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Abstract. In this article, we introduce a generalized inverted scale family of distributions. Maximum
likelihood estimators (MLEs) of scale and shape parameters are obtained. Asymptotic confidence intervals
for both the parameters based on the MLE and log (MLE) are also constructed. Generalized inverted
half-logistic distribution is considered as a member of the generalized inverted scale family. Simulation
study is conducted to investigate performance of estimates and confidence intervals for this distribution.
An illustration with real data is provided.

1. Introduction

A scale family of distributions plays an important role in a lifetime data analysis. Exponential distri-
bution, Rayleigh distribution, half-logistic distribution etc. are some of the distributions more widely used
to analyze lifetime data. Lin et al.v(1989) and Dey (2007) used inverted exponential distribution (IED) to
analyze lifetime data. If Y is exponential variate then X = 1/Y has an inverted exponential distribution.
Singh et al. (2012) discussed Bayes estimators of the parameters and reliability function of IED using Type-I
as well as Type-II censored samples.

Generalized exponential distribution was introduced by Gupta and Kundu (1999, 2001a, 2001b). Abou-
ammoh and Alshingiti (2009) generalized inverted exponential distribution (GIED) by introducing a shape
parameter. They discussed statistical and reliability properties of GIED. They also studied estimation of
both scale and shape parameters. Krishna and Kumar (2012) used Type-II censored data to estimate relia-
bility characteristics of GIED. They proposed maximum likelihood estimation and least square estimation
procedures. Potdar and Shirke (2012) discussed inference for the scale family of lifetime distributions based
on progressively censored data.

In this article, a generalized inverted scale family of distributions is proposed by introducing a shape
parameter to the scale family of distributions. Inferential procedures are considered for both the parameters
of the family. In Section 2, we introduce the model and obtain maximum likelihood estimators (MLEs)
for scale and shape parameters. Expression for elements of Fisher information matrix are derived in same
section. Asymptotic confidence intervals (CIs) for scale and shape parameters are discussed. Generalized
inverted half-logistic distribution (GIHD) is considered as a member of family in Section 3. The MLEs
and CIs for the parameters of GIHD are studied. In Section 4, the performance of the MLEs and CIs are
investigated using simulations. Real data example is given in Section 5. Conclusions are reported in Section
6.
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2. Model and estimation of scale and shape parameter

Let Gλ be a scale family of lifetime distributions, where λ is the scale parameter with cumulative
distribution function (cdf) and probability density function (pdf) G(·) and g(·), respectively. We generalize
this family by introducing a shape parameter α to obtain a generalized scale family of distributions. Let Y
be a random variable having distribution belonging to a generalized scale family of distributions. Suppose
FY (·) is cdf of random variable Y . Let X = (1/Y ), then distribution of X belongs to generalized inverted
scale family of distributions. The cdf and pdf of the generalized inverted scale family of distributions are
respectively given as

FX(x;λ, α) = 1−

[

G

(

1

λx

)]α

, x ≥ 0, α, λ > 0,

fX(x;λ, α) =
α

λx2
g

(

1

λx

)[

G

(

1

λx

)]α−1

, x ≥ 0, α, λ > 0. (1)

Some of the members of the above family are listed in the following Table 1.

Table 1 : Some members of the generalized inverted scale family of distributions:

Sr. Distribution Generalized distribution (Y) and
No. Generalized inverted distribution (X=1/Y)
1 Scale family Generalized scale family

cdf= G
( y
λ

)

FY (y; λ, α) =
[

G
( y
λ

)]α

pdf= 1
λ
g
( y
λ

)

fY (y; λ, α) = α
λ

g
( y
λ

) [

G
( y
λ

)]α−1

Generalized inverted scale family

FX(x; λ, α) = 1−

[

G
(

1
λx

)]α

fX(x; λ, α) = α
λx2 g

(

1
λx

) [

G
(

1
λx

)]α−1

2 Exponential distribution Generalized exponential distribution

cdf=1− e−y/λ FY (y; λ, α) =
[

1− e−y/λ
]α

pdf= 1
λ
e−y/λ fY (y; λ, α) = α

λ
e−y/λ

[

1− e−y/λ
]α−1

(Gupta and Kundu, 1999)
Generalized inverted exponential distribution

FX(x;λ, α) = 1−

[

1− e−1/(λx)
]α

fX(x; λ, α) = α
λx2 e−1/(λx)

