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On general error distributions
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Abstract. General error distributions are used in statistical modeling, where in the errors are not
necessarily normally distributed. In this paper, we establish some interesting properties of these distri-
butions and obtain a characterization.

1. Introduction

In statistical modeling, such as linear models, the difference between the observed value and the expected
value is called an error. For many decades, it was assumed that the error random variable (r.v.) follows a
normal distribution with mean zero. In many situations, it was observed that the normality is not an appro-
priate assumption. As alternatives, Subbotin (1923) introduced a class of distributions that are symmetric,
but with variation in kurtosis. He noted that these distributions have many structural properties close to a
normal distribution. This class of distributions is called the general error distributions. Nelson (1991) has
developed linear regression models and time series models with heavy tails, assuming the underlying distri-
bution as general error distribution (GED). Levy (2004) and Nadarajah (2005) discuss many distributional
properties of a GED. In our paper, we call this class of distributions as general error distributions of the first
kind, denoted by GED-I, as we will be discussing one more class of general error distributions (asymmetric).

The probability density function (pdf) of GED-I is given by

fv(x) =
v exp{− 1

2 |
x
λ |
v}

λ21+1/vΓ( 1
v )

, v > 0 , x ∈ R,

where λ =

[
2−

2
v

Γ( 1
v )

Γ( 3
v )

] 1
2

and Γ(·) denotes the Gamma function. It is well known that if X is GED-I, EX = 0,

EX2 = 1 and EXk <∞ for all k > 0. When v = 2, GED-I reduces to a standard normal distribution and
when v = 1, it reduces to a double exponential distribution. Peng et al. (2009) established that the tail of
the distribution function (d.f.) F of GED-I has the asymptotic relation, 1 − F (x) ∼ x1−vf(x), as x → ∞,
(where ”∼” means asymptotically equal). One can see that the tail of the d.f. is asymptotically Weibullian.

Another class of error distributions was introduced, by allowing the tail to be highly skewed (see,
Wikipedia (2012)). We call this class as the general error distributions of the second kind, denoted as
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GED-II. The pdf of GED-II is given by

g(x) =

exp

{
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2
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− 1
k log
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))2
}

√
2πα
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) ,

with x ∈
(
−∞, ξ + α

k

)
if k > 0, x ∈

(
ξ + α

k , ∞
)

if k < 0, where ξ is a real constant and α a positive constant.
When k → 0, g(·) reduces to the pdf of a normal random variable (r.v.) with mean ξ and variance α2. The
d.f. G has the tail

1−G(x) ∼
exp
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)) ,

as x→∞, when k < 0 and as x→ ξ + α/k, when k > 0. The form of 1−G(x) is well known when k = 0.
In this paper, we establish that the moment generating function (mgf) of a GED-I exists when v ≥ 1

and fails to exist when 0 < v < 1. We obtain a characterization and establish some additive properties of
a GED-I. This is done in the next section. In Section 3, we show that the mgf of a GED-II fails to exist
whenever k 6= 0. Also, we show that the tail 1 −G(x) is asymptotically, sandwiched between a Weibullian
tail and a regularly varying tail. Throughout the paper, M(t) = EetX , −∞ < t <∞ denotes a mgf.

2. General error distribution I

Theorem 2.1. Let a random variable X have GED-I with parameter v > 0. Then the mgf M(t) exists
for all t, when v > 1, exists in the region (−

√
2,
√

2) when v = 1, and fails to exist for any t > 0 when
0 < v < 1.

Proof. We have for any v > 0 that

M(t) = c1

∞∫
−∞

etxe−c2|x|
v

dx, −∞ < t <∞,

where c1 = v
(
λ21+1/vΓ( 1

v )
)−1

and c2 = (2λv)−1. Suppose that 0 < v < 1. Let t > 0. Then for any x > 0

etxe−c2|x|
v

= etx(1− c2
tx1−v ).

Let x0 > 0 be such that c2
tx1−v <

1
2 for all x ≥ x0, so that

etx(1− c2
tx1−v ) ≥ e tx2

for all x ≥ x0. Consequently,

∞∫
x0

etxe−c2|x|
v

dx =∞,

which implies that M(t) fails to exit (for any t > 0), whenever 0 < v < 1.

When v = 1, the pdf f(x) = 1√
2
e−
√

2|x|, −∞ < x <∞. Here

M(t) =
1√
2

∞∫
−∞

etx−
√

2|x|dx =
1√
2

(I1 + I2),
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where

I1 =

0∫
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√

2xdx and I2 =
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2xdx.

Put x = −y. Then
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Hence M(t) = 1√
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)
= 2((2− t2))−1 = (1− t2

2 )−1, whenever |t| <
√

2. Also, when |t| ≥
√

2,

M(t) fails to exit.
Let v > 1. Then

M(t) = c1
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v

dx
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v
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= c1(I1 + I2), say.

