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A note on characterization related to distributional properties of
random translation, contraction and dilation

of generalized order statistics
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Abstract. The Erlang-truncated exponential distribution has been characterized through translation
of two non-adjacent generalized order statistics (gos) and then the characterizing results are obtained for
Pareto distribution through dilation of generalized order statistics (gos) and power function distribution
through contraction of non-adjacent dual generalized order statistics (dgos). Further, the results are
deduced for order statistics and adjacent dual generalized order statistics and generalized order statistics.

1. Introduction

Kamps (1995) introduced the concept of generalized order statistics (gos) as follows: Let X1, X2, · · · ,
Xn be a sequence of independent and identically distributed (iid) random variables (rv) with the absolutely
continuous distribution function (df) F (x) and the probability density function (pdf) f(x), x ∈ (a, b). Let

n ∈ N , n ≥ 2, k > 0, m̃ = (m1,m2, · · · ,mn−1) ∈ <n−1, Mr =
∑n−1
j=r mj , such that γr = k+(n−r)+Mr> 0

for all r ∈ {1, 2, · · · , n− 1}. If m1 = m2 = · · · = mn−1 = m, then X(r, n,m, k) is called the rth m − gos
and its pdf is given as

fX(r,n,m,k)(x) =
C

(n)
r−1

(r − 1)!
[F (x)]γ

(n)
r −1

[
1− [F (x)]m+1

m+ 1

]r−1

f(x), a < x < b, (1)

where

γ(n)r = k + (n− r)(m+ 1), 1 ≤ r ≤ n,

C
(n)
r−1 =

r∏
i=1

γ
(n)
i , 1 ≤ r ≤ n.

Based on the generalized order statistics (gos), Burkschat et al. (2003) introduced the concept of the dual
generalized order statistics (dgos) where the pdf of the rth m− dgos X∗(r, n,m, k) is given as

fX∗(r,n,m,k)(x) =
C

(n)
r−1

(r − 1)!
[F (x)]γ

(n)
r −1

[
1− [F (x)]m+1

m+ 1

]r−1

f(x), a < x < b,
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which is obtained just by replacing F (x) = 1 − F (x) by F (x). If support of the distribution F (x) be over
(a, b), then by convention, we will write X(0, n,m, k) = a and X∗(0, n,m, k) = b.

Ahsanullah (2006) has characterized exponential distribution under random dilation for adjacent gos. In
this paper, distributional properties of the gos have been used to characterize Erlang-truncated exponential
distribution for non-adjacent gos under random translation, dilation and contraction, thus generalizing the
results of Ahsanullah (2006). One may also refer to Arnold et al. (2008), Beutner and Kamps (2008),
Nevzorov (2001), Navarro (2008), Oncel et al. (2005), Wesolowski and Ahsanullah (2004) and Castaño-
Mart́ınez et al. (2012) for the related results.

It may be seen that if Y is a measurable function of X with the relation Y = h(X), then

Y (r, n,m, k) = h(X(r, n,m, k)) (2)

if h is an increasing function, and

Y ∗(r, n,m, k) = h(X∗(r, n,m, k)) (3)

if h is a decreasing function, where X(r, n,m, k) is the rth m− gos and X∗(r, n,m, k) is the rth m− dgos.
We will denote

(i) X ∼ Erlang− truncated exp(β(αλ)) if X has an Erlang-truncated exponential distribution with the
df

F (x) = [1− e−β(αλ)x], 0 ≤ x <∞, β > 0, λ > 0,

where αλ = 1− e−λ.

(ii) X ∼ Par(β(αλ)) if X has a Pareto distribution with the df

F (x) = 1− x−β(αλ), 1 < x <∞, β > 0, λ > 0.

(iii) X ∼ pow(β(αλ)) if X has a power function distribution with the df

F (x) = xβ(αλ), 0 < x < 1, β > 0, λ > 0.

It may further be noted that if logX ∼ Erlang − truncated exp(β(αλ)), then

X ∼ Par(β(αλ)), (4)

and if − logX ∼ Erlang − truncated exp(β(αλ)), then

X ∼ pow(β(αλ)) (5)

It has been assumed here throughout that the df is differentiable w.r.t. its argument.