[

1− e−1/(λx)
]α−1

(Abouammoh and Alshingiti, 2009)
3 Half-logistic distribution Generalized half-logistic distribution

cdf= 1−e−y/λ

1+e−y/λ FY (y; λ, α) =
[

1−e−y/λ

1+e−y/λ

]α

pdf= 2e−y/λ

λ(1+e−y/λ)2
fY (y; λ, α) = 2α

λ
e−y/λ

(

1−e−y/λ
)(α−1)

(1+e−y/λ)(α+1)

Generalized inverted half-logistic distribution

FX(x;λ, α) = 1−

[

1−e−1/(λx)

1+e−1/(λx)

]α

fX(x; λ, α) = 2α
λx2 e−1/(λx)

[

1−e−1/(λx)
]α−1

[1+e−1/(λx)]α+1

4 Rayleigh distribution Generalized Rayleigh distribution

cdf=1− e−(y/λ)2 FY (y; λ, α) =
[

1− e−(y/λ)2
]α

pdf= 2y
λ2 e

−(y/λ)2 fY (y; λ, α) = 2αy
λ2 e−(y/λ)2

[

1− e−(y/λ)2
](α−1)

Generalized inverted Rayleigh distribution

FX(x;λ, α) = 1−

[

1− e−(1/(λx))2
]α

fX(x;λ, α) = 2α
λ2x3 e−(1/(λx))2

[

1− e−(1/(λx))2
]α−1

In the following, we discuss method of finding MLE of α and λ.
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2.1. Maximum likelihood estimation

Suppose we observe lifetimes of n units having lifetime distribution given in equation (1). The likelihood
function for the observed data is given by,

l(x|λ, α) =

n
∏

i=1

fX (xi;λ, α) =

n
∏

i=1

α

λx2
i

g

(

1

λxi

)[

G

(

1

λxi

)]α−1

.

Then log-likelihood function is given by

L = n log(α) − n log(λ)− 2

n
∑

i=1

log(xi) +

n
∑

i=1

log

[

g

(

1

λxi

)]

+ (α− 1)

n
∑

i=1

log

[

G

(

1

λxi

)]

. (2)

When λ is known, the MLE of α is the solution of dL
dα = 0. Thus the MLE of α is the solution of the equation

n

α
+

n
∑

i=1

log

[

G

(

1

λxi

)]

= 0. (3)

Therefore, when λ is known the MLE of α is

α̂ = −
n

∑n
i=1 log

[

G
(

1
λxi

)] . (4)

Similarly, when α is known, the MLE of λ is the solution of dL
dλ = 0. Thus the MLE of λ is solution of the

equation

−
n

λ
−

1

λ2

n
∑

i=1

g′
(

1
λxi

)

xig
(

1
λxi

) −
α− 1

λ2

n
∑

i=1

G′
(

1
λxi

)

xiG
(

1
λxi

) = 0. (5)

When both parameters α and λ are unknown, the MLEs of α and λ are the solutions of the two
simultaneous equations (3) and (5). We substitute α̂ in equation (4) into equation (5) so as to get a
nonlinear equation in λ only. Such nonlinear equation does not have closed form solution. Therefore, we
use Newton-Raphson method to compute λ̂. In Newton-Raphson method, we have to choose initial value of
λ. We use least square estimate as initial value of λ. Ng (2005) discussed estimation of model parameters
of modified Weibull distribution where the empirical distribution function is computed as (see Meeker and
Escober, 1998)

F̂
(

x(i)

)

= 1−

i
∏

j=1

(1 − p̂j)

with

p̂j =
1

n− j + 1
, for j = 1, 2, . . . ,m.

The estimate of the parameters can be obtained by least square fit of simple linear regression:

yi = βx(i), with β = λ,

yi =
1

G−1

[

(1−F̂(x(i−1)))
1/α

+(1−F̂(x(i)))
1/α

2

] , for i = 1, 2, . . . ,m,
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F̂ (x(0)) = 0.

The least square estimates of λ is given by

λ̂0 =

∑m
i=1 x(i)yi

∑m
i=1 x

2
(i)

.

We use λ̂0 as an initial value of λ to obtain the MLE λ̂ using Newton-Raphson method. Then we obtain α̂
using equation (4). We use these MLEs α̂ and λ̂ to obtain Confidence intervals for α and λ.

