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A compromise solution for multi-objective chance constraint
capacitated transportation problem
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Abstract. In this paper Goal programming and D1-Distance approach is used to solve a chance con-
straint multi-objective capacitated transportation problem. Generally, the capacity of each origin and
the demand of each destination are random in nature in transportation problem (TP). The inequality
constraints representing supplies and demands are probabilistically described and in model formulation
these constraints are converted into equivalent deterministic forms. Then optimum allocation is obtained
by using goal programming and D1-Distance approaches. In order to demonstrate the effectiveness of
the proposed approach, an illustrative example is solved.

1. Introduction

Goal programming is a branch of multi-objective optimization, which in turn is a branch of multi-criteria
decision analysis, also known as multiple-criteria decision making. It can be thought of as an extension or
generalization of linear programming to handle multiple, normally conflicting objective measures. Each of
these measures is given a goal or target value to be achieved. Unwanted deviations from this set of target
values are then minimized in an achievement function. This can be a vector or a weighted sum dependent
on the goal programming variant used. A major strength of GP is its simplicity and ease of use. Goal
programming was first used by Charnes et al. (1955), although the actual name first appear in Charnes et
al. (1961). Recently, Ali et al. (2011) and Ali et al. (2013) apply goal programming approach in the field
of reliability and in sample surveys. Panda et al. (2005) have discussed the EOQ of multi-item inventory
problems through nonlinear goal programming.

The TP is one of the subclasses of linear programming problems, in which the objective is to transport
various quantities of a single homogenous commodity, that are initially stored at various origins, to different
destinations in such a way that the total transportation cost is minimum. In different fields TP is discussed
by many authors among them Hitchcock was first who developed the simplest TP model in 1941 (Hitchcock,
1941). Koopmans (1951), Charnes et al. (1954), Kantorovitch (1960), Haley (1963), Wagner (Wagner, 1959)
who made a note on a class of capacitated transportation problem and Pramanik and Banerjee (2012)
studied fuzzy goal programming (FGP) approach to multi objective TP with capacity restrictions are some
other among them.

Stochastic programming problem was first formulated by Dantizg and Mandansky (1961), who suggested
a two stage programming technique for its solutions. Later, Charnes et al. (1961) developed the chance con-
strained programming technique in which the chance constraints are converted into equivalent deterministic
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non-linear constraints. In 1988, Hassin and Zemel (Hassin and Zemel, 1988) studied probabilistic analysis
of the capacitated transportation problem. They showed that asymptotic conditions on the supplies and
demands assure a feasible solution to the problem.

In the present paper a chance constraint multi-objective capacitated transportation problem is consid-
ered and the optimum compromise solution is obtained by using goal programming and lexicographic goal
programming Technique with ”Minimum D1 distances”. The obtained compromise solutions compare with
Pramanik and Banerjee (2012) approach.

2. Multi-objective capacitated transportation problem

A transportation problem helps us to find out the way in which resources are allocated properly from
origins to destinations so that total transportation costs, time, deterioration during transportation etc. would
be minimal. We consider p sources (origins) Oi (i = 1, 2, . . . , p) and q destinations Dj (j = 1, 2, . . . , q). At
each source Oi (i = 1, 2, . . . , p), let ai be the amount of product to be shipped to the q destinations Dj

in order to satisfy the demand bj (j = 1, 2, . . . , q) there. In many practical problems, ai and bj cannot
be deterministically provided. Here, ai, bj are considered as random variables with known distribution.
In addition, there exists a penalty ckij associated with transporting a unit of product from source Oi to

destination Dj for the kth criterion. In general, ckij denotes the transportation costs, delivery time, damage
charges (loss of quality and quantity of transported items), under used capacity, etc. Let xij be the variable
that represents the unknown quantity transported from ith origin to jth destination. Since, we are interested
in capacitated TP, there are limitations on the amount of resources allocated in different cells. Let rij be the
maximum amount of quantity transported from ith source to jth destination, i.e. xij ≤ rij . This restriction
is called the capacitated restriction on the route i to j.

