 + 1

)]2 and
∂R1,3

∂σ2
=

12λ̂6
(

11λ̂4 + 12λ̂2 + 3
)

σ2

[(
λ̂2 + 1

)(
2λ̂2 + 1

)(
3λ̂2 + 1

)]2
∂R2,4

∂σ1
=

−48λ̂5
(

26λ̂4 + 18λ̂2 + 3
)

σ2

[(
2λ̂2 + 1

)(
3λ̂2 + 1

)(
4λ̂2 + 1

)]2 and
∂R2,4

∂σ2
=

48λ̂6
(

26λ̂4 + 18λ̂2 + 3
)

σ2

[(
2λ̂2 + 1

)(
3λ̂2 + 1

)(
4λ̂2 + 1

)]2 .
Thus

AV
(
R̂1,3

)
=

36λ̂12
(

11λ̂4 + 12λ̂2 + 3
)2

[(
λ̂2 + 1

)(
2λ̂2 + 1

)(
3λ̂2 + 1

)]4 ( 1

n
+

1

m

)
,

AV
(
R̃1,3

)
=

144λ̃12
(

11λ̃4 + 12λ̃2 + 3
)2

[(
λ̃2 + 1

)(
2λ̃2 + 1

)(
3λ̃2 + 1

)]4 (4−Π

Π

)(
1

n
+

1

m

)
,

AV
(
R̂2,4

)
=

576λ̂12
(

26λ̂4 + 18λ̂2 + 3
)2

[(
2λ̂2 + 1

)(
3λ̂2 + 1

)(
4λ̂2 + 1

)]4 ( 1

n
+

1

m

)

and

AV
(
R̃2,4

)
=

2304λ̃12
(

26λ̃4 + 18λ̃2 + 3
)2

[(
2λ̃2 + 1

)(
3λ̃2 + 1

)(
4λ̃2 + 1

)]4 (4−Π

Π

)(
1

n
+

1

m

)
.

As n → ∞, m → ∞, we have that
R̂s,k−Rs,k
AV ( ˆRs,k)

d−→ N(0, 1) and the asymptotic confidence 95% confidence

interval for Rs,k is given by

R̂s,k ± 1.96

√
AV (R̂s,k).

The asymptotic confidence 95% confidence interval for R1,3 using ML and MOM estimators are respectively
given by

R̂1,3 ± 1.96
6λ̂6

(
11λ̂4 + 12λ̂2 + 3

)
[(
λ̂2 + 1

)(
2λ̂2 + 1

)(
3λ̂2 + 1

)]2
√(

1

n
+

1

m

)
,
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R̃1,3 ± 1.96
12λ̃6

(
11λ̃4 + 12λ̃2 + 3

)
[(
λ̃2 + 1

)(
2λ̃2 + 1

)(
3λ̃2 + 1

)]2
√(

4−Π

Π

)√(
1

n
+

1

m

)
.

The asymptotic confidence 95% confidence interval for R2,4 using ML and MOM estimators are respectively
given by

R̂2,4 ± 1.96
24λ̂6

(
26λ̂4 + 18λ̂2 + 3

)
[(

2λ̂2 + 1
)(

3λ̂2 + 1
)(

4λ̂2 + 1
)]2

√(
1

n
+

1

m

)
,

R̃2,4 ± 1.96
48λ̃6

(
26λ̃4 + 18λ̃2 + 3

)
[(

2λ̃2 + 1
)(

3λ̃2 + 1
)(

4λ̃2 + 1
)]2

√(
4−Π

Π

)√(
1

n
+

1

m

)
.