2.2. Fisher information matrix

Log-likelihood function L is described by equation (2). Now, Fisher information matrix of θ = (α, λ)′ is

I(θ) = −E





d2L
dα2

d2L
dαdλ

d2L
dλdα

d2L
dλ2



 ,

where

d2L

dα2
= −

n

α2
,

d2L

dαdλ
=

d2L

dλdα
= −

1

λ2

n
∑

i=1

G′
(

1
λxi

)

xiG
(

1
λxi

) ,

d2L

dλ2
=

n

λ2
+

1

λ4

n
∑

i=1

g
(

1
λxi

)

g′′
(

1
λxi

)

−
[

g′
(

1
λxi

)]2

+ 2λxig
(

1
λxi

)

g′
(

1
λxi

)

[

xig
(

1
λxi

)]2

+
α− 1

λ4

n
∑

i=1

G
(

1
λxi

)

G′′
(

1
λxi

)

−
[

G′
(

1
λxi

)]2

+ 2λxiG
(

1
λxi

)

G′
(

1
λxi

)

[

xiG
(

1
λxi

)]2 ,

and

g′(·) =
d

dλ
g(·), G′(·) =

d

dλ
G(·), g′′(·) =

d2

dλ2
g(·) and G′′(·) =

d2

dλ2
G(·).

To obtain expectation of the above expression is tedious job. Therefore, we use the observed Fisher infor-
mation matrix which is given by

I(θ̂) =





− d2L
dα2 − d2L

dαdλ

− d2L
dλdα − d2L

dλ2





α=α̂,λ=λ̂.

The asymptotic variance-covariance matrix of the MLEs is the inverse of I(θ̂). After obtaining inverse

matrix, we get variance of α̂ and variance of λ̂. We use these terms to obtain confidence intervals for α and
λ respectively.
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2.3. Confidence interval

Assuming asymptotic normal distribution for the MLEs, CIs for α and λ are constructed. Let α̂ and λ̂
are the MLE of α and λ respectively. Let σ̂2(α̂) and σ̂2(λ̂) is the estimated variances of α̂ and λ̂ respectively.
Therefore, 100(1− ξ)% asymptotic CIs for α and λ are respectively given by,

(

α̂− τξ/2
√

σ̂2(α̂), α̂+ τξ/2
√

σ̂2(α̂)
)

and

(

λ̂− τξ/2

√

σ̂2(λ̂), λ̂+ τξ/2

√

σ̂2(λ̂)

)

, (6)

where τξ/2 is the upper 100(1− ξ)th percentile of standard normal distribution. Meeker and Escober (1998)
reported that the asymptotic CI based on log(MLE) has better coverage probability. An approximate
100(1− ξ)% CI for log(α) and log(λ) are

(

log(α̂)− τξ/2
√

σ̂2(log(α̂)), log(α̂) + τξ/2
√

σ̂2(log(α̂))
)

and
(

log(λ̂)− τξ/2

√

σ̂2(log(λ̂)), log(λ̂) + τξ/2

√

σ̂2(log(λ̂))

)

,

where σ̂2(log(α̂)) is the estimated variance of log(α̂) which is approximately obtained by σ̂2(log(α̂)) ≈ σ̂2(α̂)
α̂2 .

σ̂2(log(λ̂)) is the estimated variance of log(λ̂) which is approximately obtained by σ̂2(log(λ̂)) ≈ σ̂2(λ̂)

λ̂2
. Hence,

an approximate 100(1− ξ)% CIs for α and λ are respectively given by,



α̂e

(

−
τξ/2

√
σ̂2(α̂)

α̂

)

, α̂e

(

τξ/2

√
σ̂2(α̂)

α̂

)



 and



λ̂e

(

−
τξ/2

√
σ̂2(λ̂)

λ̂

)

, λ̂e

(

τξ/2

√
σ̂2(λ̂)

λ̂

)



 .

We use above discussed inferential procedures of generalized inverted scale family to generalized inverted
half-logistic distribution (GIHD).

3. Application to generalized inverted half-logistic distribution

Consider a member of the scale family of distributions, namely half-logistic distribution with scale para-
meter λ. Let X be generalized inverted half-logistic random variable. The cdf and pdf of X are respectively

FX(x) = 1−

[

1− e−1/(λx)

1 + e−1/(λx)

]α

, x ≥ 0, α, λ > 0,

and

fX(x) =
2α

λx2
e−1/(λx)

(

1− e−1/(λx)
)α−1

(

1 + e−1/(λx)
)α+1 , x ≥ 0, α, λ > 0.