Considering k penalty criteria, the mathematical model for MOCTP with chance constraints can be
written as:

Min Zk =
p∑

i=1

q∑
j=1

ckijxij , k = 1, 2, . . . ,K

Subject to Prob

(
q∑

j=1

xij ≤ ai

)
≥ 1− αi, i = 1, 2, . . . , p

Prob

(
p∑

i=1

xij ≥ bj
)
≥ 1− βj , j = 1, 2, . . . , q

0 ≤ xij ≤ rij

0 < αi < 1, 0 < βj < 1


Here, αi, βj are the known confidence levels for the constraints and the TP is unbalanced TP. Then the model
reduced to deterministic multi-objective transportation problem as follows (see Pramanik and Banerjee
(2012)):

Min Zk =
p∑

i=1

q∑
j=1

ckijxij , k = 1, 2, . . . ,K

Subject to
q∑

j=1

xij ≤ E(ai) + Φ(αi)
√
var(ai)

p∑
i=1

xij ≥ E(bj)− Φ(βj)
√
var(bj)

0 ≤ xij ≤ rij , i = 1, 2, . . . , p and j = 1, 2, . . . , q


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3. Goal programming formulation of chance constraint multi-objective capacitated transporta-
tion problem (CCMOCTP)

To solve the following MOTP using goal programming, we first solve each objective subject to the system
constraints separately

Min Zk =
p∑

i=1

q∑
j=1

ckijxij , k = 1, 2, . . . ,K

Subject to
q∑

j=1

xij ≤ E(ai) + Φ(αi)
√
var(ai)

p∑
i=1

xij ≥ E(bj)− Φ(βj)
√
var(bj)

0 ≤ xij ≤ rij , i = 1, 2, . . . , p and j = 1, 2, . . . , q


Let Zk∗

be the optimum value of Zk. Further, let Z̃k =
p∑

i=1

q∑
j=1

ckijxij as the optimal value under compromise

solution. Obviously, Z̃k ≥ Zk∗
or Z̃k − Zk∗ ≥ 0; k = 1, 2, . . . ,K.

A reasonable criterion to work out a compromise allocation may be to ”minimize the sum of increases
in the objective functions, Zk, k = 1, 2, . . . ,K due to the use of the compromise solution”. Find xij such
that the increase in value of the objectives due to the use of a compromise allocation,xij , instead of its
individual optimum solution, should not greater than xk, k = 1, 2, . . . ,K, where xk ≥ 0, k = 1, 2, . . . ,K are
the unknown goal variables.

To achieve these goals xij must satisfy Z̃k − Zk∗ ≤ xk; k = 1, 2, . . . ,K, or Z̃k − xk ≤ Zk∗
and

p∑
i=1

q∑
j=1

ckijxij − xk ≤ Zk∗. The value of
K∑

k=1

xk will give us total increase in the objectives (i.e. cost, time &

damage) by not using the individual optimum allocations. This suggests the following Goal Programming
Problem (GPP) to solve:

Minimize
K∑

k=1

xk

Subject to
p∑

i=1

q∑
j=1

ckijxij − xk ≤ Zk∗
, k = 1, 2, . . . ,K

q∑
j=1

xij ≤ E(ai) + Φ(αi)
√
var(ai)

p∑
i=1

xij ≥ E(bj)− Φ(βj)
√
var(bj)

0 ≤ xij ≤ rij , i = 1, 2, . . . , p and j = 1, 2, . . . , q


The GPP (5) may be solved by using the optimization software LINGO (LINGO-User’s Guide, 2001). For
more information one can visit the site: http://www.lindo.com.

4. D1-distance method

In this method the priorities are given to the objectives one after the other and a set of solutions is
obtained. Out of these solutions, an ideal solution is identified as follows:

x∗ij = {min(x
(1)
11 , x

(2)
11 ),min(x

(1)
22 , x

(2)
22 , . . . ,min(x(1)pq , x

(2)
pq )} = {x∗11, x∗22, . . . , x∗pq}.
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A general procedure with P objectives is the following. As explained above, we will obtain P ! different
solutions by solving the P ! problems arising for P ! different priority structures.

Let x
(r)
ij = {x(r)11 , x

(r)
22 , . . . , x

(r)
pq }, 1 ≤ r ≤ P ! be the P ! number of solutions obtained by giving priorities

to P objective functions. Let (x∗11, x
∗
22, . . . , x

∗
pq) be the ideal solution. But in practice ideal solution can

never be achieved. The solution, which is closest to the ideal solution, is acceptable as the best compromise
solution, and the corresponding priority structure is identified as most appropriate priority structure in
the planning context. The D1-distances of different solutions from the ideal solution defined in (1) below
are then calculated. The solution corresponding to the minimum D1-distance gives the best compromise
solution.

