Bayes and minimax estimation of parameters of Markov transition matrix

Babulal Seal, Sk Jakir Hossain

Department of Statistics, Burdwan University, Burdwan, W.B., India

Abstract. Based on sample observations, Bayes estimator and minimax estimator for the transition probability matrix are worked out in the cases where we have belief regarding the parameters. For example, where the states seem to be equal or not, are worked out using Dirichlet prior. In both cases priors are in accordance with our beliefs. Using the Bayes method, minimax estimator is also obtained.

1. Introduction

Internal migration model (Seal and Hossain, 2013b) was used for estimation of the parameters involved in analysing internal migration data and also testing (Seal and Hossain, 2013a) for the same. Even a measure of importance of the states and their estimation was developed by the authors (Seal and Hossain, 2013c). Now we look at another way of estimating the parameters of the transition matrix.

Internal migrational behavior of population is attempted with the Markov model. Estimation of parameters of transition probability matrix in classical way is available in literature. Now the knowledge of behaviors of migration pattern should be employed in finding Bayes procedure. For example, if we have belief that all states are almost equally important then we should try to add such beliefs into estimation procedures. In this paper we shall work with such notion e.g., Bayes and minimax. The importance of such work nowadays is important if we follow “In his report (MacPherson, 2004) on the ‘Strengthening of United Nations: an agenda for further change’ UN Secretary-General Kofi Annan identified migration as a priority issue”.

For several years, a progressive new trend has been growing in applied statistics. It is becoming even more popular to build application-specific models that are designed to account for the hierarchical and latent structures inherent in any particular data generation mechanism. But the development of methodological and computational tools for statistical analysis began to bring such model fitting into routine practice.

In Section 2 Bayes estimation of the parameters under Dirichlet prior is given. Section 3 includes Bayes estimation where the states or places seem to be equal (i.e., they seem to be equally important). There is a way to find out minimax estimator through Bayes estimation, e.g. Equaliser Bayes is Minimax. In Section 4, Minimax estimator through Bayes procedure is obtained. Also it is compared with MLE.

2. Bayes estimation under conjugate prior

In this section we would like to evaluate the Bayes’ estimator for the multinomial parameter \(p_i = (p_{i1}, p_{i2}, \ldots, p_{ik}) \), for all \(i = 1, 2, \ldots, k \) under Dirichlet prior, which is conjugate to the p.m.f. of \(n_i \), for all
After integration we have the marginal p.m.f. of n_i. The joint distribution of n is

$$
\pi(n) = \prod_{i=1}^k \pi(p_i) = \prod_{i=1}^k \left(\frac{\Gamma \left(\sum_{j=1}^k \alpha_{ij} \right)}{\prod_{j=1}^k \Gamma(\alpha_{ij})} \right) \prod_{j=1}^k n_i^{\alpha_{ij}-1}.
$$

The joint distribution of $n = (n_1^T, n_2^T, \ldots, n_k^T)^T$ and $p = (p_1^T, p_2^T, \ldots, p_k^T)^T$ is given by

$$
f(n|p)\pi(p) = \prod_{i=1}^k f(n_i|p_i)\pi(p_i) = \prod_{i=1}^k \left(\frac{n_i!}{\prod_{j=1}^k n_{ij}!} \left(\frac{\Gamma \left(\sum_{j=1}^k \alpha_{ij} \right)}{\prod_{j=1}^k \Gamma(\alpha_{ij})} \right) \prod_{j=1}^k p_{ij}^{\alpha_{ij}-1} \right).
$$

The marginal p.m.f. of n is

$$
g(n) = \int_{S_i} \cdots \int_{S_k} f(n|p)\pi(p) \prod_{i=1}^k \prod_{j=1}^k dp_{ij},
$$

where the integration is carried out over the region

$$
S_i = \left\{ p_{ij} : p_{ij} \geq 0 \text{ and } \sum_{j=1}^k p_{ij} = 1 \right\}, \text{ for all } i = 1, 2, \ldots
$$

