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Unbiased confidence intervals for distributions
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Abstract. Using the pivotal quantity method, a general solution is presented in this paper to obtain an
unbiased confidence interval for families of distributions involving truncation parameter. Also, we show
that for these families of distributions the unbiased confidence interval is equal to the shortest confidence
interval. Several examples are given to demonstrate the performance of the proven theorems.

1. Introduction

The problem of unbiased and shortest confidence intervals have been studied by some authors. Guenther
(1969, 1971) presented a method to obtain the shortest confidence intervals and the unbiased confidence
intervals, respectively. Ferentions (1990) gave a general solution to find the shortest confidence intervals for
families of distributions involving truncation parameters. Ferentions and Kourouklis (1990) gave a lemma
which plays an important role in constructing confidence intervals with shortest length. Troendle and Frank
(2001) presented unbiased confidence intervals for the odds ratio of two independent binomial samples with
application to case-control data. Brent (2008) discussed about comparing equal-tail probability and unbiased
confidence intervals for the intraclass correlation coefficient. Evans and Shakhatreh (2008) obtained some
optimal properties of credible sets. In fact they presented a new credible region called relative surprise regions
and showed that these regions are unbiased. Alizadeh et al. (2012) compared some intervals estimators for
the Poisson distribution. A part of their study contains the comparison of Bayesian credible intervals as
highest posterior density (HPD) and relative surprise (RS) credible intervals. They obviously conclude that
the RS credible intervals have close competition with HPD credible intervals based on coverage probability
and average of the length of credible intervals.

Let X1, X2, . . . , Xn be a random sample from a family of distributions with probability density function
(p.d.f.)

f(x; θ) =
g(x)

h(θ)
; a(θ) ≤ x ≤ b(θ), (1)

where g is a function of x only, h(θ) =
∫ b(θ)
a(θ)

g(x)dx is a function of θ only and a, b are monotone functions

of θ. In special cases, one of the extremities a or b may be a fixed. Let a−1, b−1 be the inverse functions
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of a and b respectively, and X(1) = min{Xi} and X(n) = max{Xi} be the first and nth ordered statistics.

Ferentions (1987) shown that θ̂1 = min{a−1(X(1)), b
−1(X(n))} is a sufficient statistic for θ, in which a is

an increasing function and b is a decreasing one in (1). When the monotonicities of a and b are at the

opposite directions, then the sufficient statistic is θ̂2 = max{a−1(X(1)), b
−1(X(n))}, where θ̂1 and θ̂2 are also

the maximum likelihood estimator for θ in the given family of distributions belonging to (1).

In this paper, by using the pivotal quantity method (Ferentions 1990), we find a general solution to
obtain an unbiased confidence intervals with confidence coefficient 1−α for families of distributions involving
truncation parameter based on a random sample.

The organization of this paper is as follow. A general solution for constructing unbiased confidence
intervals for parametric function, h(θ), is presented in Section 2, where we have a random sample from the
given families of distributions in (1). Section 3 is devoted to several examples to show the performance of
the proven theorems.

2. Unbiased Confidence Intervals

Let X1, X2, . . . , Xn be a random sample from a distribution with probability density function f(x; θ). In
using the standard method of obtaining a confidence interval for θ, one seek a random variable Q(X1, X2, . . . ,
Xn; θ) = Q(θ) whose distribution is independent of θ, where Q(θ) is named a pivotal quantity. Then in
a number of standard situations, the probability statement Pr(a < Q(θ) < b) = 1 − α, is converted to
Pr(W1 < θ < W2) = 1−α, where after observing x1, x2, . . . , xn, the specific numbers w1, w2 are calculated
which form the end points of a 1 − α confidence interval for θ. For (w1, w2) to be unbiased confidence
interval, we must have

H(θ, θ′) = Pr(W1 < θ′ < W2) ≥ (≤) 1− α if θ′ = θ (θ′ 6= θ). (2)

Throughout this paper we assume that H(θ, θ′) depends only on a function of θ and θ′, say γ. Conse-
quently, instead of H(θ, θ′) we will use the simpler H(γ). When Q(θ) is a continuous random variable, (2)
imply

H(γ) = (<) 1− α if γ = (6=) 1. (3)

In other words, H(γ) has a unique maximum at γ = 1 (Guenther, 1971).

