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Recurrence relations for marginal and joint moment generating
functions of upper k-record values from Gompertz distribution
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Abstract. In this paper the recurrence relations for marginal and joint moment generating functions
of upper record values as well as upper k-record values from Gompertz distribution have been obtained.

1. Introduction

A random variable X is said to have the Gompertz distribution if its probability density function is given
by

f(x) = βeαx exp

(
− β

α
(eαx − 1)

)
, x ≥ 0, α > 0, β > 0, (1)

and the cumulative distribution function is given by

F (x) = 1− exp

(
− β

α
(eαx − 1)

)
, x ≥ 0. (2)

The Gompertz distribution in (1) was introduced by Gompertz (1825). This distribution is applicable
as a model for surviving distributions which has an increasing hazard rate for the life of the creatures
and systems. Prentice and El-Shaarawi (1973) have used this model in their studies, Elandt-Johnson and
Johnson (1980) have shown that this distribution is widely used in actuarial works.

It is easy to see from (1) and (2) that for the Gompertz distribution

f(x) = [β + α{− ln(1− F (x))}][1− F (x)]. (3)

Suppose {Xn, n ≥ 1} is an infinite sequence of independent, identically distributed (i.i.d.) random variables
with common cumulative distribution function (c.d.f.) F (x) and probability density function (p.d.f.) f(x).
Let us assume that F is continuous so that ties are not possible. Let Yn = max{X1, X2, . . . , Xn}, n = 1, 2, . . .
We say Xj is an upper record value of this sequence if Yj > Yj−1, j ≥ 2. The indices at which the upper
record values occur are given by the upper record times {U(n), n ≥ 1}, where

U(n) = min{j | j > U(n− 1), Xj > XU(n−1), n > 1} with U(1) = 1.

Then XU(n) and U(n) are the sequences of upper record values and upper record times, respectively.

Keywords. Record values, Upper k-record values, Marginal and joint moment generating functions, Gompertz distribution
Received: 19 December 2012; Revised: 21 September 2013; Accepted: 28 October 2013
Email addresses: jagdish_saran52@yahoo.co.in (Jagdish Saran), taruna1986@yahoo.com (Taruna Kumari)



Saran and Kumari / ProbStat Forum, Volume 06, October 2013, Pages 96–106 97

Similarly, for a fixed k ≥ 1, we define the sequence {U(n : k), n ≥ 1} of upper k-record times of
{Xn, n ≥ 1} as follows

U(1 : k) = 1

U(n+ 1 : k) = min{j > U(n : k) : Xj:j+k−1 > XU(n:k):U(n:k)+k−1},

where Xj:n denotes the jth order statistic of a sample (X1, X2, . . . , Xn), (cf. Kamps (1995a,b)). Then
XU(n:k) and U(n : k) are called the sequences of upper k-record values and upper k-record times, respectively.

For k = 1 and n = 1, 2, . . ., we write U(n : 1) = U(n) and XU(n:1) = XU(n).
Chandler (1952) introduced record values and record value times. Properties of record values of i.i.d.

random variables have been extensively studied in the literature. Various developments on records and
related topics have been reviewed by a number of authors including Glick (1978), Nevzorov (1987), Resnick
(1987), Nagaraja (1988), Ahsanullah (1988, 1995), Arnold and Balakrishnan (1989), Arnold et al. (1992,
1998) and Ahsanullah and Nevzorov (2001).

In this paper, we establish some recurrence relations for marginal and joint moment generating functions
of upper k-record values from the Gompertz distribution. The corresponding results for upper record values
(k = 1) have also been deduced as special cases. Similar work has been done for the power function and
Gumbel distributions by Raqab and Ahsanullah (2000) and Ahsanullah and Raqab (1999), respectively.

For convenience, let us denote the marginal moment generating function of XU(n:k) by MU(n:k)(t) and

its rth derivative with respect to t by M
(r)
U(n:k)(t). Similarly, let MU(m,n:k)(t1, t2) and M

(r,s)
U(m,n:k)(t1, t2)

denote the joint moment generating function of XU(m:k) and XU(n:k) and its (r, s)-th partial derivative with

respect to t1 and t2, respectively. Also, for k = 1, we write MU(n:1)(t) ≡ MU(n)(t), M
(r)
U(n:1)(t) ≡ M

(r)
U(n)(t),

MU(m,n:1)(t1, t2) ≡MU(m,n)(t1, t2) and M
(r,s)
U(m,n:1)(t1, t2) ≡M (r,s)

U(m,n)(t1, t2).