3. Simulation study and data analysis

3.1. Simulation study

In this subsection we present some results based on Monte Carlo simulations to compare the performance
of the Rs,k using for different sample sizes. 3000 random sample of size 10(5)35 each from stress and strength
populations are generated for (σ1, σ2)=(3.0, 1.0), (2.5, 1.0), (2.0, 1.0), (1.5, 1.0), (1.0, 1.0), (1.5, 2.0), (1.5,
2.5) and (1.5, 3.0) as proposed by Bhattacharyya and Johnson (1974). The ML estimators and MOM
estimators of σ1 and σ2 are then substituted in λ to get the reliability in a multicomponent reliability for
(s, k) = (1, 3), (2, 4). The average bias and average mean square error (MSE) of the reliability estimates over
the 3000 replications for two methods of estimation are given in Tables 1 and 2. Average confidence length
and coverage probability of the simulated 95% confidence intervals of Rs,k for two methods of estimation
are given in Tables 3 and 4. The true values of reliability in multicomponent stress-strength with the given
combinations of (σ1, σ2) for (s, k) = (1, 3) are 0.178, 0.242, 0.344, 0.507, 0.750, 0.917, 0.971, 0.989, 0.995
and for (s, k) = (2, 4) are 0.111, 0.155, 0.228, 0.359, 0.600, 0.828, 0.929, 0.969, 0.986 respectively. Thus the
true value of reliability in multicomponent stress-strength increases as σ2 increases for a fixed σ1 whereas
reliability in multicomponent stress-strength decreases as σ1 increases for a fixed σ2 in both the cases of
(s, k). Therefore, the true value of reliability is increases as λ decreases and vice versa. The average bias and
average MSE are decreases as sample size increases for both methods of estimation in reliability. It verifies
the consistency property of the MLE of Rs,k. The absolute bias of MLE shows less than the absolute bias
of moment estimator in most of the parametric and sample combinations. Also the bias is negative when
σ1 ≤ σ2 and other cases bias is positive in both situations of (s, k). With respect to MSE also MLE shows
first preference than moment method of estimation. Whereas, among the parameters the absolute bias and
MSE are increases as σ1 increases for a fixed value of σ2 in both the cases of (s, k) and the absolute bias and
MSE are decreases as σ2 increases for a fixed value of σ1 in both the cases of (s, k). The average length of
the confidence interval is also decreases as the sample size increases. The average length of the confidence
interval based on MLE shows shortest average length than by using moment method of estimation. The
simulated actual coverage probability is close to the nominal value in all cases but slightly less than 0.95
in most of the combinations for both methods of estimation. Overall, the performance of the confidence
interval is quite good for all combinations of parameters. Whereas, among the parameters we observed the
same phenomenon for average length and average simulated actual coverage probability that we observed in
case of average bias and MSE. The simulation results also show that there is no considerable difference in
the average bias and average MSE for different choices of the parameters. The same phenomenon is observed
for the average lengths and coverage probabilities of the confidence intervals.
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3.2. Data analysis

In this sub section we analyze two real data sets and demonstrate how the proposed methods can be used
in practice. The first data set reported by Wang (2000) and second data set given by Lawless (2003). We fit
the Rayleigh distribution to the two data sets separately. The first data set (Wang (2000)) presented here
arose in failure time of 18 devices and they are as follows: Data set I: 5, 11, 21, 31, 46, 75, 98,122, 145,165,
195, 224, 245, 293, 321, 330, 350, 420. Wang (2000) has fitted this data to Burr XII distribution. The
second data set is obtained from Lawless (2003) and it represents the number of revolution before failure
of each of 23 ball bearings in the life tests and they are as follows: Data Set II: 17.88, 28.92, 33.00, 41.52,
42.12, 45.60, 48.80, 51.84, 51.96, 54.12, 55.56, 67.80, 68.44, 68.64, 68.88, 84.12, 93.12, 98.64, 105.12, 105.84,
127.92, 128.04, 173.40. Gupta and Kundu (2001a) studied the validity of this data for gamma, Weibull and
generalized exponential distributions.

Before analyzing further, we checked the validity of the models. We used the Kolmogorov-Smirnov
(K–S) tests for each data set to fit the Rayleigh distribution. It is observed that for first data set the
K–S distance between the empirical distribution function and the fitted distribution functions is 0.22319
with the corresponding p– value 0.28647 and for the second data set the K–S distance between the empirical
distribution function and the fitted distribution functions is 0.14165 with the corresponding p–value 0.69348.
It indicates that the Rayleigh model fits quite well to both the data sets. We plot the empirical survival
functions and the fitted survival functions in Figures 1 and 2 for data set I and data set II respectively.

The ML and MOM estimates for real data sets are σ̂1 = 137.8, σ̂2 = 57.624 and σ̃1 = 137.25, σ̃2 =
57.61, respectively. Basing on ML estimates of σ1 and σ2 the MLE of Rs,k become R̂1,3=0.261981 and

R̂2,4=0.16857. The 95% confidence intervals in this case for R1,3 become (0.131533, 0.392429) and for
R2,4 become (0.076964, 0.260176). Similarly, Base on moment estimates of σ1 and σ2 the MOM of Rs,k
become R̃1,3 = 0.26198 and R̃1,3 = 0.168569. The 95% confidence intervals for R1,3 become (0.125888,
0.398072) and for R2,4 become (0.07289, 0.264248). From the real life data, we conclude that one out of
three component system reliability is more than the two out of four component system reliability for both
methods of estimation. The length of the confidence interval is also more for one out of three component
system reliability than the two out of four component system reliability.