2. Characterization results

Theorem 2.1. Let X(r, n,m, k) be the rth m− gos from a sample with absolutely continuous df F (x) and
pdf f(x). Then for 1 ≤ r < n2 ≤ n1, we have that

X(n1 − n2 + r − j, n1 − j,m, k)
d
= X(r, n2,m, k) +X(n1 − n2 − j, n1,m, k), j = 0, 1,

where X(n1 − n2 − j, n1,m, k) is independent of X(r, n2,m, k) if and only if the random variable (rv) X1

has Erlang-truncated exp(β(αλ)) distribution and X
d
= Y denotes that X and Y have the same df .
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Proof. To prove the necessary part, let the moment generating function (mgf) of X(n1 − n2 + r, n1,m, k)
be MX(n1−n2+r,n1,m,k)

(t), then

X(n1 − n2 + r, n1,m, k)
d
= X(r, n2,m, k) + Y

implies

MX(n1−n2+r,n1,m,k)
(t)

d
= MX(r,n2,m,k)

(t)MY (t).

Since for the Erlang-truncated exp(β(αλ)) distribution we have that

MX(r,n2,m,k)
(t) =

C
(n2)
r−1

(m− 1)r

Γ
(
γ(n2)
r

(m+1) −
t

β(αλ)(m+1)

)
Γ
(
r − t

β(αλ)(m+1) + γ
(n2)
r

m+1

) =

r∏
i=1

(
1− t

β(αλ)γ
(n2)
i

)−1

,

therefore

MY (t) =
MX(n1−n2+r,n1,m,k)

(t)

MX(r,n2,m,k)
(t)

=
C

(n1)
n1−n2−1

(m+ 1)n1−n2

Γ
(
γ(n2)
r

(m+1) −
t

β(αλ)(m+1) + r
)

Γ
(
γ
(n2)
r

(m+1) −
t

β(αλ)(m+1) + (n1 − n2 + r)
)

as C
(n1)
n1−n2+r−1 = C

(n1)
r−1 C

(n1)
n1−n2−1; γ

(n1)
n1−n2+r = γ

(n2)
r and γ

(n1)
n1−n2

= γ
(n2)
r + r(m+ 1).

But this is the mgf of X(n1 − n2, n1,m, k), the (n1 − n2)th m − gos from a sample of size n1 drawn
from Erlang-truncated exp(β(αλ)) and hence the result.

For the proof of sufficiency part, we have by the convolution method

fX(n1−n2+r,n1,m,k)(y) =

∫ y

0

fX(r,n2,m,k)(x)fY (y − x) dx

=
β(αλ) C

(n1)
n1−n2−1

(n1 − n2 − 1)!(m+ 1)n1−n2−1

∫ y

0

[e−β(αλ)(y−x)]γ
(n1)
n1−n2

×[1− (e−β(αλ)(y−x))m+1]n1−n2−1fX(r,n2,m,k)(x)dx, (6)

as γ
(n1)
n1−n2

= γ
(n1−1)
n1−n2−1.

Differentiating both the sides of (6) w.r.t. y, we get

d

dy
fX(n1−n2+r,n1,m,k)(y) =

β(αλ)(n1 − n2 − 1)(m+ 1) C
(n1)
n1−n2−1

(n1 − n2 − 1)!(m+ 1)n1−n2−1

∫ y

0

β(αλ)[e−β(αλ)(y−x)]γ
(n1)
n1−n2

+(m+1)

×[1− (e−β(αλ)(y−x))m+1]n1−n2−2fX(r,n2,m,k)(x) dx

−
β(αλ) γ

(n1)
n1−n2

C
(n1)
n1−n2−1

(n1 − n2 − 1)!(m+ 1)n1−n2−1

∫ y

0

β(αλ)[e−β(αλ)(y−x)]γ
(n1)
n1−n2

×[1− (e−β(αλ)(y−x))m+1]n1−n2−1fX(r,n2,m,k)(x) dx

Now since,

fX(n1−n2,n1,m,k)(x) =
β(αλ) C

(n1)
n1−n2−1

(n1 − n2 − 1)!(m+ 1)n1−n2−1
[e−β(αλ)x]γ

(n1)
n1−n2

×[1− (e−β(αλ)x)m+1]n1−n2−2[1− (e−β(αλ)x)m+1]
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=
β(αλ) C