2. Relations for marginal moment generating functions of upper k-record values

The p.d.f. of upper k-record values XU(n:k), n ≥ 1, as given by Dziubdziela and Kopocinski (1976) is as
follows (for k ≥ 1):

fU(n:k)(x) =
kn

(n− 1)!
{− ln(1− F (x))}n−1[1− F (x)]k−1f(x), −∞ < x <∞. (4)

Theorem 2.1. For n ≥ 2, r = 0, 1, 2, . . ., and α, β > 0,

M
(r+1)
U(n+1:k)(t) = M

(r+1)
U(n:k)(t) +

1

nα

[
tM

(r+1)
U(n:k)(t) + (r+ 1)M

(r)
U(n:k)(t)−βk

{
M

(r+1)
U(n:k)(t)−M

(r+1)
U(n−1:k)(t)

}]
, (5)

where M
(r)
U(n:k)(t) =

drMU(n:k)(t)

dtr
and M

(0)
U(n:k) = MU(n:k)(t), provided the marginal moment generating

function exists.

Proof. For n ≥ 2, r = 0, 1, 2, . . ., we have from (4)

MU(n:k)(t) =
kn

(n− 1)!

∫ ∞
−∞

etx[− ln(1− F (x))]n−1[1− F (x)]k−1f(x)dx.

On using (3), we have

MU(n:k)(t) =
knβ

(n− 1)!

∞∫
0

etx[− ln(1− F (x))]n−1[1− F (x)]kdx+
knα

(n− 1)!

∞∫
0

etx[− ln(1− F (x))]n[1− F (x)]kdx

= kβIn−1,k + nαIn,k, (6)



Saran and Kumari / ProbStat Forum, Volume 06, October 2013, Pages 96–106 98

where

In,k =
kn

n!

∫ ∞
0

etx[− ln(1− F (x))]n[1− F (x)]kdx.

Integrating by parts treating etx for integration and rest of the integrand for differentiation, we get

In,k =
kn+1

n! t

∫ ∞
0

etx[− ln(1− F (x))]n[1− F (x)]k−1f(x)dx

− kn

(n− 1)! t

∫ ∞
0

etx[− ln(1− F (x))]n−1[1− F (x)]k−1f(x)dx. (7)

Similarly,

In−1,k =
kn

(n− 1)! t

∫ ∞
0

etx[− ln(1− F (x))]n−1[1− F (x)]k−1f(x)dx

− kn−1

(n− 2)! t

∫ ∞
0

etx[− ln(1− F (x))]n−2[1− F (x)]k−1f(x)dx . (8)

By using (7) and (8) in (6), we get

tMU(n:k)(t) = kβ
[
MU(n:k)(t)−MU(n−1:k)(t)

]
+ nα

[
MU(n+1:k)(t)−MU(n:k)(t)

]
. (9)

Differentiating (9), (r + 1) times with respect to t, we get

tM
(r+1)
U(n:k)(t) + (r + 1)M

(r)
U(n:k)(t) = kβ

[
M

(r+1)
U(n:k)(t)−M

(r+1)
U(n−1:k)(t)

]
+ nα

[
M

(r+1)
U(n+1:k)(t)−M

(r+1)
U(n:k)(t)

]
,

which, when rewritten, yields (5).

Remark 2.2. The recurrence relation in Theorem 4 can be used in a simple recursive process to obtain all
the marginal moment generating functions of all upper k-record values. By putting t = 0 in (5), we deduce
the recurrence relation for single moments of upper k-record values from Gompertz distribution as given
below:

α
(r+1)
n+1:k = α

(r+1)
n:k +

1

nα

[
(r + 1)α

(r)
n:k − βk

{
α
(r+1)
n:k − α(r+1)

n−1:k

}]
, n ≥ 2, (10)

where α
(r)
n:k = E

(
Xr
U(n:k)

)
denotes the rth moment of nth upper k-record value. Also, for k = 1, we write

α
(r)
n:1 ≡ α

(r)
n . It may be noted that the relation (10) for k = 1 verifies a result obtained by Khan and Zia

(2009) for single moments of upper record values from Gompertz distribution.