Since

tx− c2xv = −c2xv
(

1− t

c2xv−1

)
= −c2xv(1 + o(1)), as x→∞,

one gets I2 <∞, for any real t.
Similarly, for x < 0 we have that

tx− c2|x|v = −c2|x|v
(

1− tx

c2|x|v

)
= −c2|x|v

(
1 +

t

c2|x|v−1

)
= −c2|x|v(1 + o(1)), as x→ −∞.

Consequently, I1 <∞ for any t. In turn, M(t) exists for all t ∈ (−∞,∞). Applying Maclaurian expansion
and identifying Mk(0) = EXk, k ≥ 0, one gets

M(t) =

∞∑
k=0

tk

k!
EXk.

Since X is symmetric about zero, we have EXk = 0 for k odd. When k is even, k = 2m say,

EX2m =
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Hence
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A closed form expression does not exist for M(t).

Theorem 2.2. A real valued random variable X, symmetric about 0, is GED-I if and only if for some

v > 0, the random variable
(

Γ( 3
v )

Γ( 1
v )
X2
)v/2

has gamma distribution with parameter 1/v.
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Proof. Let X be GED-I with parameter v. Put Y =
(

Γ( 3
v )

Γ( 1
v )
X2
)v/2

. Then |X| =
(

Γ( 1
v )

Γ( 3
v )

)1/2

Y
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. Let Z = X2

and let the pdf of Z be g(z). Then
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Denote by h, the pdf of Y. The relation, Y =
(
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2
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2
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Observe that λ = 2
−1/v

c
−1/2

. Substituting for g(·) and λ, on simplification, one gets

h(y) =
1

Γ( 1
v )
e−yy

1
v−1, y > 0,

which is the pdf of a gamma r.v. with parameter 1/v.

Conversely, let Y =
(

Γ( 3
v )

Γ( 1
v )
X2
)v/2

be Gamma(1/v) and let H denote the d.f. of Y with pdf h. For any

y > 0, defining c = Γ( 3
v )/Γ( 1

v ), we have
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Differentiating (1) with respect to y and recalling that X is symmetric about 0, with pdf f(·), one gets
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y 1
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1
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Since λ = 2−1/v
(

Γ( 1
v )

Γ( 3
v )

) 1
2

= 2−1/vc−1/2, for x > 0, one gets, f(x) = v

(
λ2

1+
1
v Γ( 1

v )

)−1

e−
x

2λv . Also, f(x) =

f(−x), x > 0, implies that f(x) = v
(
λ2

1+ 1
v Γ( 1

v )
)−1

e−
|x|v
2λv , −∞ < x <∞, which is the pdf of GED-I.

Theorem 2.3. Let X1, X2, . . . , Xn be independent and identically distributed (i.i.d.) GED-I random va-

riables with parameter v. Then
n∑
i=1

|Xi|v is a gamma distributed random variable.

Proof. Given that X is GED-I, proceeding as in the proof of Theorem 2.1, one can show that |X|v is
Gamma(1/(2λv), 1/v). By the closure property of gamma distribution, X1, X2, . . . , Xn are i.i.d. GED-I

implies
n∑
j=1

|Xj |v is Gamma(1/(2λv), n/v).
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Remark 2.4. From the above theorem, we observe that if X1 and X2 are independent r.v.’s with a common
GED-I, then |X1|v, |X2|v and the convolution |X1|v + |X2|v are gamma distributed random variables.

Remark 2.5. Convolution of GED-I, need not necessarily be GED-I. When v = 1, X1 and X2 are Laplace
distributed random variables, but X1 + X2 is not Laplace distributed random variable. When v = 2, X1

and X2 are normal distributed random variables and X1 +X2 is also normal distributed random variable.

3. General error distributions II

Theorem 3.1. The mgf M(t) of a GED-II fails to exist for any t > 0 when k < 0 and for any t < 0 when
k > 0.

Proof. Consider the case k < 0. Then the pdf of GED-II is

g(x) =

exp

{
− 1

2

(
1

(−k) log
(

1 + (−k)(x−ξ)
α

))2
}

√
2πα

(
1 + (−k)(x−ξ)

α

) , x ≥ ξ +
α

k
,

where α > 0, ξ ∈ (−∞,∞) are constants.

The mgf is given by M(t) =
∞∫

(ξ+α
k )

etxg(x)dx, −∞ < t < ∞. Put 1 + (−k) (x−ξ)
α = y. Then x =

α(−k)−1(y − 1) + ξ and hence

M(t) =
e(ξ+α

k )t

√
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(log y)2

2k2 −log y
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k

)
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=
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(
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k −

(log y)2

2k2 −log y

)
dy. (3)

We have

−αytk −
(log y)2

2k2 − log y = −αytk

1 +
k
(

(log y)2

2k2 + log y
)

αyt

 .