(n1)
n1−n2−1

(n1 − n2 − 1)!(m+ 1)n1−n2−1
[e−β(αλ)x]γ

(n1)
n1−n2 [1− (e−β(αλ)x)m+1]

n1−n2−2

−
β(αλ) C

(n1)
n1−n2−1

(n1 − n2 − 1)!(m+ 1)n1−n2−1
[e−β(αλ)x]γ

(n1)
n1−n2

+(m+1)[1− (e−β(αλ)x)m+1]
n1−n2−2

implying that

β(αλ) (n1 − n2 − 1)(m+ 1)C
(n1)
n1−n2−1

(n1 − n2 − 1)!(m+ 1)n1−n2−1
[e−β(αλ)x]γ

(n1)
n1−n2

+(m+1)[1− (e−β(αλ)x)m+1]
n1−n2−2

=
C

(n1)
n1−n2−1

C
(n1−1)
n1−n2−2

fX(n1−n2−1,n1−1,m,k)(x)− (m+ 1)(n1 − n2 − 1)fX(n1−n2,n1,m,k)(x)

and after noting that C
(n1)
n1−n2−1 = γ

(n1)
1 C

(n1−1)
n1−n2−2 and

γ(n1)
r

(m+1) +(n1−n2−j+r) =
γ
(n1)
j

(m+1) ; γ
(n2)
r+j = γ

(n1)
n1−n2+r+j

.

This leads to

d

dy
fX(n1−n2+r,n1,m,k)(y) = β(αλ)γ

(n1)
1 [fX(n1−n2+r−1,n1−1,m,k)(y)− fX(n1−n2+r,n1,m,k)(y)],

or

fX(n1−n2+r,n1,m,k)(y) = β(αλ)γ
(n1)
1 [FX(n1−n2+r−1,n1−1,m,k)(y)− FX(n1−n2+r,n1,m,k)(y)]. (7)

Now (Kamps, 1995)

FX(n1−n2+r−1,n1−1,m,k)(y) − FX(n1−n2+r,n1,m,k)(y) =
C

(n1−1)
n1−n2+r−2

(n1 − n2 + r − 1)!(m+ 1)n1−n2+r−1

×[F̄ (y)]γ
(n1)
n1−n2+r [1− (F̄ (y))m+1]n1−n2+r−1. (8)

Therefore, in view of (1), (7) and (8), we have that

f(y)

F (y)
= β(αλ)

implying that

F (y) = e−β(αλ)y

and hence the proof.

Corollary 2.2. Let X(r, n,m, k) be the rth m− gos from a sample with absolutely continuous df F (x) and
pdf f(x). Then for 1 ≤ r < n2 ≤ n1, we have that

X(n1 − n2 + r − j, n1 − j,m, k)
d
= X(r, n2,m, k)X(n1 − n2 − j, n1,m, k), j = 0, 1, (9)

where X(n1−n2−j, n1,m, k) is independent of X(r, n2,m, k) if and only if X1 has Par(β(αλ)) distribution.

Proof. Here the product X(r, n2,m, k)X(n1−n2−j, n1,m, k) in (9) is called random dilation of X(r, n2,m, k)
(Beutner and Kamps, 2008). Note that

logX(n1 − n2 + r, n1,m, k)
d
= logX(r, n2,m, k) + logX(n1 − n2, n1m, k)

implies

X(n1 − n2 + r, n1,m, k)
d
= X(r, n2,m, k)X(n1 − n2, n1,m, k)

and the proof follows in view of (2) and (4).
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Remark 2.3. At j = 0 and β(αλ) = α, we have

X(r + 1, n1,m, k)
d
= X(r, n2,m, k)X(1, n1,m, k)

as obtained by Beutner and Kamps (2008).

Remark 2.4. Let Xr:n be the rth order statistic from a sample with absolutely continuous df F (x) and
pdf f(x). Then for 1 ≤ r < n2 ≤ n1, we have that

Xn1−n2+r−j:n1−j
d
= Xr:n2 . Xn1−n2−j:n1 , j = 0, 1,

where Xn1−n2−j:n1
is independent of Xr:n2

if and only if the random variable (rv) X1 has Par(β(αλ))
distribution.