4. Conclusions

In this paper, we have studied the multicomponent stress-strength reliability for Rayleigh distribution
when both of stress and strength variates follow the same population. Also, we have estimated asymptotic
confidence interval for multicomponent stress-strength reliability using MLE and moment method of estima-
tion. The simulation results indicates that the average bias and average MSE are decreases as sample size
increases for both methods of estimation in reliability. Among the parameters the absolute bias and MSE are
increases (decreases) as σ1 increases (σ2 increases) in both the cases of (s, k). The length of the confidence
interval is also decreases as the sample size increases and coverage probability is close to the nominal value
in all sets of parameters considered here. Using real data, we illustrated the estimation process.
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Figure 1: The empirical and fitted survival functions for the Data Set I

Figure 2: The empirical and fitted survival functions for the Data Set II
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Table 1: Average bias of the simulated estimates of Rs,k

(σ1,σ2)

(s,k) (n,m) (2.5,1.0) (2.0,1.0) (1.5,1.0) (1.0,1.0) (1.0,1.5) (1.0,2.0) (1.0,2.5)

(5,5) 0.02544 0.02161 0.00610 -0.02473 -0.03333 -0.02342 -0.01421

0.02410 0.02072 0.00629 -0.02292 -0.03122 -0.02187 -0.01319

(10,10) 0.01407 0.01290 0.00538 -0.01152 -0.01627 -0.01072 -0.00595

0.01334 0.01229 0.00524 -0.01071 -0.01520 -0.00997 -0.00550

(15,15) 0.00867 0.00753 0.00180 -0.01034 -0.01283 -0.00811 -0.00438

0.00821 0.00726 0.00210 -0.00903 -0.01143 -0.00721 -0.00388

(1,3) (20,20) 0.00728 0.00677 0.00284 -0.00641 -0.00891 -0.00570 -0.00307

0.00586 0.00520 0.00144 -0.00693 -0.00873 -0.00548 -0.00292

(25,25) 0.00739 0.00735 0.00444 -0.00343 -0.00629 -0.00415 -0.00224

0.00665 0.00659 0.00390 -0.00329 -0.00582 -0.00381 -0.00205

(30,30) 0.00434 0.00388 0.00113 -0.00499 -0.00626 -0.00387 -0.00203

0.00381 0.00334 0.00076 -0.00490 -0.00595 -0.00365 -0.00191

(35,35) 0.00314 0.00259 0.00009 -0.00512 -0.00581 -0.00350 -0.00181

0.00302 0.00257 0.00034 -0.00443 -0.00517 -0.00313 -0.00162

(5,5) 0.02357 0.02590 0.02109 -0.00559 -0.03279 -0.03324 -0.02487

0.02212 0.02450 0.02028 -0.00471 -0.03062 -0.03114 -0.02324

(10,10) 0.01226 0.01417 0.01278 -0.00081 -0.01608 -0.01620 -0.01147

0.01159 0.01343 0.01218 -0.00059 -0.01502 -0.01512 -0.01067

(15,15) 0.00773 0.00879 0.00739 -0.00276 -0.01339 -0.01267 -0.00869

0.00726 0.00831 0.00715 -0.00206 -0.01187 -0.01130 -0.00773

(2,4) (20,20) 0.00624 0.00731 0.00672 -0.00051 -0.00893 -0.00885 -0.00612

0.00513 0.00592 0.00513 -0.00165 -0.00908 -0.00863 -0.00588

(25,25) 0.00611 0.00736 0.00738 0.00172 -0.00577 -0.00631 -0.00445

0.00551 0.00663 0.00661 0.00141 -0.00541 -0.00584 -0.00409

(30,30) 0.00379 0.00438 0.00383 -0.00113 -0.00656 -0.00618 -0.00416

0.00336 0.00386 0.00329 -0.00135 -0.00632 -0.00586 -0.00392

(35,35) 0.00283 0.00320 0.00252 -0.00189 -0.00635 -0.00570 -0.00376

0.00269 0.00307 0.00252 -0.00146 -0.00559 -0.00508 -0.00336

In each cell the first row represents the average bias of Rs,k using the MOM and second row represents average bias of Rs,k

using the MLE.
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Table 2: Average MSE of the simulated estimates of Rs,k

(σ1,σ2)

(s,k) (n,m) (2.5,1.0) (2.0,1.0) (1.5,1.0) (1.0,1.0) (1.0,1.5) (1.0,2.0) (1.0,2.5)