The following lemma state that confidence intervals are invariant under reparameterization.

Lemma 2.1. Suppose that (T1, T2) be an unbiased confidence interval for θ with confidence coefficient 1−α
and let τ be a monotone function of θ.

i) If τ is a strictly increasing function of θ, then

(
τ(T1), τ(T2)

)
is an unbiased confidence interval for

τ(θ) with confidence coefficient 1− α.

ii) If τ is a strictly decreasing function of θ, then

(
τ(T2), τ(T1)

)
is an unbiased confidence interval for

τ(θ) with confidence coefficient 1− α.

Proof. (i) We have

1− α = Pr(T1 < θ < T2)

= Pr(τ(T1) < τ(θ) < τ(T2)).

This means that (τ(T1), τ(T2)) is a confidence interval for τ(θ) with confidence coefficient 1− α.

(ii) is similar to proof (i).
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Usually the construction of confidence intervals is based on a suitable point estimator. In the following
theorems we are going to get an unbiased confidence interval for h(θ) based on maximum likelihood estimator
and sufficient statistic introduced by Ferentins (1987), when we have a random sample from families of
distributions involving truncation parameter.

Theorem 2.2. Let X1, X2, . . . , Xn be a random sample from a distribution with p.d.f. f(x; θ) = g(x)/h(θ);
a(θ) ≤ x ≤ b(θ) in which h and b are two increasing functions of θ, and a is a decreasing function of

θ. Then the random interval
(
h(θ̂2), h(θ̂2)α−1/n

)
is an unbiased confidence interval for h(θ) with confidence

coefficient 1− α, where θ̂2 = max{a−1(X(1)), b
−1(X(n))}.

Proof. Following Ferentions (1990), the p.d.f. of random variable Q = h(θ̂2)/h(θ) is obtained as fQ(q) =
nqn−1; 0 ≤ q ≤ 1, which is independent of θ. Therefore Q can be considered as a pivotal quantity to find
an unbiased confidence interval for h(θ) as in the following

Pr(a < Q < b) = 1− α,

or equivalently

Pr

(
h(θ̂2)

b
< h(θ) <

h(θ̂2)

a

)
= 1− α. (4)

Therefore for every θ = θ′, we have

Pr

(
h(θ̂2)

b
< h(θ′) <

h(θ̂2)

a

)
= 1− α,

and we can write

Pr

(
h(θ̂2)

bh(θ)
<
h(θ′)

h(θ)
<
h(θ̂2)

ah(θ)

)
= 1− α, for h(θ) > 0.

The result is similar for h(θ) < 0. Let γ = h(θ′)
h(θ) , then we have

H(γ) = Pr

(
Q

b
< γ <

Q

a

)
= Pr(aγ < Q < bγ)

=

∫ bγ

aγ

fQ(q)dq

=

∫ bγ

aγ

nqn−1dq

= (bn − an)γn. (5)

Also, we can write

Pr(a < Q < b) = bn − an = 1− α. (6)

Therefore, using (5) and (6), we can write

H(γ) = (1− α)γn.

We have H(1) = 1 − α, this means that the maximum of the function H occurs in γ = 1 and (3) is holds.
Furthermore, considering the distribution of Q, we must be careful to have bγ < 1. On the other hand, we
can choose γ greater than 1 such that H(γ) > 1 − α, which is not matched to (3). Thus we must choose

b = 1 and by replacing it in (6), we get a = α
1
n . Consequently, by replacing a = α

1
n and b = 1 in (4), the
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random interval
(
h(θ̂2), h(θ̂2)α−1/n

)
is an unbiased confidence interval for h(θ) with confidence coefficient

1− α.

