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Abstract. From the sample observations relating to the behavior of transitions among the states,
measures of importance of states have been developed. From common sense we see that number of visits
to a place should be positively related to the importance of that state. From this measures we obtain a
composite measure whether the states are all equal. Then estimation method of MEN which has been
developed by us is used to find an estimator of the generator matrix involved in this and the estimator
of this measures of equality.

1. Introduction

Internal migration model (Seal and Hossain, 2013b) tried estimation of the parameters involved in ana-
lyzing internal migration data and also testing (Seal and Hossain, 2013a) for the same. It is true that a
person living in a place or state wishes to go to another place or state for different reasons like establishments,
works, education etc. But after some time he goes to another place with the hope of fulfillment and there
after spending some time, often he comes back to some of the previous places, as his memory consciously or
unconsciously brings him for betterment. Our mind can decide this well either consciously or unconsciously.
Therefore that person often and often will trace the pleasant or important states that he finds. Though our
mind’s adaptations are different, some of the common things like jobs, foods, financial positions have almost
similar effects on all persons. So it is important to note the frequency with which a person traces a state.
This helps in measuring the importance of that place or state. This idea is used in this work. Moreover a
measure of equality of importance of these states is developed.

This is also important to note that we have chosen Markov model, which uses only the current states
for further transitions. But when the states seem equal apparently, this is appropriate at least at this time
of globalization. Otherwise where there are clear differences among the states, one can choose states easily.
So when this is the situation mind acts at least unconsciously and therefore the factors depend grossly on
current states.

Using mean recurrence function and its Laplace transformation we obtain a measure of importance of
states. Also these are simplified by connecting this with the formulation of continuous Markov chain model
with infinitesimal generator matrix for computation purpose. In Section 2 such measure is used to find the
equality of importance of states or places. Then a sample drawing procedure is given and is used to estimate
this measure. For estimating these matrix parameters we have developed Minimum Euclidean Norm (MEN)
method. The idea here is to consider the Minimum Euclidean Norm between the parameter matrix and the
corresponding sample matrix.
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2. A measure of importance of a state via recurrence of that state

Suppose we have k states and let the states be numbered from 1, 2, . . . , k. Let us suppose transitions
occur at instants of time tr, r = 1, 2, . . . , n. Let the transitions to the states constitute a Markov process,
but the intervals (tr − tr−1) have any distribution, this distribution may depend on the state from which
the transition takes place as well as on the state to which the next transition takes place.

Let us take initial distribution of these k states to be q1, q2, . . . , qk, respectively, i.e.

qj = P [X(0) = j], j = 1, 2, . . . , k.

Also if it started from state j and entered in state i at time t for the first time with probability density
fji(t), then the unconditional distribution that a person is at state i in time t for the first time is

Gi(t) =

k∑
j=1

∫ t

0

qjfji(s)ds, i = 1, 2, . . . , k. (1)

We define the random variable Ri(t), the number of repetitions into state i by time t which occur in (0, t],
so that,

Ri(t) = ni, if t1 + · · ·+ tni
≤ t < t1 + · · ·+ tni

+ tni+1
, for all i = 1, 2, · · · , k,

where tr is the spacing between the (r− 1)th and rth repetition to state i. The mean number of repetitions
to be expected at state i during (0,t] is

mi(t) = E[Ri(t)], for all i = 1, 2, · · · , k.

Then in order to decide the equal importance of the states we should know whether,

m1(t) = m2(t) = · · · = mk(t), for all t⇐⇒ m̃1(θ) = m̃2(θ) = · · · = m̃k(θ), for all θ,

where m̃i(θ) are the Laplace transformation of mi(t). We call mi(t) as mean recurrence function for the
state i; i = 1, 2, · · · , k.

Now we are interested in finding out mi(t), i.e. E[Ri(t)] for all t and for all i = 1, 2, · · · , k. Now we
attempt to compute pji(t) by decomposing the event in terms of the event, the first time one enters into
state i. We can write the recursive equation in continuous time analog as

pji(t) =

∫ t

0

pii(t− s)dFji(s) =

∫ t

0

fji(s)pii(t− s)ds, (2)

where dFji(s) has the density function fji(s)ds.
Differentiating both sides of (2) we have,

p′ji(t) = fji(t), for all i, j = 1, 2, · · · , k, (3)

with initial condition fji(0) = 0, pii(0) = 1, for all i and j.
Again we know from the continuous time Markov chain

P ′(t) = AP (t), (4)

where A = (aij) is the infinitesimal matrix to be written as,

A =


−a11 a12 · · · a1k
a21 −a22 · · · a2k
...