Now

(D1)r =

p∑
i=1

q∑
j=1

|x∗ij − x
(r)
ij |

is defined as theD1-distance from the ideal solution (x∗11, x
∗
22, . . . , x

∗
pq), to the rth solution {x(r)11 , x

(r)
22 , . . . , x

(r)
pq },

1 ≤ r ≤ P !. Therefore

(D1)opt = min1≤r≤P !(D1)r = min1≤r≤P !

p∑
i=1

q∑
j=1

|x∗ij − x
(r)
ij | (1)

Let the minimum be attained for r = t. Then {x(t)11 , x
(t)
22 , . . . , x

(t)
pq } is the best compromise solution of the

problem.

5. Illustrative Example

To demonstrate the potentiality of the proposed models, we consider the following example. Here, we
consider three origins and three destinations. The TP cost, time and the damage charges (both quality and
quantity damage) during the transportation are represented by three square matrices of order three. The
matrices are given bellow:

Cost matrix:

 3 4 13
12 14 7
15 10 8


Time matrix:

 9 1 3
2 4 6
8 12 10


Damage charge:

 8 9 11
3 4 7
2 1 8


Then the objective functions can be represented by

Min Z1 = (3x11 + 4x12 + 13x13) + (12x21 + 14x22 + 7x23) + (15x31 + 10x32 + 8x33)

Min Z2 = (9x11 + x12 + 3x13) + (2x21 + 4x22 + 6x23) + (8x31 + 12x32 + 10x33)

Min Z3 = (8x11 + 9x12 + 11x13) + (3x21 + 4x22 + 7x23) + (2x31 + x32 + 6x33)

Subject to

Prob

(
3∑

j=1

x1j ≤ a1

)
≥ 1− α1, P rob

(
3∑

j=1

x2j ≤ a2

)
≥ 1− α2, P rob

(
3∑

j=1

x3j ≤ a3

)
≥ 1− α3

Prob

(
3∑

i=1

xi1 ≥ b1
)
≥ 1− β1, P rob

(
3∑

j=1

x1j ≥ b2

)
≥ 1− β2, P rob

(
3∑

j=1

x1j ≥ b3

)
≥ 1− β3.
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The capacitated constraints are: 0 ≤ x11 ≤ 6, 0 ≤ x12 ≤ 7, 0 ≤ x13 ≤ 13, 0 ≤ x21 ≤ 6, 0 ≤ x22 ≤ 2,
0 ≤ x23 ≤ 13, 0 ≤ x31 ≤ 4, 0 ≤ x32 ≤ 7, 0 ≤ x33 ≤ 14. The mean, variance and the confidence levels are
described below:

E(a1) = 12, var(a1) = 9, α1 = 0.01

E(a2) = 15, var(a2) = 4, α2 = 0.02

E(a3) = 20, var(a3) = 7, α3 = 0.03

E(b1) = 9, var(b1) = 2, β1 = 0.01

E(b2) = 13, var(b2) = 8, β2 = 0.02

E(b3) = 21, var(b3) = 16, β3 = 0.03.

Using these mean, variance and confidence levels we get our required deterministic constraints as:

3∑
j=1

x1j ≤ 18.975,

3∑
j=1

x2j ≤ 19.11,

3∑
j=1

x3j ≤ 24.987

3∑
i=1

xi1 ≥ 5.7119,

3∑
i=1

x2i ≥ 7.1876,

3∑
i=1

xi3 ≥ 13.46.

5.1. A compromise solution using Goal programming

Min Z1 = (3x11 + 4x12 + 13x13) + (12x21 + 14x22 + 7x23) + (15x31 + 10x32 + 8x33)

Subject to

3∑
j=1

x1j ≤ 18.975,
3∑

j=1

x2j ≤ 19.11,
3∑

j=1

x3j ≤ 24.987

3∑
i=1

xi1 ≥ 5.7119,
3∑

i=1

x2i ≥ 7.1876,
3∑

i=1

xi3 ≥ 13.46,

0 ≤ x11 ≤ 6, 0 ≤ x12 ≤ 7, 0 ≤ x13 ≤ 13, 0 ≤ x21 ≤ 6, 0 ≤ x22 ≤ 2, 0 ≤ x23 ≤ 13, 0 ≤ x31 ≤ 4,

0 ≤ x32 ≤ 7, 0 ≤ x33 ≤ 14.