3.1. Maximum likelihood estimation

The log-likelihood function for generalized inverted half-logistic distribution from equation (2) is

L = n log(2) + n log(α)− n log(λ)− 2

n
∑

i=1

log(xi)−
1

λ

n
∑

i=1

1

xi
+ (α − 1)

n
∑

i=1

log
[

1− e−1/(λxi)
]

−(α+ 1)

n
∑

i=1

log
[

1 + e−1/(λxi)
]

,
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and

dL

dα
=

n

α
+

n
∑

i=1

log
[

1− e−1/(λxi)
]

−
n
∑

i=1

log
[

1 + e−1/(λxi)
]

= 0. (7)

When λ is known, the MLE of α is given by,

α̂ =
n

∑n
i=1 log

(

1 + e−1/(λxi)
)

−
∑n

i=1 log
(

1− e−1/(λxi)
) . (8)

Consider

dL

dλ
= −

n

λ
+

1

λ2

n
∑

i=1

1

xi
−

(α− 1)

λ2

n
∑

i=1

e−1/(λxi)

xi

(

1− e−1/(λxi)
)− (α+1)

λ2

∑n
i=1

e−1/(λxi)

xi(1+e−1/(λxi))
= 0. (9)

When α is known, the MLE of λ is solution of the equation dL
dλ = 0. When both parameters α and λ

are unknown, the MLEs of α and λ are the solutions of the two simultaneous equations (7) and (9). We
substitute α̂ in equation (8) into equation (9), we get

0 = −
n

λ
+

1

λ2

n
∑

i=1

1

xi
−

n

[

∑n
i=1

e−1/(λxi)

xi(1−e−1/(λxi))
+
∑n

i=1
e−1/(λxi)

xi(1+e−1/(λxi))

]

λ2
[
∑n

i=1 log
(

1 + e−1/(λxi)
)

−
∑n

i=1 log
(

1− e−1/(λxi)
)]

+
1

λ2

[

n
∑

i=1

e−1/(λxi)

xi

(

1− e−1/(λxi)
) −

n
∑

i=1

e−1/(λxi)

xi

(

1 + e−1/(λxi)
)

]

.

This is nonlinear equation in λ only, which does not have closed form solution. Therefore, we use
Newton-Raphson method to compute λ̂. We replace λ by MLE λ̂ in equation (8), we get MLE of α.

3.2. Fisher information matrix

Taking second derivatives of log-likelihood function L, we have

d2L

dα2
= −

n

α2
,

d2L

dαdλ
=

d2L

dλdα
= −

1

λ2

n
∑

i=1

e−1/(λxi)

xi

(

1− e−1/(λxi)
) −

1

λ2

n
∑

i=1

e−1/(λxi)

xi

(

1 + e−1/(λxi)
) ,

d2L

dλ2
=

n

λ2
−

2

λ3

n
∑

i=1

1

xi
−

(α − 1)

λ4

n
∑

i=1

e−1/(λxi)
[

1− 2λxi

(

1− e−1/(λxi)
)]

x2
i

(

1− e−1/(λxi)
)2

−
(α+ 1)

λ4

n
∑

i=1

e−1/(λxi)
[

1− 2λxi

(

1 + e−1/(λxi)
)]

x2
i

(

1 + e−1/(λxi)
)2 .

Using these expressions in (6), we obtain observed Fisher information matrix.

4. Performance Study

A simulation study is carried out to study the performance of MLEs of α and λ when the GIHD as
lifetime distribution. We consider bias and mean square error (MSE) to compare MLEs. Asymptotic CIs
based on MLEs and log-transformed MLEs are compared with their confidence levels.

Simulation is carried out for (α, λ)=(0.5, 0.5), (0.5, 1), (1, 0.5), (1, 1) with sample size n = 20, . . . , 100.
Newton-Raphson method is used to compute MLE of λ. For each sample size, 10000 sets of observations
were generated. The MLE, bias and MSE of α̂ and λ̂ are displayed in the Tables 2 to 5 for various values
of α and λ. Further, the confidence levels and lengths for the CIs based on MLE and log(MLE) of α are
given in Tables 6 to 9 and the confidence levels and lengths for the CIs based on MLE and log(MLE) of λ
are given in Tables 10 to 13.
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Table-2: MLE, Bias, MSE of α̂ and λ̂ when α = 0.5 and λ = 0.5.