Now, applying the relation (5) recursively in itself, one can easily establish some simple recurrence
relations as given in the following two corollaries:

Corollary 2.3. For n ≥ 2, 1 ≤ m ≤ n and r = 0, 1, 2, . . .,

M
(r+1)
U(n+1:k)(t) = M

(r+1)
U(m:k)(t)+

n∑
i=m

1

iα

[
tM

(r+1)
U(i:k)(t)+(r+1)M

(r)
U(i:k)(t)−βk

{
M

(r+1)
U(i:k)(t)−M

(r+1)
U(i−1:k)(t)

}]
. (11)

Corollary 2.4. For n ≥ 2, r = 0, 1, 2, . . .,

M
(r+1)
U(n+1:k)(t) =

(r + 1)(r+1)

(n)(r+1)αr+1
M

(0)
U(n−r:k)(t) +

r∑
i=0

(r + 1)(i)

(n)(i+1)αi+1

·
[
{(n− i)α+ t}M (r+1−i)

U(n−i:k)(t)− βk
{
M

(r+1−i)
U(n−i:k)(t)−M

(r+1−i)
U(n−1−i:k)(t)

}]
. (12)
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Remark 2.5. By putting t = 0 in (11) and (12), we get the simple relations for the single moments of
upper k-record values as follows.

For n ≥ 2, 1 ≤ m ≤ n and r = 0, 1, 2, . . .,

α
(r+1)
n+1:k = α

(r+1)
m:k +

n∑
i=m

1

iα

[
(r + 1)α

(r)
i:k − βk

{
α
(r+1)
i:k − α(r+1)

i−1:k

}]
and for n ≥ 2, r = 0, 1, 2, . . .,

α
(r+1)
n+1:k =

(r + 1)(r+1)

(n)(r+1)αr+1

r∑
i=0

(r + 1)(i)

(n)(i+1)αi+1
·
[
{(n− i)α}α(r+1−i)

n−i:k − βk
{
α
(r+1−i)
n−i:k − α(r+1−i)

n−i−1:k

}]
.

3. Relations for joint moment generating functions of upper k-record values

The joint density function of XU(m:k) and XU(n:k), 1 ≤ m < n, n ≥ 2, as discussed by Shy et al. (2010)
is given by (for k ≥ 1):

fU(m:k),U(n:k)(x, y) =
kn

(m− 1)!(n−m− 1)!
[− ln(1− F (x))]m−1[1− F (y)]k−1

· [− ln(1− F (y)) + ln(1− F (x))]n−m−1
f(x)f(y)

1− F (x)
, −∞ < x < y <∞. (13)

Theorem 3.1. For m ≥ 1, r, s = 0, 1, 2, . . . , and α, β > 0,

M
(r+1,s)
U(m,m+1:k)(t1, t2) =

1

mα+ t1

[
mαM

(r+s+1)
U(m+1:k)(t1 + t2) + βk

·
{
M

(r+s+1)
U(m:k) (t1 + t2)−M (r+1,s)

U(m−1,m:k)(t1, t2)
}
− (r + 1)M

(r,s)
U(m,m+1:k)(t1, t2)

]
, (14)

and, for 1 ≤ m ≤ n− 2, r, s = 0, 1, 2, . . ., and α, β > 0,

M
(r+1,s)
U(m,n:k)(t1, t2) =

1

mα+ t1

[
mαM

(r+1,s)
U(m+1,n:k)(t1, t2)

+βk
{
M

(r+1,s)
U(m,n−1:k)(t1, t2)−M (r+1,s)

U(m−1,n−1:k)(t1, t2)
}
− (r + 1)M

(r,s)
U(m,n:k)(t1, t2)

]
, (15)

provided the joint moment generating function exists.

Proof. Using (13), we can write

MU(m,n:k)(t1, t2) =
kn

(m− 1)!(n−m− 1)!

∫ ∞
−∞

et2y[1− F (y)]k−1f(y)I(y)dy, (16)

where

I(y) =

∫ y

−∞
et1x[− ln(1− F (x))]m−1[− ln(1− F (y)) + ln(1− F (x))]n−m−1 · f(x)

[1− F (x)]
dx.

On using (3), we have

I(y) = β

∫ y

0

et1x[− ln(1− F (x))]m−1[− ln(1− F (y)) + ln(1− F (x))]n−m−1dx

+ α

∫ y

0

et1x[− ln(1− F (x))]m[− ln(1− F (y)) + ln(1− F (x))]n−m−1dx

= βQm,n + αQm+1,n+1, (17)
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where

Qm,n =

∫ y

0

et1x[− ln(1− F (x))]m−1[− ln(1− F (y)) + ln(1− F (x))]n−m−1dx.