The optimum solution provide by LINGO is: x∗11 = 5.7119, x∗12 = 7, x∗13 = 0, x∗21 = 0, x∗22 = 0, x∗23 = 13,
x∗31 = 0, x∗32 = 0.1876, x∗33 = 0.4600 with Z∗

1 = 141.6917.

Similarly, using LINGO we obtain the optimum solution for second and third objective as follows. The
optimum solution of second objective provide by LINGO is: x∗11 = 0, x∗12 = 5.9750, x∗13 = 13, x∗21 = 5.7119,
x∗22 = 1.2126, x∗23 = 0.4600, x∗31 = 0, x∗32 = 0, x∗33 = 0 with Z∗

2 = 64.00920.

The optimum solution of third objective provide by LINGO is: x∗11 = 0, x∗12 = 0, x∗13 = 0, x∗21 = 1.71190,
x∗22 = 0.18760, x∗23 = 0, x∗31 = 4, x∗32 = 7, x∗33 = 13.4600 with Z∗

3 = 101.6461.
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After finding the optimum values of Z∗
j , j = 1, 2, 3, the GPP can be written as:

Minimize = x1 + x2 + x3

Subject to

((3x11 + 4x12 + 13x13) + (12x21 + 14x22 + 7x23) + (15x31 + 10x32 + 8x33))− x1 ≤ 141.6917

((9x11 + x12 + 3x13) + (2x21 + 4x22 + 6x23) + (8x31 + 12x32 + 10x33))− x2 ≤ 64.00920

((8x11 + 9x12 + 11x13) + (3x21 + 4x22 + 7x23) + (2x31 + x32 + 6x33))− x3 ≤ 101.6461

3∑
j=1

x1j ≤ 18.975,
3∑

j=1

x2j ≤ 19.11,
3∑

j=1

x3j ≤ 24.987

∑3
i=1 xi1 ≥ 5.7119,

∑3
i=1 x2i ≥ 7.1876,

∑3
i=1 xi3 ≥ 13.46,

0 ≤ x11 ≤ 6, 0 ≤ x12 ≤ 7, 0 ≤ x13 ≤ 13, 0 ≤ x21 ≤ 6, 0 ≤ x22 ≤ 2, 0 ≤ x23 ≤ 13,

0 ≤ x31 ≤ 4, 0 ≤ x32 ≤ 7, 0 ≤ x33 ≤ 14

x1, x2, x3 ≥ 0.


Using the LINGO software, the optimum compromise allocation is found to be x∗11 = 0, x∗12 = 7, x∗13 = 0,
x∗21 = 5.7119, x∗22 = 0, x∗23 = 13, x∗31 = 0, x∗32 = 0, x∗33 = 0.46 with x1 = 52.61750, x2 = 37.76500, x3 = 73.

5.2. A compromise solution using D1-distance

Since we have three objectives of minimizing transportation cost, time and damage charges in our
example, so we have to solve 3! = 6 problems according to the priority. The solutions obtained by giving
priority to each of the objectives one by one is given below on the Tables 1 and 2 (all the problems are
solved by optimization software LINGO).

The minimum distance is 11.422 corresponding to the priority structure (Z
(1)
1 , Z

(2)
2 , Z

(3)
3 ). Therefore,

the optimum allocation is given by x∗11 = 5.7119, x∗12 = 2.5975, x∗13 = 0.1381, x∗21 = 0, x∗22 = 0.0879,
x∗23 = 2.4651, x∗31 = 0, x∗32 = 0.0997, x∗33 = 0.3218 with Z∗

1 = 51.37870, Z∗
2 = 73.97550, Z∗

3 = 90.22960.

6. Another criteria given by Pramanik & Banerjee

Pramanik and Banerjee (2012) define three Fuzzy goal programming models to solve CCMOCTP and to
choose compromise optimum allocation they define distance function and obtain the optimum allocation as
follows: x∗11 = 0.0619, x∗12 = 7, x∗13 = 0, x∗21 = 5.650, x∗22 = 0, x∗23 = 13.46, x∗31 = 0, x∗32 = 0.1876, x∗33 = 0
with Z∗

1 = 192.0817, Z∗
2 = 101.8683, Z∗

3 = 174.8528.

7. Conclusion

In the present manuscript we proposed two approaches viz. Goal programming and D1-distance to obtain
optimum compromise allocation of CCMOCTP and compare with Pramanik & Banerjee’s approach (P &
B). In this comparative study we find out that D1-distance gives the best optimum solution of the given
problem as compared to the other two which is clearly shown in the Table 3.
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