Theorem 2.3. Let X1, X2, . . . , Xn be a random sample from a distribution with p.d.f. f(x; θ) = g(x)/h(θ);
a(θ) ≤ x ≤ b(θ) in which h and b are two decreasing functions of θ, and a is a increasing function of θ.

Then the random interval
(
h(θ̂1), h(θ̂1)α−

1
n

)
is an unbiased confidence interval for h(θ) with confidence

coefficient 1− α, in which θ̂1 = min{a−1(X(1)), b
−1(X(n))}.

Proof. The proof is similar to the proof of Theorem 2.2.

3. Examples

Example 3.1. Let X1, X2, . . . , Xn be a random sample from a distribution with p.d.f. f(x; θ) = 1
θ I[0,θ)(x),

where IA(x) is the indicator function of A. We are going to obtain an unbiased confidence interval for θ
with confidence coefficient 1− α. By Theorem 2.2, we can write a(θ) = 0, b(θ) = θ, h(θ) = θ, g(x) = 1 and

therefore θ̂2 = X(n). Then, an unbiased confidence interval for h(θ) = θ with confidence coefficient 1 − α
is
(
X(n), X(n)α

− 1
n

)
. For instance, if n = 5 and α = 0.025, we get α−

1
n = 2.09, and hence an unbiased

confidence interval for θ with confidence coefficient 0.975 is
(
X(5), 2.09X(5)

)
.

Example 3.2. Let X1, X2, . . . , Xn be a random sample from a distribution with p.d.f. f(x; θ) =
1
2θ I[−θ,θ](x). We are going to obtain an unbiased confidence interval for θ with confidence coefficient 1−α. By

Theorem 2.2, we can write a(θ) = −θ, b(θ) = θ, h(θ) = 2θ, g(x) = 1 and therefore θ̂2 = max(−X(1), X(n)).

Then, an unbiased confidence interval for h(θ) = 2θ with confidence coefficient 1− α is
(

2θ̂2, 2θ̂2α
− 1

n

)
. For

instance, if n = 20 and α = 0.025, we get α−
1
n = 1.2, and hence an unbiased confidence interval for 2θ

with confidence coefficient 0.975 is
(

2θ̂2, 2.4θ̂2

)
. Also using Lemma 2.1, an unbiased confidence interval for

θ with confidence coefficient 0.975 is
(
θ̂2, 1.2θ̂2

)
.

Example 3.3. Let X1, X2, . . . , Xn be a random sample from a distribution with p.d.f. f(x; θ) =
2x
θ2 I(0,θ](x). We are going to obtain an unbiased confidence interval for θ2 with confidence coefficient 1− α.

By Theorem 2.2, we can write a(θ) = 0, b(θ) = θ, h(θ) = θ2, g(x) = 2x and therefore θ̂2 = X(n). Then,

an unbiased confidence interval for θ2 with confidence coefficient 1−α is
(
X2

(n), X
2
(n)α

− 1
n

)
. For instance, if

n = 5 and α = 0.05, we get α−
1
n = 1.82, and hence an unbiased confidence interval for θ2 with confidence

coefficient 0.95 is
(
X(5), 1.82X(5)

)
.

Example 3.4. Let X1, X2, . . . , Xn be a random sample from a distribution with p.d.f. f(x; θ) =
θ

(θ−1)x2 I(1,θ](x). We are going to obtain an unbiased confidence interval for θ with confidence coefficient 1−α.