Integrating Qm,n, by parts treating et1x for integration and rest of the integrand for differentiation, we get

Qm,n =
(n−m− 1)

t1

∫ y

0

et1x[− ln(1− F (x))]m−1 · [− ln(1− F (y)) + ln(1− F (x))]n−m−2
f(x)

[1− F (x)]
dx

− (m− 1)

t1

∫ y

0

et1x[− ln(1− F (x))]m−2 · [− ln(1− F (y)) + ln(1− F (x))]n−m−1
f(x)

[1− F (x)]
dx. (18)

Similarly,

Qm+1,n+1 =
(n−m− 1)

t1

∫ y

0

et1x[− ln(1− F (x))]m · [− ln(1− F (y)) + ln(1− F (x))]n−m−2
f(x)

[1− F (x)]
dx

− m

t1

∫ y

0

et1x[− ln(1− F (x))]m−1 · [− ln(1− F (y)) + ln(1− F (x))]n−m−1
f(x)

[1− F (x)]
dx. (19)

By using (18) and (19) in (17), and then (17) in (16), we get

t1MU(m,n:k)(t1, t2)=βk
[
MU(m,n−1:k)(t1, t2)−MU(m−1,n−1:k)(t1, t2)

]
+mα

[
MU(m+1,n:k)(t1, t2)−MU(m,n:k)(t1, t2)

]
.

Differentiating the above relation, (r + 1) times with respect to t1 and then s times with respect to t2, we
get

t1M
(r+1,s)
U(m,n:k)(t1, t2) + (r + 1)M

(r,s)
U(m,n:k)(t1, t2)=βk

[
M

(r+1,s)
U(m,n−1:k)(t1, t2)−M (r+1,s)

U(m−1,n−1:k)(t1, t2)
]

+mα
[
M

(r+1,s)
U(m+1,n:k)(t1, t2)−M (r+1,s)

U(m,n:k)(t1, t2)
]
. (20)

Upon rewriting (20), we will get the relation in (15).
Proceeding in a similar manner for the case n = m + 1, the recurrence relation given in (14) can easily

be established.

Theorem 3.2. For m ≥ 1, r, s = 0, 1, 2, . . ., and α, β > 0,

αM
(r,s+1)
U(m,m+2:k)(t1, t2) = [t2 − kβ + α]M

(r,s+1)
U(m,m+1:k)(t1, t2) + (s+ 1)M

(r,s)
U(m,m+1:k)(t1, t2)

+ kβM
(r+s+1)
U(m:k) (t1 + t2) +mα

[
M

(r+s+1)
U(m+1:k)(t1 + t2)−M (r,s+1)

U(m+1,m+2:k)(t1, t2)
]
, (21)

and, for 1 ≤ m ≤ n− 2, r, s = 0, 1, 2, . . . , and α, β > 0,

α(n−m)M
(r,s+1)
U(m,n+1:k)(t1, t2) = [t2 − kβ + α(n−m)]M

(r,s+1)
U(m,n:k)(t1, t2) + (s+ 1)M

(r,s)
U(m,n:k)(t1, t2)

+ kβM
(r,s+1)
U(m,n−1:k)(t1, t2) +mα

[
M

(r,s+1)
U(m+1,n:k)(t1, t2)−M (r,s+1)

U(m+1,n+1:k)(t1, t2)
]
, (22)

provided the joint moment generating function exists.

Proof. By using (13), we have

MU(m,n:k)(t1, t2) =
kn

(m− 1)!(n−m− 1)!

∫ ∞
−∞

∫ ∞
x

et1x+t2y[− ln(1− F (x))]m−1

· [− ln(1− F (y)) + ln(1− F (x))]n−m−1 · [1− F (y)]k−1
f(x)f(y)

1− F (x)
dydx.
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Now, on using (3), we have

MU(m,n:k)(t1, t2) =
kn

(m− 1)!(n−m− 1)!

∫ ∞
0

∫ ∞
x

et1x+t2y[− ln(1− F (x))]m−1

· [− ln(1− F (y)) + ln(1− F (x))]n−m−1[β[1− F (y)] + α[1− F (y)]{− ln(1− F (y))}]

· [1− F (y)]k−1
f(x)

1− F (x)
dydx

=
1

(m− 1)!(n−m− 1)!

∫ ∞
0

et1x[− ln(1− F (x))]m−1I(x)
f(x)

[1− F (x)]
dx, (23)

where

I(x) = β

∫ ∞
x

et2y[− ln(1− F (y)) + ln(1− F (x))]n−m−1[1− F (y)]kdy

+ α

∫ ∞
x

et2y[− ln(1− F (y)) + ln(1− F (x))]n−m−1[1− F (y)]k[− ln(1− F (y))]dy

= [β + α{− ln(1− F (x))}]
∫ ∞
x

et2y[− ln(1− F (y)) + ln(1− F (x))]n−m−1[1− F (y)]kdy

+ α

∫ ∞
x

et2y · [− ln(1− F (y)) + ln(1− F (x))]n−m[1− F (y)]kdy

= [β + α{− ln(1− F (x))}]An−m−1 + αAn−m, (24)

where

An−m =

∫ ∞
x

et2y[− ln(1− F (y)) + ln(1− F (x))]n−m[1− F (y)]kdy.