(5,5) 0.02011 0.02755 0.03330 0.02775 0.01296 0.00516 0.00207

0.01857 0.02576 0.03148 0.02623 0.01202 0.00465 0.00181

(10,10) 0.00929 0.01389 0.01807 0.01446 0.00512 0.00141 0.00037

0.00871 0.01306 0.01704 0.01357 0.00470 0.00126 0.00033

(15,15) 0.00649 0.00991 0.01321 0.01060 0.00353 0.00090 0.00022

0.00591 0.00906 0.01208 0.00960 0.00311 0.00077 0.00019

(1,3) (20,20) 0.00461 0.00721 0.00986 0.00795 0.00252 0.00060 0.00014

0.00415 0.00654 0.00904 0.00735 0.00232 0.00055 0.00013

(25,25) 0.00381 0.00598 0.00817 0.00643 0.00192 0.00043 0.00009

0.00347 0.00546 0.00749 0.00589 0.00173 0.00038 0.00008

(30,30) 0.00303 0.00479 0.00663 0.00529 0.00157 0.00034 0.00007

0.00278 0.00442 0.00615 0.00492 0.00145 0.00031 0.00007

(35,35) 0.00258 0.00411 0.00573 0.00458 0.00132 0.00028 0.00006

0.00234 0.00374 0.00522 0.00416 0.00120 0.00025 0.00005

(5,5) 0.01198 0.01912 0.02888 0.03374 0.02281 0.01191 0.00575

0.01089 0.01762 0.02705 0.03197 0.02146 0.01101 0.00520

(10,10) 0.00494 0.00868 0.01471 0.01853 0.01104 0.00450 0.00161

0.00461 0.00813 0.01384 0.01748 0.01030 0.00412 0.00145

(15,15) 0.00336 0.00603 0.01052 0.01366 0.00798 0.00307 0.00104

0.00305 0.00550 0.00962 0.01247 0.00717 0.00270 0.00089

(2,4) (20,20) 0.00233 0.00427 0.00768 0.01028 0.00591 0.00217 0.00069

0.00208 0.00384 0.00697 0.00946 0.00547 0.00200 0.00063

(25,25) 0.00191 0.00353 0.00637 0.00848 0.00469 0.00164 0.00049

0.00174 0.00321 0.00582 0.00777 0.00428 0.00148 0.00044

(30,30) 0.00151 0.00280 0.00511 0.00693 0.00386 0.00133 0.00040

0.00138 0.00257 0.00472 0.00644 0.00359 0.00123 0.00036

(35,35) 0.00127 0.00238 0.00439 0.00600 0.00332 0.00112 0.00033

0.00115 0.00216 0.00399 0.00547 0.00301 0.00101 0.00029

In each cell the first row represents the average MSE of Rs,k using the MOM and second row represents average MSE of Rs,k

using the MLE.
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Table 3: Average confidence length of the simulated 95% confidence intervals of Rs,k

(σ1,σ2)

(s,k) (n,m) (2.5,1.0) (2.0,1.0) (1.5,1.0) (1.0,1.0) (1.0,1.5) (1.0,2.0) (1.0,2.5)