At j = 0 and β(αλ) = α, we have Xr+1:n1

d
= Xr:n1−1X1:n1

, as given in Castaño-Mart́ınez et al. (2012).

This is of the form Xs:n1

d
= Xr:n2

V , again an unsolved problem (Arnold et al., 2008).

Corollary 2.5. Let X∗(r, n,m, k) be the rth m − dgos from a sample with absolutely continuous df F (x),
and pdf f(x). Then for 1 ≤ r < n2 ≤ n1, we have that

X∗(n1 − n2 + r − j, n1 − j,m, k)
d
= X∗(r, n2,m, k)X∗(n1 − n2 − j, n1,m, k), j = 0, 1, (10)

where X∗(n1−n2− j, n1,m, k) and is independent of X∗(r, n2,m, k) if and only if the random variable (rv)
X1 has pow(β(αλ)) distribution.

Proof. Here the product X∗(r, n2,m, k)X∗(n1 − n2 − j, n1,m, k) in (10) is called random contraction of
X∗(r, n2,m, k) (Beutner and Kamps, 2008). It may be noted that

− logX(n1 − n2 + r, n1,m, k)
d
= − logX(r, n2,m, k)− logX(n1 − n2, n1,m, k)

implies

X∗(n1 − n2 + r, n1,m, k)
d
= X∗(r, n2,m, k)X∗(n1 − n2, n1,m, k)

and the result follows with an appeal to (3) and (5).

Remark 2.6. Let Xr:n be the rth order statistic from a sample with absolutely continuous df F (x) and
pdf f(x). Then for 1 ≤ r < n2 ≤ n1, we have that

Xr:n1−j
d
= Xr:n2 . Xn2+1:n1−j , j = 0, 1,

where Xn2+1:n1−j is independent of Xr:n2
, if and only if the random variable (rv) X1 has pow(β(αλ)) distri-

bution. This is of the form Xr:n1

d
= Xr:n2

W , which at r = 1 and β(αλ) = α, reduces to X1:n1

d
= X1:n2

W .
This is discussed by Arnold et al. (2008).

At j = 0 and β(αλ) = α, we have

Xr:n1

d
= Xr:n1−1Xn1:n1 ,

where Xn1:n1 ∼ pow(αn1) as given by Wesolowski and Ahsanullah (2004) and Castaño-Mart́ınez et al.
(2012).

Theorem 2.7. Let X(r, n,m, k) be the rth m− gos from a sample with absolutely continuous df F (x) and
pdf f(x). Then for 1 ≤ r < n2 ≤ n1,

X(n1 − n2 + r − j, n1 − j,m, k)
d
= X(n1 − n2, n1,m, k) +X(r, n2 − j,m, k), j = 0, 1,

where X(r, n2 − j,m, k) is independent of X(n1 − n2, n1,m, k) if and only if the random variable (rv) X1

has Erlang-truncated exp(β(αλ)) distribution.
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Proof. To prove of the necessary part follows from Theorem 2.1. To prove the sufficiency part, we have

fX(n1−n2+r,n1,m,k)(y) =

∫ y

0

fX(n1−n2,n1,m,k)(x)fY (y − x) dx

=
β(αλ) C

(n2)
r−1

(r − 1)!(m+ 1)r−1

∫ y

0

[e−β(αλ)(y−x)]γ
(n2)
r [1− (e−α(y−x))m+1]r−1fX(n1−n2,n1,m,k)(x)dx. (11)

Differentiating both the sides of (11) w.r.t. y, we get

d

dy
fX(n1−n2+r,n1,m,k)(y) =

β(αλ)(r − 1)(m+ 1) C
(n2)
r−1

(r − 1)!(m+ 1)r−1

∫ y

0

β(αλ)[e−β(αλ)(y−x)]γ
(n2)
r +(m+1)

×[1− (e−β(αλ)(y−x))m+1]r−2fX(n1−n2,n1,m,k)(x) dx

−
β(αλ) γ

(n2)
r C

(n2)
r−1

(r − 1)!(m+ 1)r−1

∫ y

0

β(αλ)[e−β(αλ)(y−x)]γ
(n2)
r

×[1− (e−β(αλ)(y−x))m+1]r−1fX(n1−n2,n1,m,k)(x) dx

= β(αλ)γ(n2)
r [fX(n1−n2+r−1,n1,m,k)(y)− fX(n1−n2+r,n1,m,k)(y)]

or,

fX(n1−n2+r,n1,m,k)(y) = β(αλ)γ(n2)
r [FX(n1−n2+r−1,n1,m,k)(y)− FX(n1−n2+r,n1,m,k)(y)]. (12)