By Theorem 2.2, we can write a(θ) = 1, b(θ) = θ, h(θ) = θ−1
θ , g(x) = 1

x2 and therefore θ̂2 = X(n). Then, an

unbiased confidence interval for h(θ) = θ−1
θ with confidence coefficient 1− α is

(
X(n)−1
X(n)

,
X(n)−1
X(n)

α−
1
n

)
. For

instance, if n = 20 and α = 0.05, we get α−
1
n = 1.16, and hence an unbiased confidence interval for θ−1

θ

with confidence coefficient 0.95 is
(
X(20)−1
X(20)

, 1.16
X(20)−1
X(20)

)
. Also using Lemma 2.1, an unbiased confidence

interval for θ with confidence coefficient 1− α is

(
X(n),

X(n)

α−
1
n +(1−α−

1
n )X(n)

)
. For instance, several 0.95 and

0.99 unbiased and shortest confidence intervals for θ are given in Table 1 based on different sample sizes.
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n 1− α unbiased and shortest confidence intervals for θ

10 0.95
(
X(10),

X(10)

1.35−0.35X(10)

)
10 0.99

(
X(10),

X(10)

1.58−0.58X(10)

)
20 0.95

(
X(20),

X(20)

1.16−0.16X(20)

)
20 0.99

(
X(20),

X(20)

1.26−0.26X(20)

)
30 0.95

(
X(30),

X(30)

1.1−0.1X(30)

)
30 0.99

(
X(30),

X(30)

1.17−0.17X(30)

)
Table 1: Several unbiased and shortest confidence intervals for θ.

Example 3.5. Let X1, X2, . . . , Xn be a random sample from a distribution with p.d.f. f(x; θ) =
θ
x2 I(θ,∞)(x). We are going to find an unbiased confidence interval for θ with confidence coefficient 1−α. By

Theorem 2.3, we can write a(θ) = θ, b(θ) = ∞, h(θ) = 1
θ , g(x) = 1

x2 and θ̂1 = X(1), and then an unbiased

confidence interval for h(θ) = 1
θ with confidence coefficient 1−α is

(
1

X(1)
, 1
X(1)

α−
1
n

)
. For instance, if n = 20

and α = 0.1, we get α−
1
n = 1.12, and hence an unbiased confidence interval for 1

θ with confidence coeffi-

cient 0.90 is
(

1
X(1)

, 1.12 1
X(1)

)
. Also, using Lemma 2, an unbiased confidence interval for θ with confidence

coefficient 0.90 is
(
0.89X(1), X(1)

)
.

Example 3.6. Let X1, X2, . . . , Xn be a random sample from a Pareto distribution f(x; θ) = kθk

xk+1 I(θ,∞)(x),
k > 0. We are going to find an unbiased confidence interval for θ with confidence coefficient 1− α. It must
be note that this example is an extension of Example 3.5. By Theorem 2.3, we can write a(θ) = θ, b(θ) =∞,

h(θ) = 1
θk

, g(x) = k
xk+1 and therefore θ̂1 = X(1), and then an unbiased confidence interval for h(θ) = 1

θk

with confidence coefficient 1 − α is

(
1

Xk
(1)

, 1
Xk

(1)

α−
1
n

)
. For instance, if n = 35, k = 3 and α = 0.05,

we get α−
1
n = 1.08, and hence an unbiased confidence interval for 1

θ3 with confidence coefficient 0.95 is(
1

X3
(1)

, 1.08 1
X3

(1)

)
. Also, using Lemma 2, an unbiased confidence interval for θ with confidence coefficient

1− α is
(
α

k
nX(1), X(1)

)
. For instance, several 0.95 and 0.99 unbiased and shortest confidence intervals for

θ are given in Table 2 based on different sample sizes.

n k 1− α unbiased and shortest confidence intervals for θ
10 3 0.95 (0.41X(1), X(1))
10 3 0.99 (0.25X(1), X(1))
20 5 0.95 (0.47X(1), X(1))
20 5 0.99 (0.31X(1), X(1))
30 7 0.95 (0.49X(1), X(1))
30 7 0.99 (0.34X(1), X(1))

Table 2: Several unbiased and shortest confidence intervals for θ.
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