(5,5) 0.51137 0.61702 0.69631 0.62210 0.37763 0.20644 0.11255

0.49107 0.59432 0.67211 0.59907 0.36008 0.19471 0.10505

(10,10) 0.36638 0.45383 0.52420 0.46425 0.26008 0.12784 0.06239

0.35086 0.43538 0.50383 0.44615 0.24848 0.12115 0.05865

(15,15) 0.29764 0.37246 0.43531 0.38721 0.21220 0.10094 0.04771

0.28525 0.35755 0.41859 0.37200 0.20228 0.09526 0.04459

(1,3) (20,20) 0.25870 0.32539 0.38200 0.33830 0.18111 0.08383 0.03865

0.24705 0.31141 0.36661 0.32541 0.17385 0.08012 0.03678

(25,25) 0.23225 0.29264 0.34402 0.30360 0.16015 0.07282 0.03303

0.22215 0.28032 0.33011 0.29156 0.15330 0.06935 0.03130

(30,30) 0.21066 0.26660 0.31531 0.27990 0.14729 0.06646 0.02990

0.20156 0.25534 0.30236 0.26853 0.14099 0.06341 0.02844

(35,35) 0.19466 0.24685 0.29272 0.26029 0.13650 0.06122 0.02737

0.18649 0.23665 0.28080 0.24952 0.13033 0.05817 0.02590

(5,5) 0.37957 0.49543 0.63356 0.70244 0.54478 0.35494 0.21981

0.36291 0.47548 0.61050 0.67812 0.52314 0.33795 0.20745

(10,10) 0.26299 0.35315 0.46760 0.53160 0.39838 0.24122 0.13699

0.25134 0.33807 0.44870 0.51124 0.38233 0.23022 0.12987

(15,15) 0.21131 0.28634 0.38425 0.44345 0.33083 0.19598 0.10832

0.20213 0.27433 0.36895 0.42658 0.31721 0.18656 0.10226

(2,4) (20,20) 0.18255 0.24863 0.33591 0.38939 0.28720 0.16660 0.09003

0.17395 0.23734 0.32156 0.37419 0.27623 0.15985 0.08607

(25,25) 0.16353 0.22312 0.30218 0.35065 0.25670 0.14695 0.07826

0.15619 0.21337 0.28950 0.33671 0.24637 0.14056 0.07454

(30,30) 0.14770 0.20222 0.27543 0.32234 0.23678 0.13503 0.07145

0.14117 0.19345 0.26383 0.30924 0.22707 0.12919 0.06817

(35,35) 0.13619 0.18679 0.25509 0.29959 0.22010 0.12504 0.06583

0.13038 0.17892 0.24457 0.28742 0.21076 0.11930 0.06256

In each cell the first row represents the average confidence length of Rs,k using the MOM and second row represents average
confidence length of Rs,k using the MLE.
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Table 4: Average coverage probability of the simulated 95% confidence intervals of Rs,k

(σ1,σ2)

(s,k) (n,m) (2.5,1.0) (2.0,1.0) (1.5,1.0) (1.0,1.0) (1.0,1.5) (1.0,2.0) (1.0,2.5)

(5,5) 0.9440 0.9483 0.9510 0.9513 0.9400 0.9400 0.9410

0.9417 0.9420 0.9503 0.9533 0.9380 0.9367 0.9380

(10,10) 0.9537 0.9557 0.9533 0.9577 0.9407 0.9370 0.9370

0.9530 0.9523 0.9507 0.9550 0.9407 0.9373 0.9363

(15,15) 0.9440 0.9447 0.9430 0.9480 0.9457 0.9407 0.9403

0.9430 0.9447 0.9427 0.9550 0.9490 0.9423 0.9413

(1,3) (20,20) 0.9513 0.9500 0.9483 0.9477 0.9417 0.9390 0.9377

0.9520 0.9487 0.9487 0.9490 0.9443 0.9397 0.9377

(25,25) 0.9483 0.9493 0.9480 0.9470 0.9473 0.9423 0.9417

0.9497 0.9483 0.9437 0.9453 0.9450 0.9393 0.9373

(30,30) 0.9483 0.9470 0.9483 0.9520 0.9517 0.9460 0.9427

0.9510 0.9500 0.9470 0.9460 0.9507 0.9470 0.9467

(35,35) 0.9490 0.9490 0.9480 0.9517 0.9547 0.9513 0.9487

0.9493 0.9510 0.9500 0.9513 0.9553 0.9513 0.9490

(5,5) 0.9413 0.9437 0.9480 0.9563 0.9460 0.9400 0.9397

0.9397 0.9407 0.9417 0.9550 0.9437 0.9370 0.9363

(10,10) 0.9523 0.9533 0.9557 0.9547 0.9500 0.9397 0.9370

0.9500 0.9523 0.9523 0.9540 0.9497 0.9393 0.9370

(15,15) 0.9470 0.9453 0.9447 0.9433 0.9497 0.9443 0.9403

0.9463 0.9440 0.9450 0.9450 0.9533 0.9477 0.9423

(2,4) (20,20) 0.9533 0.9513 0.9500 0.9490 0.9497 0.9407 0.9387

0.9533 0.9517 0.9490 0.9483 0.9480 0.9427 0.9397

(25,25) 0.9490 0.9473 0.9493 0.9470 0.9480 0.9467 0.9423

0.9480 0.9493 0.9480 0.9430 0.9477 0.9450 0.9393

(30,30) 0.9480 0.9483 0.9463 0.9497 0.9507 0.9497 0.9460

0.9513 0.9510 0.9507 0.9470 0.9483 0.9520 0.9470

(35,35) 0.9490 0.9490 0.9490 0.9493 0.9527 0.9533 0.9513

0.9493 0.9500 0.9510 0.9513 0.9527 0.9547 0.9513

In each cell the first row represents the average coverage probability of Rs,k using the MOM and second row represents
average coverage probability of Rs,k using the MLE.