Now (Kamps, 1995)

FX(n1−n2+r−1,n1,m,k)(y) − FX(n1−n2+r,n1,m,k)(y) =
C

(n1)
n1−n2+r−2

(n1 − n2 + r − 1)!(m+ 1)n1−n2+r−1

×[F̄ (y)]γ
(n1)
n1−n2+r [1− (F̄ (y))m+1]n1−n2+r−1. (13)

Therefore, in view of (1), (12) and (14), we have

f(y)

F̄ (y)
= β(αλ)

implying that

F̄ (y) = e−β(αλ)y

and the Theorem is proved.

Corollary 2.8. Let X(r, n,m, k) be the rth m− gos from a sample with absolutely continuous df F (x) and
pdf f(x). Then for 1 ≤ r < n2 ≤ n1,

X(n1 − n2 + r − j, n1,m, k)
d
= X(n1 − n2, n1,m, k)X(r, n2 − j,m, k), j = 0, 1,

where X(r, n2−j,m, k) is independent of X(n1−n2, n1,m, k) if and only if X1 has Par(β(αλ)) distribution.

Proof. Consider

logX(n1 − n2 + r, n1,m, k)
d
= logX(n1 − n2, n1,m, k) + logX(r, n2,m, k)

implies

X(n1 − n2 + r, n1,m, k)
d
= X(n1 − n2, n1,m, k)X(r, n2,m, k)

and the proof follows in view of (2) and (4).
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Remark 2.9. Let Xr:n be the rth order statistic from a sample with absolutely continuous the df F (x) and
pdf f(x). Then for 1 ≤ r < n2 ≤ n1, we have that

Xn1−n2+r−j:n1

d
= Xn1−n2:n1

Xr:n2−j , j = 0, 1,

where Xr:n2−j is independent of Xn1−n2:n1
if and only if the random variable (rv) X1 has Par(β(αλ))

distribution.
At j = n1−n2 and β(αλ) = α, we have thatXn1−n2+r:n1

d
= Xn1−n2:n1Xr:n2 , that isXs:n1

d
= Xr:n1Xs−r:n1−r

as obtained by Castaño-Mart́ınez et al. (2012).

Corollary 2.10. Let X∗(r, n,m, k) be the rth m− dgos from a sample with absolutely continuous df F (x)
and pdf f(x). Then for 1 ≤ r < n2 ≤ n1,

X∗(n1 − n2 + r − j, n1,m, k)
d
= X∗(n1 − n2, n1,m, k)X∗(r, n2 − j,m, k), j = 0, 1, (14)

where X∗(r, n2 − j,m, k) and is independent of X∗(n1 − n2, n1,m, k) if and only if X1 ∼ pow(β(αλ).

Proof. This can be shown by considering

− logX(n1 − n2 + r, n1,m, k)
d
= − logX(n1 − n2, n1,m, k)− logX(r, n2,m, k)

implies

X∗(n1 − n2 + r, n2,m, k)
d
= X∗(n1 − n2, n1,m, k)X∗(r, n2,m, k)

and the result follows with an appeal to (3) and (5).

Remark 2.11. Let Xr:n be the rth order statistic from a sample with absolutely continuous the df F (x)
and pdf f(x). Then for 1 ≤ r < n2 ≤ n1, we have that

Xn2−r−j+1:n1

d
= Xn2+1:n1 . Xn2−r−j+1:n2−j , j = 0, 1,

where Xn2−r−j+1:n2−j is independent of Xn2+1:n1 if and only if the random variable (rv) X1 has pow(β(αλ))
distribution.

At r = 1 and β(αλ) = α, this reduces Xn1−j:n1

d
= Xn2+1:n1

Xn1−j:n1−j or Xr:n1

d
= Xr+1:n1

Xr:r, where
Xr:r ∼ pow(rα) as obtained by Navarro (2008) and Castaño-Mart́ınez et al. (2012).
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