...
. . .

...
ak1 ak2 · · · −akk

 , 0 ≤ aij <∞, ∀ i, j; 0 ≤ aii ≤ ∞, ∀ i; aii =

k∑
j=1,j 6=i

aij , ∀ i. (5)

Now we shall prove the following lemma which will be used in subsequent work.
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Lemma 2.1. For all i, j = 1, 2, · · · , k, we have that fji(t) =
∑k
l=1 ajlpli(t), where l is any intermediate

state.

Proof. From (4) we have that

p′ji(t) = (aj1, · · · , ajk)

 p1i(t)
...

pki(t)

 =

k∑
l=1

ajlpli(t).

Thus from (3) we have that

fji(t) = p′ji(t) =

k∑
l=1

ajlpli(t), (6)

which completes the proof.

Now from (1) we have the unconditional distribution

Gi(t) =

k∑
j=1

∫ t

0

qjfji(s)ds.

Then from (6) we have that

Gi(t) =

k∑
j=1

qj

∫ t

0

k∑
l=1

ajlpli(s)ds =

k∑
j=1

k∑
l=1

qjajl

∫ t

0

pli(s)ds. (7)

Applying Laplace transformation we have that

G̃i(θ) = L.T.{Gi(t)} =

k∑
j=1

k∑
l=1

qjajlp̃li(θ), (8)

where p̃li(θ) = L.T.{pli(t)}. Now Fi(t), the distribution function of fii(t), can be written as

Fi(t) =

∫ t

0

fii(s)ds =

∫ t

0

k∑
l=1

ailpli(s)ds

Applying Laplace transformation we get,

label2.9F̃i(θ) = L.T.{Fi(t)} =

∫ ∞
0

e−θtdFi(t) =

k∑
l=1

ailp̃li(θ). (9)

Thus we get (Ross, 1996)

m̃i(θ) =
G̃i(θ)

1− F̃i(θ)
=

k∑
j=1

k∑
l=1

qjajlp̃li(θ)

1−
k∑
l=1

ailp̃li(θ)

, for all i. (10)

Again we have that

P (t) = I +

∞∑
n=1

Antn

n!
.

Now we have Laplace transformation of this P (t) in the following lemma.
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Lemma 2.2. If P (t) = I +
∑∞
n=1

Antn

n! then

P̃ (θ) =
1

θ

[
I +

∞∑
n=1

An

θn

]
=

1

θ

[
I +

A

θ

(
I − A

θ

)−1]
.

Proof. We have that pij(t), the (i, j)th element of P (t) can be written as

pij(t) =

∞∑
n=1

(An)ij
n!

tn, for all i 6= j.

Now

p̃ij(θ) = L.T.{pij(t)} =

∫ ∞
0

e−θtpij(t)dt, for all i 6= j

=

∫ ∞
0

e−θt
∞∑
n=1

(An)ij
n!

tndt

=

∞∑
n=1

(An)ij
n!

∫ ∞
0

e−θttndt

=

∞∑
n=1

(An)ij
n!

· n!

θn+1

=

∞∑
n=1

(An)ij
θn+1

. (11)

Again

pii(t) = 1 +

∞∑
n=1

(An)ii
n!

tn,

so we get

p̃ii(θ) =

∫ ∞
0

e−θtpii(t)dt

=

∫ ∞
0

1 · e−θtdt+

∞∑
n=1

(An)ii
n!

∫ ∞
0

e−θttndt

=
1

θ
+

∞∑
n=1

(An)ii
θn+1

. (12)

Therefore from (11) and (12) we get

P̃ (θ) =
1

θ

[
I +

∞∑
n=1

An

θn

]
=

1

θ

[
I +

A

θ

(
I − A

θ

)−1]
. (13)

that completes the proof.

Now we are giving in the following some measures of equality of states. The measures of equality of
states are being given in terms of the Laplace transformation of the mean recurrence time

sup
θ

k∑
i=1

(m̃i(θ)− m̃(θ))
2
, (14)
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or

∫ ∞
0

k∑
i=1

(m̃i(θ)− m̃(θ))
2
dθ, (15)

where

m̃(θ) =
1

k

k∑
i=1

m̃i(θ), for all θ.