Hence, for any given t > 0, one can find a y0 > 0 such that −αytk −
(log y)2

k2 − log y ≥ −αyt2k . Consequently
from (3),

M(t) ≥ e(ξ+α
k )t

√
2π(−k)

∫ ∞
y0

(
e−

αyt
2k

)
dy =∞,

i.e. the mgf fails to exist (as it does not exist for any t > 0.)

Now consider the case, k > 0. Let X be GED-II with k > 0. Define Y = −X. The pdf of Y is

h(y) =

exp

(
− 1

2

(
−1

(−k′) log
(

1 + (−k′)(y−ξ′)
α

))2
)

√
2πα

(
1 + (−k′)(y−ξ′)

α

) , y ≥ ξ′ + α

k′
,

where ξ′ = −ξ and k′ = −k. Hence Y is GED-II with k′ < 0, consequently, EetY fails to exist for any t > 0
and in turn M(t) = EetX fails to exist for any t < 0.
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Theorem 3.2. Let H1(x), x > 0, denote the tail of a Weibullian d.f. and H2(x), x > 0, be a d.f. with
regularly varying tail. Then for k < 0, the tail G of a GED-II satisfies the relation,

lim
x→∞

H1(x)

G(x)
= 0 and lim

x→∞

H2(x)

G(x)
=∞,

where H2 = 1−H2.

Proof. For k < 0, the tail of GED-II is given by

1−G(x) ∼
exp

{
− 1

2
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− 1
k log

(
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α

))2
}

√
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1
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(
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)) . (4)

Let y =
(
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α

)
. Then the numerator on the right hand side expression of (4) is
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1
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Observe that y =
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)
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α
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)
and hence log y = log x+log (−k)
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.

Since
(

1 +
( α
−k )−ξ
x

)
→ 1 as x→∞, given δ1, δ2 > 0, one can find a x0 > 0 such that for all x ≥ x0,

(−k)

α
(1− δ1)x ≤ y ≤ (−k)

α
(1 + δ1)x and log x+ log(

−k
α

)− δ2 ≤ log y ≤ log x+ log(
−k
α

) + δ2.

Hence for all x ≥ x0,

(
−k(1 + δ1)x

α

)−(log x+log(−kα )+δ2)
2k2

≤ y
− log y

2k2 ≤
(
−k(1− δ1)x

α

)−(log x+log(−kα )−δ2)
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Also, the denominator on the right side of (4) satisfies for x ≥ x0,

√
2π

(−k)

(
log x+ log(

−k
α

)− δ2
)
≤
√

2π

(−k)
log y ≤

√
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(
log x+ log(

−k
α

) + δ2

)
.

Since log x+ log(−kα )± δ2 ∼ log x, as x→∞, for a δ3 > 0, one can find a x1 ≥ x0 such that for all x ≥ x1,

(1− δ3) log x ≤ log x+ log(− k
α

)± δ2 ≤ (1 + δ3) log x.

Put d1 = −k
α (1 − δ1) and d2 = −k

α (1 + δ1). Then for all x ≥ x1, the right hand side of (4) satisfies the
inequality,

(−k)√
2π

(d2x)

−(1+δ3) log x
2k2

(1 + δ3) log x
≤

(−k) exp
( −1

2k2

)
(log y)2

√
2π log y

≤ (−k)√
2π

(d1x)

−(1−δ3) log x
2k2

(1− δ3) log x
.

For a given δ4 ∈ (0, 1), one can hence find a x2 ≥ x1 such that for all x ≥ x2,

(−k)√
2π

(1− δ4)(d2x)

−(1+δ3) log x
2k2

(1 + δ3) log x
≤ 1−G(x) ≤ (−k)√

2π

(1 + δ4)(d1x)

−(1−δ3) log x
2k2

(1− δ3) log x
.
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Put c5 = (−k)√
2π

(1−δ4)
1+δ3

and c6 = (−k)√
2π

(1+δ4)
1−δ3 . Then the above inequality can be written as

c5(d2x)

−(1+δ3) log x
2k2

log x
≤ 1−G(x) ≤ c6(d1x)

−(1−δ3) log x
2k2

log x
, (5)

whenever x ≥ x2.
Let H1 be a d.f. with Weibullian tail. Then H1(x) = e−αx

β

xr(1+o(1)), as x→∞, for some α > 0, β > 0
and r ∈ (−∞,∞). Also, let H2 be a d.f. with regularly varying tail, i.e. H2(x) = x−rL(x), for some r > 0

and L(·) a slowly varying function. From (5) one can show that lim
x→∞

H1(x)

G(x)
= 0 and lim

x→∞
H2(x)

G(x)
=∞, which

completes the proof.

Remark 3.3. We have noticed that the tail thickness of GED-II is in between Weibullian and regularly
varying tails. Perhaps, one reason for considering such a tail is that skewed distributions with Weibullian
tail can be easily constructed from GED-I by truncating to the left (right) and skewed distributions with
regularly varying tail will not have all moments finite, which is supposed to be an underlying structure of a
random variable with GED.
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