MLE of α MLE of λ

n α̂ Bias MSE λ̂ Bias MSE
20 0.5558 0.0558 0.0294 0.4850 −0.0150 0.0214
30 0.5378 0.0378 0.0165 0.4875 −0.0125 0.0143
40 0.5264 0.0264 0.0113 0.4932 −0.0068 0.0110
50 0.5225 0.0225 0.0083 0.4924 −0.0076 0.0085
60 0.5164 0.0164 0.0066 0.4953 −0.0047 0.0071
80 0.5131 0.0131 0.0047 0.4952 −0.0048 0.0054
100 0.5090 0.0090 0.0036 0.4974 −0.0026 0.0043

Table-3: MLE, Bias, MSE of α̂ and λ̂ when α = 0.5 and λ = 1.

MLE of α MLE of λ

n α̂ Bias MSE λ̂ Bias MSE
20 0.5553 0.0553 0.0301 0.9682 −0.0318 0.0846
30 0.5352 0.0352 0.0161 0.9808 −0.0192 0.0564
40 0.5263 0.0263 0.0110 0.9884 −0.0116 0.0428
50 0.5203 0.0203 0.0083 0.9873 −0.0127 0.0349
60 0.5175 0.0175 0.0065 0.9874 −0.0126 0.0279
80 0.5126 0.0126 0.0047 0.9915 −0.0085 0.0215
100 0.5110 0.0110 0.0037 0.9918 −0.0082 0.0173

Table-4: MLE, Bias, MSE of α̂ and λ̂ when α = 1 and λ = 0.5.

MLE of α MLE of λ

n α̂ Bias MSE λ̂ Bias MSE
20 1.1481 0.1481 0.1864 0.4852 −0.0148 0.0141
30 1.0925 0.0925 0.0890 0.4893 −0.0107 0.0093
40 1.0680 0.0680 0.0595 0.4921 −0.0079 0.0071
50 1.0526 0.0526 0.0445 0.4948 −0.0052 0.0057
60 1.0436 0.0436 0.0348 0.4955 −0.0045 0.0047
80 1.0330 0.0330 0.0240 0.4961 −0.0039 0.0035
100 1.0237 0.0237 0.0185 0.4975 −0.0025 0.0027

Table-5: MLE, Bias, MSE of α̂ and λ̂ when α = 1 and λ = 1.

MLE of α MLE of λ

n α̂ Bias MSE λ̂ Bias MSE
20 1.1439 0.1439 0.1968 0.9753 −0.0247 0.0554
30 1.0895 0.0895 0.0915 0.9806 −0.0194 0.0370
40 1.0645 0.0645 0.0575 0.9891 −0.0109 0.0282
50 1.0522 0.0522 0.0440 0.9880 −0.0120 0.0223
60 1.0428 0.0428 0.0342 0.9884 −0.0116 0.0190
80 1.0322 0.0322 0.0251 0.9926 −0.0074 0.0143
100 1.0252 0.0252 0.0186 0.9940 −0.0060 0.0113
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Table-6: Confidence levels and lengths of CIs for α when α = 0.5 and λ = 0.5.

n MLE(90%) MLE(95%) Log-MLE(90%) Log-MLE(95%)
Level Length Level Length Level Length Level Length

20 0.9167 0.4773 0.9625 0.5688 0.8878 0.4922 0.9417 0.5941
30 0.9113 0.3744 0.9589 0.4461 0.8884 0.3820 0.9401 0.4590
40 0.9044 0.3160 0.9568 0.3766 0.8910 0.3208 0.9390 0.3847
50 0.9086 0.2802 0.9577 0.3338 0.8925 0.2835 0.9439 0.3395
60 0.9054 0.2523 0.9542 0.3006 0.8952 0.2548 0.9461 0.3048
80 0.9045 0.2168 0.9524 0.2583 0.8960 0.2184 0.9467 0.2610
100 0.9049 0.1921 0.9553 0.2289 0.9018 0.1932 0.9507 0.2308

Table-7: Confidence levels and lengths of CIs for α when α = 0.5 and λ = 1.

n MLE(90%) MLE(95%) Log-MLE(90%) Log-MLE(95%)
Level Length Level Length Level Length Level Length

20 0.9153 0.4771 0.9628 0.5685 0.8897 0.4920 0.9421 0.5938
30 0.9123 0.3724 0.9598 0.4437 0.8914 0.3800 0.9446 0.4566
40 0.9057 0.3160 0.9563 0.3765 0.8901 0.3207 0.9443 0.3846
50 0.9032 0.2789 0.9548 0.3323 0.8903 0.2822 0.9428 0.3380
60 0.9081 0.2529 0.9556 0.3013 0.8989 0.2554 0.9480 0.3056
80 0.9053 0.2165 0.9515 0.2580 0.8963 0.2182 0.9450 0.2608
100 0.9028 0.1929 0.9547 0.2299 0.8943 0.1941 0.9475 0.2318