Integrating An−m by parts treating et2y for integration and rest of the integrand for differentiation, we get

An−m =
k

t2

∫ ∞
x

et2y[− ln(1− F (y)) + ln(1− F (x))]n−m[1− F (y)]k−1f(y)dy

− (n−m)

t2

∫ ∞
x

et2y[− ln(1− F (y)) + ln(1− F (x))]n−m−1 · [1− F (y)]k−1f(y)dy. (25)

Similarly,

An−m−1 =
k

t2

∫ ∞
x

et2y[− ln(1−F (y)) + ln(1− F (x))]n−m−1[1− F (y)]k−1f(y)dy

− (n−m− 1)

t2

∫ ∞
x

et2y[− ln(1− F (y)) + ln(1− F (x))]n−m−2 · [1− F (y)]k−1f(y)dy. (26)

By using (25) and (26) in (24), and then (24) in (23), we get

t2MU(m,n:k)(t2, t2) = α(n−m)[MU(m,n+1:k)(t1, t2)−MU(m,n:k)(t1, t2)]

+mα[MU(m+1,n+1:k)(t1, t2)−MU(m+1,n:k)(t1, t2)]

+ βk[MU(m,n:k)(t1, t2)−MU(m,n−1:k)(t1, t2)].

Differentiating the above expression, (s + 1) times with respect to t2 and then r times with respect to t1,
we get

t2M
(r,s+1)
U(m,n:k)(t1, t2) + (s+ 1)M

(r,s)
U(m,n:k)(t1, t2) = α(n−m)

[
M

(r,s+1)
U(m,n+1:k)(t1, t2)−M (r,s+1)

U(m,n:k)(t1, t2)
]

+mα
[
M

(r,s+1)
U(m+1,n+1:k)(t1, t2)−M (r,s+1)

U(m+1,n:k)(t1, t2)
]
+βk

[
M

(r,s+1)
U(m,n:k)(t1, t2)−M (r,s+1)

U(m,n−1:k)(t1, t2)
]
. (27)
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Upon rewriting (27), we will get the relation in (22).

Proceeding in a similar manner for the case n = m + 1, the recurrence relation given in (21) can easily
be established.

Remark 3.3. The recurrence relations in Theorems 3.1 and 3.2 can be used in a simple recursive process
to obtain all the product moment generating functions of all upper k-record values.

Remark 3.4. By putting t1 = t2 = 0 in Theorem 3.1, we get the recurrence relations for the product
moments of upper k-record values as follows:

For m ≥ 1, r, s = 0, 1, 2, . . ., and α, β > 0,

α
(r+1,s)
m,m+1:k = α

(r+s+1)
m+1:k +

1

mα

[
βk{α(r+s+1)

m:k − α(r+1,s)
m−1,m:k} − (r + 1)α

(r,s)
m,m+1:k

]
,

and for 1 ≤ m ≤ n− 2, r, s = 0, 1, 2, . . ., and α, β > 0,

α
(r+1,s)
m,n:k = α

(r+1,s)
m+1,n:k +

1

mα

[
βk{α(r+1,s)

m,n−1:k − α
(r+1,s)
m−1,n−1:k} − (r + 1)α

(r,s)
m,n:k

]
, (28)

where α
(r,s)
m,n:k = E(Xr

U(m:k)X
s
U(n:k)) denotes the (r, s)-th product moment of the mth and nth upper k-record

values.

Also, for k = 1, we write α
(r,s)
m,n:1 ≡ α

(r,s)
m,n .

It may be noted that the relation (28), for k = 1, verifies the result obtained by Khan and Zia (2009)
for product moments of upper record values from Gompertz distribution.