After integration we have the marginal p.m.f. of n is

$$
g(n) = \prod_{i=1}^k \left[\frac{n_i!}{\prod_{j=1}^k n_{ij}!} \left(\frac{\Gamma \left(\sum_{j=1}^k \alpha_{ij} \right)}{\prod_{j=1}^k \Gamma(\alpha_{ij})} \right) \prod_{j=1}^k \Gamma(n_{ij} + \alpha_{ij}) \right].
$$

Then the posterior distribution of p is given by

$$
\pi(p|n) = \frac{f(n|p)\pi(p)}{g(n)} = \prod_{i=1}^k \left[\frac{f(n_i|p_i)\pi(p_i)}{g(n_i)} \right] = \prod_{i=1}^k \left[\frac{\Gamma \left(\sum_{j=1}^k (n_{ij} + \alpha_{ij}) \right)}{\prod_{j=1}^k \Gamma(n_{ij} + \alpha_{ij})} \prod_{j=1}^k p_{ij}^{n_{ij} + \alpha_{ij}-1} \right], \quad (1)
$$

Result 2.1. The Bayes estimator of p_{ij}'s under Dirichlet prior with constant vector $\alpha_i = (\alpha_{i1}, \alpha_{i2}, \ldots, \alpha_{ik})$ for all $i = 1, 2, \ldots, k$ is $\delta(n_{ij}) = \frac{n_{ij}+\alpha_{ij}}{n_i+\alpha_i}$ for all $i, j = 1, 2, \ldots, k$.

Proof. A natural conjugate prior for the parameter p_i, for all $i = 1, 2, \ldots, k$ is given by the Dirichlet density with parameter $\alpha = (\alpha_{i1}, \ldots, \alpha_{ik})$, for all $i = 1, 2, \ldots, k$. Thus the joint prior density is given by

$$
\pi(p) = \prod_{i=1}^k \pi(p_i) = \prod_{i=1}^k \left(\frac{\Gamma \left(\sum_{j=1}^k \alpha_{ij} \right)}{\prod_{j=1}^k \Gamma(\alpha_{ij})} \right) \prod_{j=1}^k p_{ij}^{\alpha_{ij}-1}.
$$

Bayes estimator is easier to find out under this prior but if there are sufficiently large sample then such assumption on prior is immaterial.
which is the product of \(k \) independent Dirichlet distribution with parameter \(\alpha'_i, i = 1, 2, \cdots, k \), where
\[
\alpha'_i = (\alpha'_{i1}, \cdots, \alpha'_{ik})^T = (n_{i1} + \alpha_{i1}, \cdots, n_{ik} + \alpha_{ik})^T, \text{ for all } i = 1, 2, \cdots, k.
\]

Now we are interested to find out the posterior mean of \(p_{ij} \)'s. Let \(r \) be a specified value of \(i \), then from (1) we have
\[
\pi(p_r|n_r) = \frac{\Gamma \left(\sum_{j=1}^{k} (n_{rj} + \alpha_{rj}) \right)}{\prod_{j=1}^{k} \Gamma(n_{rj} + \alpha_{rj})} \prod_{j=1}^{k} p_{rj}^{n_{rj} + \alpha_{rj} - 1}.
\]

Let \(j_o \) be the specified value of \(j \), then
\[
E(p_{rj_o}|n_r) = \frac{\Gamma \left(\sum_{j=1}^{k} (n_{rj} + \alpha_{rj}) \right)}{\prod_{j=1}^{k} \Gamma(n_{rj} + \alpha_{rj})} \int_{S_r} \prod_{j=1}^{k} p_{rj}^{n_{rj} + \alpha_{rj} - 1} p_{rj_o}^{n_{rj_o} + \alpha_{rj_o}} d \mathbf{p}_{rj}
\]
\[
= \frac{\Gamma \left(\sum_{j=1}^{k} (n_{rj} + \alpha_{rj}) \right)}{\prod_{j=1}^{k} \Gamma(n_{rj} + \alpha_{rj})} \frac{\Gamma(n_{rj_o} + \alpha_{rj_o} + 1) \prod_{j=1}^{k} \Gamma(n_{rj} + \alpha_{rj})}{\sum_{j=1}^{k} \alpha_{rj} + n_r}.
\]