If the value of the above two measure is small then we say that the states are equally important.

In spite of the above the following standardized measure has desirable properties

Msd =

k∑
i,j=1

i 6=j

(∫ ∞
0

(m̃i(θ)− m̃j(θ))
2
dθ

)1/2

k∑
i=1

(∫ ∞
0

m̃2
i (θ)dθ

)1/2
. (16)

We have the following properties of Msd :

(i) It lies between 0 and 2(k − 1). By Minkowski’s inequality in function space of L2 norm we have

(∫ ∞
0

(m̃i(θ)− m̃j(θ))
2
dθ

)1/2

≤
(∫ ∞

0

m̃2
i (θ)dθ

)1/2

+

(∫ ∞
0

m̃2
j (θ)dθ

)1/2

.

So

k∑
i,j=1

i 6=j

(∫ ∞
0

(m̃i(θ)− m̃j(θ))
2
dθ

)1/2

≤
k∑

i,j=1

i6=j

(∫ ∞
0

m̃2
i (θ)dθ

)1/2

+

k∑
i,j=1

i 6=j

(∫ ∞
0

m̃2
j (θ)dθ

)1/2

= 2(k − 1)

k∑
i=1

(∫ ∞
0

m̃2
i (θ)dθ

)1/2

.

Therefore

0 ≤

k∑
i,j=1

i6=j

(∫ ∞
0

(m̃i(θ)− m̃j(θ))
2
dθ

)1/2

k∑
i=1

(∫ ∞
0

m̃2
i (θ)dθ

)1/2
≤ 2(k − 1).

(ii) Perfect equality of importance implies that it has value zero. This follows easily from above.

The algorithm to evaluate these measure for a given generator matrix is: For a generator matrix we find
P̃ from (13). Then using this and (10) as obtained from the idea of recurrence of states we obtain m̃i(θ).
Finally, we get (14), (15) and (16) as in the above Section 2.
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3. Estimation of the measure from matrix observations by method of minimum Euclidean
norm

Let us take observations at time points T = t1, t2, · · · , tn as

N (i) =


n
(i)
11 n

(i)
12 · · · n

(i)
1k

n
(i)
21 n

(i)
22 · · · n

(i)
2k

...
...

. . .
...

n
(i)
k1 n

(i)
k2 · · · n

(i)
kk

 , for all i = 1, 2, . . . , n,

where n
(i)
rs is the number of persons transited from state r to state s during (ti−1, ti].

Then we have the estimated transition probability matrix by

P̂ (i) =



n
(i)
11

n
(i)
1·

n
(i)
12

n
(i)
1·
· · · n

(i)
1k

n
(i)
1·

n
(i)
21

n
(i)
2·

n
(i)
22

n
(i)
2·
· · · n

(i)
2k

n
(i)
2·

...
...

. . .
...

n
(i)
k1

n
(i)
k·

n
(i)
k2

n
(i)
k·
· · · n

(i)
kk

n
(i)
k·


, for all i = 1, 2, · · · , n.

Again we know
P (ti − ti−1) = eA(ti−ti−1), for all i = 1, 2, · · · , n,

where A is the infinitesimal generator matrix given by (5). Thus we can write

n∏
i=1

eA(ti−ti−1) ∼=
n∏
i=1

P̂ (i) =⇒ eA(tn−t1) ∼= P̂ ∗,

where

P̂ ∗ =

n∏
i=1

P̂ (i).

So our problem is to find out A such that ∥∥∥eA(tn−t1) − P̂ ∗
∥∥∥

becomes minimum. Thus we try to get the estimated value of A by our MEN method. To do the above we
can write P̂ ∗ as

P̂ ∗ = [α1 α2 · · · αk]

where each αj for j = 1, 2, · · · , k is a column vector.

It is to be noted that usually rank P̂ (i) = k − 1, for i = 1, 2, · · · , n as sum of each row is 1. Therefore
rank P̂ ∗ may be assumed to be k − 1. So in order to extract maximum information from P̂ ∗ we shall find
B = eA(tn−t1) of rank k − 1 and the procedure is as follows.