Remark 3.5. By putting t1 = t2 = 0 in Theorem 3.2, we get some other recurrence relations for the
product moments of upper k-record values as follows:

For m ≥ 1, r, s = 0, 1, 2, . . ., and α, β > 0,

α
(r,s+1)
m,m+2:k =

[
1− kβ

α

]
α
(r,s+1)
m,m+1:k +

1

α

[
(s+ 1)α

(r,s)
m,m+1:k + kβα

(r+s+1)
m:k +mα

{
α
(r+s+1)
m+1:k − α

(r,s+1)
m+1,m+2:k

}]
,

and for 1 ≤ m ≤ n− 2, r, s = 0, 1, 2, . . ., and α, β > 0,

α
(r,s+1)
m,n+1:k=

[
1− kβ

α(n−m)

]
α
(r,s+1)
m,n:k +

1

α(n−m)

[
(s+1)α

(r,s)
m,n:k+kβα

(r,s+1)
m,n−1:k+mα

{
α
(r,s+1)
m+1,n:k−α

(r,s+1)
m+1,n+1:k

}]
.

Remark 3.6. By putting t2 = 0, t1 = t and m = n in (15) or, equivalently, putting t2 = t, t1 = 0 and
m = n in (22), one can easily deduce and verify the recurrence relation for marginal moment generating
functions of upper k-record values, as given in (5).

Now, applying the relations (15) and (22) recursively in itself, respectively, one can easily establish some
simple recurrence relations as given in the following corollary:

Corollary 3.7. For 1 ≤ m ≤ n− 2, r, s = 0, 1, 2, . . ., and α, β > 0,

M
(r+1,s)
U(m,n:k)(t1, t2) =

[
−1

mα+ t1

]r+1

(r + 1)(r+1)M
(0,s)
U(m,n:k)(t1, t2) +

r∑
i=0

(−1)i
[

1

mα+ t1

]i+1

(r + 1)(i)

·
[
mαM

(r+1−i,s)
U(m+1,n:k)(t1, t2) + βk

{
M

(r+1−i,s)
U(m,n−1:k)(t1, t2)−M (r+1−i,s)

U(m−1,n−1:k)(t1, t2)
}]
, (29)
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and

M
(r,s+1)
U(m,n+1:k)(t1, t2) =

[
1

α(n−m)

]s+1

(s+ 1)(s+1)M
(r,0)
U(m,n−s:k)(t1, t2)

+

[
t2 − βk
α(n−m)

+ 1

] s∑
i=0

[
1

α(n−m)

]i
(s+1)(i)M

(r,s+1−i)
U(m,n−i:k)(t1, t2)

+

s∑
i=0

[
1

α(n−m)

]i+1

(s+ 1)(i)
[
βkM

(r,s+1−i)
U(m,n−1−i:k)(t1, t2)

+mα
{
M

(r,s+1−i)
U(m+1,n−i:k)(t1, t2)−M (r,s+1−i)

U(m−1,n+1−i:k)(t1, t2)
}]
. (30)

Remark 3.8. By putting t1 = t2 = 0 in (29) and (30), we get the recurrence relations for the product
moments of upper k-record values as follows:

α
(r+1,s)
m,n:k =

[
−1

mα

]r+1

(r + 1)(r+1)α
(s)
n:k +

r∑
i=0

(−1)i

·
[

1

mα

]i+1

(r + 1)(i)
[
mα · α(r+1−i,s)

m+1,n:k + βk
{
α
(r+1−i,s)
m,n−1:k − α

(r+1−i,s)
m−1,n−1:k

}]
,

and

α
(r,s+1)
m,n+1:k =

[
1

α(n−m)

]s+1

(s+ 1)(s+1)α
(r)
m:k +

[
1− βk

α(n−m)

] s∑
i=0

[
1

α(n−m)

]i
(s+ 1)(i)α

(r,s+1−i)
m,n−i:k

+

s∑
i=0

[
1

α(n−m)

]i+1

(s+ 1)(i)
[
βkα

(r,s+1−i)
m,n−1−i:k +mα

{
α
(r,s+1−i)
m+1,n−i:k − α

(r,s+1−i)
m+1,n+1−i:k

}]
.

4. Relations for upper record values

Putting k = 1 in the results obtained in Sections 2 and 3, one can easily deduce the corresponding results
for upper record values from the Gompertz distribution which are given below.

As defined earlier in Section 1, the moment generating function of XU(n) is denoted by MU(n)(t), the

rth derivative of MU(n)(t) with respect to t by M
(r)
U(n)(t), the joint moment generating function of XU(m)

and XU(n) by MU(m,n)(t1, t2), and the (r, s)-th partial derivative of MU(m,n)(t1, t2) with respect to t1 and

t2, respectively, by M
(r,s)
U(m,n)(t1, t2). Also α

(r)
n = E(Xr

U(n)) and α
(r,s)
m,n = E(Xr

U(m)X
s
U(n)).