Table-8: Confidence levels and lengths of CIs for α when α = 1 and λ = 0.5.

n MLE(90%) MLE(95%) Log-MLE(90%) Log-MLE(95%)
Level Length Level Length Level Length Level Length

20 0.9272 1.1189 0.9656 1.3333 0.8848 1.1647 0.9414 1.4111
30 0.9179 0.8536 0.9627 1.0172 0.8908 0.8757 0.9433 1.0547
40 0.9141 0.7173 0.9589 0.8547 0.8909 0.7310 0.9454 0.8779
50 0.9090 0.6297 0.9554 0.7503 0.8950 0.6391 0.9444 0.7663
60 0.9048 0.5683 0.9534 0.6772 0.8916 0.5754 0.9463 0.6892
80 0.9109 0.4856 0.9554 0.5786 0.9023 0.4901 0.9486 0.5863
100 0.9045 0.4294 0.9546 0.5116 0.8986 0.4325 0.9496 0.5170

Table-9: Confidence levels and lengths of CIs for α when α = 1 and λ = 1.

n MLE(90%) MLE(95%) Log-MLE(90%) Log-MLE(95%)
Level Length Level Length Level Length Level Length

20 0.9260 1.1148 0.9670 1.3283 0.8838 1.1605 0.9423 1.4061
30 0.9121 0.8511 0.9595 1.0142 0.8891 0.8731 0.9398 1.0515
40 0.9126 0.7147 0.9594 0.8516 0.8933 0.7283 0.9453 0.8747
50 0.9102 0.6294 0.9557 0.7500 0.8916 0.6389 0.9458 0.7660
60 0.9099 0.5677 0.9550 0.6765 0.8927 0.5748 0.9473 0.6885
80 0.9035 0.4853 0.9541 0.5782 0.8947 0.4898 0.9469 0.5858
100 0.9067 0.4302 0.9553 0.5126 0.8973 0.4333 0.9497 0.5179
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Table-10: Confidence levels and lengths of CIs for λ when α = 0.5 and λ = 0.5.

n MLE(90%) MLE(95%) Log-MLE(90%) Log-MLE(95%)
Level Length Level Length Level Length Level Length

20 0.8376 0.4667 0.8785 0.5561 0.8709 0.4854 0.9194 0.5880
30 0.8512 0.3832 0.8967 0.4566 0.8783 0.3933 0.9264 0.4738
40 0.8689 0.3364 0.9095 0.4008 0.8793 0.3430 0.9360 0.4121
50 0.8729 0.3003 0.9162 0.3579 0.8864 0.3051 0.9394 0.3659
60 0.8798 0.2764 0.9231 0.3294 0.8902 0.2801 0.9403 0.3356
80 0.8850 0.2392 0.9252 0.2850 0.8909 0.2415 0.9412 0.2889
100 0.8867 0.2152 0.9359 0.2564 0.8925 0.2169 0.9467 0.2593

Table-11: Confidence levels and lengths of CIs for λ when α = 0.5 and λ = 1.

n MLE(90%) MLE(95%) Log-MLE(90%) Log-MLE(95%)
Level Length Level Length Level Length Level Length

20 0.8390 0.9313 0.8749 1.1098 0.8691 0.9687 0.9220 1.1733
30 0.8650 0.7723 0.9008 0.9202 0.8810 0.7928 0.9320 0.9550
40 0.8738 0.6743 0.9132 0.8035 0.8862 0.6876 0.9375 0.8261
50 0.8751 0.6032 0.9175 0.7188 0.8851 0.6128 0.9380 0.7350
60 0.8827 0.5504 0.9265 0.6558 0.8927 0.5576 0.9423 0.6681
80 0.8824 0.4792 0.9298 0.5710 0.8925 0.4839 0.9400 0.5790
100 0.8845 0.4285 0.9305 0.5106 0.8919 0.4319 0.9402 0.5163

Table-12: Confidence levels and lengths of CIs for λ when α = 1 and λ = 0.5.

n MLE(90%) MLE(95%) Log-MLE(90%) Log-MLE(95%)
Level Length Level Length Level Length Level Length