Let Q1, Q2, · · · , Qk−1 be the first (k − 1) eigenvector of P̂ ∗P̂ ∗
′
. Let B∗ be the value of B for which∥∥∥B − P̂ ∗∥∥∥ is minimum. Then the column vectors of B∗ are the following (Rao, 1976)

B∗1 = (Q′1α1)Q1 + (Q′2α1)Q2 + · · · · · ·+ (Q′k−1α1)Qk−1

B∗2 = (Q′1α2)Q1 + (Q′2α2)Q2 + · · · · · ·+ (Q′k−1α2)Qk−1

...
...

B∗k = (Q′1αk)Q1 + (Q′2αk)Q2 + · · · · · ·+ (Q′k−1αk)Qk−1.
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Then we get the matrix B∗ = [B∗1 B
∗
2 · · · B∗k ]. Now we find ξ1, ξ2, · · · , ξk−1 right eigenvectors of B∗,

η1, η2 · · · , ηk−1 left eigenvectors of B∗, and λ1, λ2, · · · , λk−1 eigenvalues of B∗. Then we have

B∗ =

k−1∑
i=1

λiξiη
′
i.

Now we need the following definition and useful result for the exponential matrix.

Definition 3.1 (Karlin and Taylor (1975)). For a square matrix A we have that

eA = I +

∞∑
l=1

Al

l!
=

∞∑
l=0

Al

l!
.

Now let X1, X2, · · · , Xk be the right eigenvectors and Y1, Y2, · · · , Yk be the left eigenvectors respectively
corresponding to the eigenvalues q1, q2, · · · , qk of A. Then we can write

A =

k∑
i=1

qi
ai
XiY

′
i ,

where ai = X ′i · Yi for i = 1, 2, · · · , k. Then

∞∑
l=0

Al

l!
=

∞∑
l=0

1

l!

k∑
i=1

qli
ai
XiY

′
i =

k∑
i=1

∞∑
l=0

qli
ail!

XiY
′
i =

k∑
i=1

1

ai
eqiXiY

′
i .

Thus, we have that

eA =

k∑
i=1

1

ai
eqiXiY

′
i .

We show that Xj are right eigenvectors of eA:(
k∑
i=1

1

ai
eqiXiY

′
i

)
·Xj =

k∑
i=1

1

ai
eqiXi(Y

′
i ·Xj) =

1

aj
eqjXjaj = eqjXj ,

which implies that eqj is the corresponding eigenvalue.
So we have the following lemma.

Lemma 3.2. X1, X2, · · · , Xk are the right eigenvectors and Y1, Y2, · · · , Yk are the left eigenvectors, respec-
tively, of eA corresponding to the eigenvalues eq1 , eq2 , · · · , eqk .

Lemma 3.3. If

A =

k∑
i=1

qi
ai
XiY

′
i

then

eAt =

k∑
i=1

etqi

ai
XiY

′
i ,

i.e. eAt has eigenvalues (eqi)t with corresponding eigenvectors Xi, Yi.

Lemma 3.4. If eAt has eigenvalues λ1(t), λ2(t), · · · , λk(t), then

A =
1

t

k∑
i=1

log λi(t)

ai
XiY

′
i .
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Proof. eAt has eigenvalues λ1(t), λ2(t), · · · , λk(t), which implies that λi(t) = λti as in previous lemma, where
λi’s are eigenvalues of eA. Also λi = eqi for some i, when qi’s are eigenvalues of A. Thus,

λti = etqi ⇒ log λti = tqi ⇒ qi =
1

t
log λti =

1

t
log λi(t).

Thus we have the result for exponential matrix.

Theorem 3.5. If eA =

k∑
i=1

λi
di
ξiη
′
i, where di = ξi ·ηi and ξi’s are right eigenvectors, ηi’s are left eigenvectors

of eA corresponding to eigenvalues λi, then we have A =

k∑
i=1

log λi
di

ξiη
′
i.

Proof. Follows as in above lemma.

With the above lemma and theorem we suggest the following. We take the estimated value of A as

Â =
1

t

k−1∑
i=1

log λi(t)

di
ξiη
′
i,

where t = tn−t1. Using this Â, we get
̂̃
P (θ) from (13) and finally we get ̂̃mi(θ) from (10) for all i = 1, 2, · · · , k.

4. Concluding remarks

We could not generalize this measure when repetitions to state i occur at random times having a distri-
bution, partly because the mathematical calculations will be tedious, though from practical point of view,
that is important. Even distribution of spacing should be modified from transition to transition, e.g., shift
in location, because with the passage of time it is to be expected.
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