Theorem 4.1. For n ≥ 2, r = 0, 1, 2, . . ., and α, β > 0,

M
(r+1)
U(n+1)(t) = M

(r+1)
U(n) (t) +

1

nα

[
tM

(r+1)
U(n) (t) + (r + 1)M

(r)
U(n)(t)− β

{
M

(r+1)
U(n) (t)−M (r+1)

U(n−1)(t)
}]
. (31)

Remark 4.2. Setting t = 0 in (31), we get

α
(r+1)
n+1 = α(r+1)

n +
1

nα

[
(r + 1)α(r)

n − β
{
α(r+1)
n − α(r+1)

n−1 }
]
,

which is in agreement with Khan and Zia (2009).

Corollary 4.3. For n ≥ 2, 1 ≤ m ≤ n, r = 0, 1, 2, . . ., and α, β > 0,

M
(r+1)
U(n+1)(t) = M

(r+1)
U(m) (t) +

n∑
i=m

1

iα

[
tM

(r+1)
U(i) (t) + (r + 1)M

(r)
U(i)(t)− β

{
M

(r+1)
U(i) (t)−M (r+1)

U(i−1)(t)
}]
. (32)
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Remark 4.4. Putting t = 0 in (32), we get

α
(r+1)
n+1 = α(r+1)

m +

n∑
i=m

1

iα

[
(r + 1)α

(r)
i − β

{
α
(r+1)
i − α(r+1)

i−1 }
]
,

Corollary 4.5. For n ≥ 2, r = 0, 1, 2, . . ., and α, β > 0,

M
(r+1)
U(n+1)(t)=

(r+1)(r+1)

(n)(r+1)αr+1
M

(0)
U(n−r)(t)+

r∑
i=0

(r+1)(i)

(n)(i+1)αi+1

[
[(n−i)α+t]M

(r+1−i)
U(n−i) (t)

− β
{
M

(r+1−i)
U(n−i) (t)−M (r+1−i)

U(n−1−i)(t)
}]
. (33)

Remark 4.6. By putting t = 0 in (33), we get for n ≥ 2, r = 0, 1, 2, . . ., and α, β > 0,

α
(r+1)
n+1 =

(r + 1)(r+1)

(n)(r+1)αr+1
+

r∑
i=0

(r + 1)(i)

(n)(i+1)αi+1

[
{(n− i)α}α(r+1−i)

n−i − β
{
α
(r+1−i)
n−i − α(r+1−i)

n−1−i }
]
.

Theorem 4.7. For m ≥ 1, r, s = 0, 1, 2, . . ., and α, β > 0,

M
(r+1,s)
U(m,m+1)(t1, t2) =

1

mα+ t1

[
mαM

(r+s+1)
U(m+1) (t1 + t2) + β

{
M

(r+s+1)
U(m) (t1 + t2)

−M (r+1,s)
U(m−1,m)(t1, t2)

}
− (r + 1)M

(r,s)
U(m,m+1)(t1, t2)

]
,

and, for 1 < m ≤ n, r, s = 0, 1, 2, . . ., and α, β > 0,

M
(r+1,s)
U(m,n) (t1, t2) =

1

mα+ t1

[
mαM

(r+1,s)
U(m+1,n)(t1, t2) + β

{
M

(r+1,s)
U(m,n−1)(t1, t2)

−M (r+1,s)
U(m−1,n−1)(t1, t2)

}
− (r + 1)M

(r,s)
U(m,n)(t1, t2)

]
. (34)

Remark 4.8. By setting t1 = t2 = 0 in (34), we get

α(r+1,s)
m,n = α

(r+1,s)
m+1,n +

1

mα

[
β
{
α
(r+1,s)
m,n−1 − α

(r+1,s)
m−1,n−1

}
− (r + 1)α(r,s)

m,n

]
,

which is in agreement with Khan and Zia (2009).

Remark 4.9. By putting t2 = 0, t1 = t and m = n in (34), it reduces to the recurrence relation for marginal
moment generating functions of upper record values from Gompertz distribution, as given in (31).