20 0.8475 0.3773 0.8881 0.4496 0.8691 0.3871 0.9243 0.4662
30 0.8661 0.3106 0.9079 0.3701 0.8810 0.3159 0.9306 0.3791
40 0.8717 0.2706 0.9174 0.3224 0.8824 0.2740 0.9357 0.3283
50 0.8789 0.2436 0.9257 0.2903 0.8874 0.2461 0.9397 0.2945
60 0.8813 0.2227 0.9273 0.2653 0.8881 0.2246 0.9402 0.2686
80 0.8889 0.1930 0.9342 0.2300 0.8943 0.1943 0.9448 0.2321
100 0.8935 0.1733 0.9387 0.2065 0.8961 0.1741 0.9469 0.2079

Table-13: Confidence levels and lengths of CIs for λ when α = 1 and λ = 1.

n MLE(90%) MLE(95%) Log-MLE(90%) Log-MLE(95%)
Level Length Level Length Level Length Level Length

20 0.8578 0.7590 0.8980 0.9044 0.8793 0.7787 0.9295 0.9378
30 0.8659 0.6230 0.9099 0.7424 0.8835 0.6337 0.9333 0.7605
40 0.8803 0.5446 0.9212 0.6489 0.8876 0.5516 0.9391 0.6608
50 0.8792 0.4863 0.9233 0.5795 0.8866 0.4913 0.9388 0.5879
60 0.8787 0.4442 0.9254 0.5293 0.8885 0.4479 0.9403 0.5357
80 0.8821 0.3864 0.9271 0.4605 0.8860 0.3889 0.9395 0.4646
100 0.8870 0.3461 0.9349 0.4124 0.8915 0.3479 0.9459 0.4154

Bias, MSE of MLEs of various values of α and λ are reported in Tables 2 to 5. For small values of α and
λ, MLEs show better performance. The bias and MSE of the estimates are relatively smaller for small value
of parameter. The Bias and MSE of estimates of α are not affected due to different values of λ. Similarly,
bias and MSE of estimates of λ are not affected for different values of α. The bias and MSE of the MLEs
decrease with increase in sample size n.
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Confidence levels and lengths of CIs of α for various values of α and λ are reported in Tables 6 to 9.
When sample size is small, lengths and levels of CIs based on MLE are moderately large. Increase in sample
size reduces the lengths of CIs and confidence levels approach to nominal levels. Confidence levels of CIs
based on log-transformed MLE increase and lengths of CIs decrease as sample size increases.

Confidence levels and lengths of CIs of λ for various values of α and λ are reported in Tables 10 to
13. When sample size is small, CIs based on MLE show poor confidence level as compared to CIs based on
log-transformed MLE. When sample size is large confidence levels of CIs based on log- transformed MLE are
close to nominal levels. In both MLE and log-transformed MLE case, increase in sample size considerably
reduces the length of CIs and increases in confidence levels.

5. Real Data Example

Lawless (1982) provided real data, which represents the number of million revolutions before failure for
each of 23 ball bearings in a life test: 17.88, 28.92, 33, 41.52, 42.12, 45.6, 48.4, 51.84, 51.96, 54.12, 55.56, 67.8,
68.64, 68.64, 68.88, 84.12, 93.12, 98.64, 105.12, 105.84, 127.92, 128.04, 173.4. Krishna and Kumar (2012)
considered this data and fitted different five models namely exponential, inverted exponential, weibull,
gamma and generalized inverted exponential distribution. To test the goodness of fit, they considered four
criteria such as (i) negative log-likelihood (ii) Kolmogorov- Smirnov (K-S) statistic (iii) Akaike’s information
criterion (AIC) (iv) Bayesian information criterion (BIC). In short AIC and BIC are respectively given by,

AIC = 2k − 2 log(L) and BIC = k log(n)− 2 log(L),

where k is the number of parameters in the reliability model, L is the maximized value of the likelihood
function for the estimated model and n is the number of the observations in the given data set.

The maximum likelihood estimators of parameters, values of negative log-likelihood, AIC, BIC and K-S
values are presented in Table 14.

Table-14: The MLEs, negative log-likelihood, AIC, BIC and K-S value.