Since \(r \) and \(j_o \) are specified value of \(i \) and \(j \) respectively, so we have,
\[
E(p_{ij}) = \frac{\alpha_{ij} + n_{ij}}{\sum_{j=1}^{k} \alpha_{ij} + n_i}, \text{ for all } i, j = 1, 2, \cdots, k.
\]

Therefore the Bayes estimator of \(p_{ij} \) under sum of squared error loss is
\[
\delta(n_{ij}) = \frac{\alpha_{ij} + n_{ij}}{\sum_{j=1}^{k} \alpha_{ij} + n_i} = \frac{\alpha_{ij} + n_{ij}}{\alpha_i + n_i},
\]
where \(\alpha_i = \sum_{j=1}^{k} \alpha_{ij} \), for all \(i = 1, 2, \cdots, k \).

3. Bayes estimation where the states seem to be equal

In this section we would like to evaluate the Bayes estimator under the constraint that all the states are equally important, i.e. \(p_{11} = p_{22} = \cdots = p_{kk} = p \), where the value of \(p \) is unknown.

We have parameters \(\mathbf{p} = (p_{11}, p_{12}, \cdots, p_{1k}; p_{21}, p_{22}, \cdots, p_{2k}; \cdots; p_{k1}, p_{k2}, \cdots, p_{kk}) \) and our interest is in \((p_{11}, p_{22}, \cdots, p_{kk}) \), and others are nuisance parameter.
Let us denote \(p_{-i} = (p_{1,i}, \cdots, p_{i-1,i}, p_{i+1,i}, \cdots, p_{k,k}) \), for all \(i = 1, 2, \cdots, k \) and also \(p_{-} = (p_{-1}^T, \cdots, p_{-k}^T)^T \). Then we have the joint p.m.f. of \(n_{ij} \)'s, and for all \(i, j = 1, 2, \cdots, k \) is

\[
f(n|p, p_{-}) = \prod_{i=1}^{k} f(n_i|p, p_{-i}) = \prod_{i=1}^{k} \left(\frac{n_i!}{n_{i1}! \cdots n_{ik}!} p_{i1}^{n_{i1}} \cdots p_{i,i-1}^{n_{i,i-1}} p_{i,i+1}^{n_{i,i+1}} \cdots p_{ik}^{n_{ik}} \right)
\]

\[
= \prod_{i=1}^{k} \left(\frac{n_i!}{n_{i1}! \cdots n_{ik}!} \right) \prod_{i=1}^{k} \prod_{j=1, j \neq i}^{k} p_{ij}^{n_{ij}}.
\]

(2)

Under \(p_{11} = p_{22} = \cdots = p_{kk} = p \) (with \(p \) unknown), the prior distribution is taken as

\[
\pi(p, p_{-}) = \prod_{i=1}^{k} \left[\frac{\Gamma(\alpha_i)}{\Gamma(\alpha_{i1})\Gamma(\alpha_{i2}) \cdots \Gamma(\alpha_{ik})} \times p_{i1}^{\alpha_{i1} - 1} \cdots p_{i,i-1}^{\alpha_{i,i-1} - 1} p_{i,i+1}^{\alpha_{i,i+1} - 1} \cdots p_{ik}^{\alpha_{ik} - 1} \right]
\]

\[
= \prod_{i=1}^{k} \left[\frac{\Gamma(\alpha_i)}{\Gamma(\alpha_{i1})\Gamma(\alpha_{i2}) \cdots \Gamma(\alpha_{ik})} \right] \sum_{j=1}^{k} \alpha_{ij} - k \prod_{i=1}^{k} p_{ij}^{\alpha_{ij} - 1},
\]

(3)

where \(\alpha_i = \sum_{j=1}^{k} \alpha_{ij} \), for all \(i = 1, \cdots, k \).