Theorem 4.10. For m ≥ 1, r, s = 0, 1, 2, . . ., and α, β > 0,

αM
(r,s+1)
U(m,m+2)(t1, t2) = [t2 − β + α]M

(r,s+1)
U(m,m+1)(t1, t2) + (s+ 1)M

(r,s)
U(m,m+1)(t1, t2)

+βM
(r+s+1)
U(m) (t1 + t2)+mα

[
M

(r+s+1)
U(m+1) (t1 + t2)−M (r,s+1)

U(m+1,m+2)(t1, t2)
]
, (35)

and for 1 ≤ m ≤ n− 2, r, s = 0, 1, 2, . . ., and α, β > 0,

[α(n−m)]M
(r,s+1)
U(m,n+1)(t1, t2) = [t2 − kβ + α(n−m)]M

(r,s+1)
U(m,n)(t1, t2) + (s+ 1)M

(r,s)
U(m,n)(t1, t2)

+ βM
(r,s+1)
U(m,n−1)(t1, t2) +mα

[
M

(r,s+1)
U(m+1,n)(t1, t2)−M (r,s+1)

U(m+1,n+1)(t1, t2)
]
. (36)
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Remark 4.11. By setting t1 = t2 = 0 in (35) and (36), we get the recurrence relations for product moments
of upper record values from Gompertz distribution. That is:

For m ≥ 1, r, s = 0, 1, 2, . . ., and α, β > 0,

α
(r,s+1)
m,m+2 =

[
1− β

α

]
α
(r,s+1)
m,m+1 +

1

α

[
(s+ 1)α

(r,s)
m,m+1 + βα(r+s+1)

m +mα
{
α
(r+s+1)
m+1 − α(r,s+1)

m+1,m+2

}]
,

and for 1 ≤ m ≤ n− 2, r, s = 0, 1, 2, . . ., and α, β > 0,

α
(r,s+1)
m,n+1 =

[
1− β

α(n−m)

]
α(r,s+1)
m,n +

1

α(n−m)

[
(s+ 1)α(r,s)

m,n + βα
(r,s+1)
m,n−1 +mα

{
α
(r,s+1)
m+1,n −α

(r,s+1)
m+1,n+1

}]
.

Remark 4.12. By putting t2 = t, t1 = 0 and m = n in (36), one can easily get and verify the recurrence
relation for marginal moment generating functions of upper record values from Gompertz distribution, as
given in (31).

Corollary 4.13. For 1 ≤ m ≤ n− 2, r, s = 0, 1, 2, . . ., and α, β > 0,

M
(r+1,s)
U(m,n) (t1, t2) =

[
−1

mα+ t1

]r+1

(r + 1)(r+1)M
(0,s)
U(m,n)(t1, t2) +

r∑
i=0

(−1)i

[
1

mα+ t1

]i+1

(r + 1)(i)

·
[
mαM

(r+1−i,s)
U(m+1,n)(t1, t2) + β

{
M

(r+1−i,s)
U(m,n−1)(t1, t2)−M (r+1−i,s)

U(m−1,n−1)(t1, t2)
}]
, (37)

and

M
(r,s+1)
U(m,n+1)(t1, t2) =

[
1

α(n−m)

]s+1

(s+ 1)(s+1)M
(r,0)
U(m,n−s)(t1, t2) +

[
t2 − β

α(n−m)
+ 1

]
s∑
i=0

[
1

α(n−m)

]i

· (s+ 1)(i)M
(r,s+1−i)
U(m,n−i)(t1, t2) +

s∑
i=0

[
1

α(n−m)

]i+1

(s+ 1)(i)
[
βM

(r,s+1−i)
U(m,n−1−i)(t1, t2)

+mα
{
M

(r,s+1−i)
U(m+1,n−i)(t1, t2)−M (r,s+1−i)

U(m+1,n+1−i)(t1, t2)
}]
. (38)

Remark 4.14. By putting t1 = t2 = 0 in (37) and (38), we have for 1 ≤ m ≤ n− 2 and r, s = 0, 1, 2, . . .,

α(r+1,s)
m,n =

[
−1

mα

]r+1

(r+1)(r+1)α(0,s)
m,n +

r∑
i=0

(−1)i
[

1

mα

]i+1

(r+1)(i)·
[
mα·α(r+1−i,s)

m+1,n +β
{
α
(r+1−i,s)
m,n−1 −α(r+1−i,s)

m−1,n−1

}]
,

and

α
(r,s+1)
m,n+1 =

[
−1

α(n−m)

]s+1

(s+ 1)(s+1)α
(r,0)
m,n−s +

[
1− β

α(n−m)

] s∑
i=0

[
1

α(n−m)

]i
(s+ 1)(i)α

(r,s+1−i)
m,n−i

+

s∑
i=0

[
1

α(n−m)

]i+1

(s+ 1)(i)
[
βα

(r,s+1−i)
m,n−1−i +mα

{
α
(r,s+1−i)
m+1,n−i − α

(r,s+1−i)
m+1,n+1−i

}]
.
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