Sr.No. Distribution MLEs −LogL AIC BIC K-S

1 GIHD(λ, α) λ̂=0.007166 113.8679 231.7358 234.0068 0.06086
α̂=3.3735

2 GIED(λ, α) λ̂=129.9959 113.5490 231.0980 233.3690 0.0703
α̂=5.3076

3 IED(λ) λ̂=55.0551 121.7259 245.4519 246.5874 0.3060

4 Exp (θ) θ̂=0.0138 121.4338 244.8675 246.0030 0.2622

5 Gamma(α, β) α̂=0.0557 113.0298 230.0596 232.3306 0.1233

β̂=4.0244
6 Weibull(α, β) α̂=2.1018 113.6920 231.3839 233.6549 0.1510

β̂=81.8745

According to K-S test for goodness of fit, the order of best fit among above six models is given by
Best: GIHD→GIED→Gamma→Weibull→Exponential→IED :Worst

According to negative log-likelihood criterion, AIC and BIC for goodness of fit, the order of best fit
among above six models is given by

Best: Gamma→GIED→Weibull→GIHD→Exponential→IED :Worst

For this real data set, we construct confidence intervals based on MLE and log-transformedMLE of α and
λ. The confidence intervals of α and λ and its lengths are displayed in Table 15 and Table 16 respectively.

Table-15: MLE, Confidence intervals for α and their lengths.

MLE Based on MLE Based on log-MLE
90% CI 95% CI 90% CI 95% CI

3.3735 (1.3328, 5.4141) (0.9418, 5.8051) (1.8423, 6.1772) (1.6407, 6.9362)
Length=4.0813 Length=4.8633 Length=4.3349 Length=5.2955
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Table-16: MLE, Confidence intervals for λ and their lengths.

MLE Based on MLE Based on log-MLE
90% CI 95% CI 90% CI 95% CI

0.0072 (0.0050, 0.0093) (0.0046, 0.0098) (0.0053, 0.0097) (0.0050, 0.0103)
Length=0.0043 Length=0.0052 Length=0.0044 Length=0.0053

6. Conclusion

This article introduces a generalized inverted scale family of distributions having scale and shape para-
meters. Point and interval estimation procedures for the parameters of the family are discussed. As a member
of family, GIHD is considered and through simulation study, performance of estimators and confidence
intervals are studied. In this study, both MLE and CI of parameters give better performance. Expressions
given in this article can also be used for generalized inverted exponential distribution, generalized inverted
Rayleigh distribution etc.

Acknowledgement

The first author wishes to thank University Grants Commission, New Delhi, India for providing Fellow-
ship under Faculty Improvement Programme to carry out this research.

References

Abouammoh, A.M., Alshingiti, A.M. (2009) Reliability estimation of Generalized inverted exponential distribution, J. Statist.
Comput. Simul. 79(11), 1301–1315.

Dey, S. (2007) Inverted exponential distribution as a life distribution model from a Bayesian viewpoint, Data Sci. J. 6, 107–113.
Gupta, R.D., Kundu, D. (1999) Generalized exponential distribution, Aust. N. Z. J. Statist. 41(2), 173–183.
Gupta, R.D., Kundu, D. (2001a) Exponentiated exponential distribution: An alternative to gamma and Weibull distributions,

Biomet. J. 43(1), 117–130.
Gupta, R.D., Kundu, D. (2001b) Generalized exponential distribution: Different methods of estimations, J. Statist. Comput.

Simul. 69(4), 315–338.
Krishna, H., Kumar, K. (2013) Reliability estimation in generalized inverted exponential distribution with progressively type

II censored sample, J. Statist. Comput. Simul. 83(6), 1007–1019.
Lawless, J.F. (1982) Statistical models and methods for lifetime data, John Wiley and Sons, New York.
Lin, C.T., Duran, B.S., Lewis, T.O. (1989) Inverted gamma as life distribution, Microelectron Reliab. 29(4), 619–626.
Meeker, W.Q., Escober, L.A. (1998) Statistical Methods for Reliability Data, John Wiley and Sons, New York.
Ng, H.K.T. (2005) Parameter estimation for a modified Weibull distribution for progressively Type-II censored samples, IEEE

Trans. Reliab. 54, 374–380.
Potdar, K.G., Shirke, D.T. (2012) Inference for the scale parameter of lifetime distribution of k-unit parallel system based on

progressively censored data, J. Statist. Comput. Simul., DOI: 10.1080/00949655.2012.700314.
Singh, S.K., Singh., U., Kumar, D. (2012) Bayes estimators of the reliability function and parameter of inverted exponential

distribution using informative and non-informative priors, J. Statist. Comput. Simul., DOI: 10.1080/00949655.2012.690156.