Result 3.1. Bayes estimator of \(p_{ij} \)'s when \(p_{11} = p_{22} = \cdots = p_{kk} = p \) (with \(p \) unknown) is

\[
\hat{\delta}(n_{ii}) = \frac{\sum_{j=1}^{k} (n_{ij} + \alpha_{ij}) - (k - 1)}{n + \alpha - 2(k - 1)}
\]

for all \(i = 1, 2, \cdots, k \), and

\[
\hat{\delta}(n_{ij}) = \frac{n_{ij} + \alpha_{ij}}{n + \alpha - 2(k - 1)}
\]

for all \(i, j(j \neq i) = 1, 2, \cdots, k \).

Proof. We have from (2) and (3) the joint distribution of \(n_{ij} \)'s and \(p, p_{ij} \)'s (\(i \neq j \)) is

\[
f(n|p, p_{-}) \pi(p, p_{-}) = \prod_{i=1}^{k} \left[\frac{n_i!}{n_{i1}! \cdots n_{ik}!} \Gamma(\alpha_i) \right] \sum_{j=1}^{k} (n_{ij} + \alpha_{ij}) - k \prod_{i=1, j=1}^{k} p_{ij}^{n_{ij} + \alpha_{ij} - 1}.
\]

Then the posterior distribution is of the form

\[
\pi(p, p_{-}|n) = \frac{1}{C(n, \alpha)} \prod_{i=1}^{k} \sum_{j=1}^{k} (n_{ij} + \alpha_{ij}) - k \prod_{i=1, j=1}^{k} p_{ij}^{n_{ij} + \alpha_{ij} - 1},
\]

(4)
where

\[C(n, \alpha) = \int_0^1 \left(\int_{S'_1} \cdots \int_{S'_k} \frac{\sum (n_{ii} + \alpha_{ii}) - k \prod_{i=1}^k \prod_{j=1, j \neq i}^k (n_{ij} + \alpha_{ij})^{-1} \prod_{i=1}^k \prod_{j=1, j \neq i}^k dp_{ij}}{(1 - p)^{j \neq i}} \right) dp,
\]

where the integration is carried out over the region

\[S'_i = \left\{ p_{ij} : p_{ij} \geq 0, p \geq 0, \text{ and } \sum_{j \neq i} p_{ij} = 1 - p \right\} \text{ for all } i = 1, 2, \cdots, k.\]

Now, for a particular \(i \), we have

\[\int_{S'_i} \prod_{j=1}^{i-1} p_{ij}^{n_{ij}+\alpha_{ij}-1} \prod_{l=i+1}^k p_{il}^{n_{il}+\alpha_{il}-1} \prod_{j=1, j \neq i}^k dp_{ij} = \frac{\prod_{j=1}^k \Gamma(n_{ij} + \alpha_{ij})}{\Gamma \left(\sum_{j=1, j \neq i}^k (n_{ij} + \alpha_{ij}) \right)} \left(1 - p \right)^{j \neq i}, \quad (5)
\]

for all \(i = 1, 2, \cdots, k.\)

So after integrating w.r.t. \(p_{ij} \)’s (\(i \neq j \)) from (4) we have

\[C(n, \alpha) = \frac{\prod_{i=1}^k \prod_{j=1, j \neq i}^k \Gamma(n_{ij} + \alpha_{ij})}{\prod_{i=1}^k \Gamma \left(\sum_{j=1, j \neq i}^k (n_{ij} + \alpha_{ij}) \right)} \int_0^1 \frac{\sum_{i=1}^k (n_{ii} + \alpha_{ii}) - k \sum_{i=1}^k \sum_{j=1, j \neq i}^k (n_{ij} + \alpha_{ij}) - k}{(1 - p)^{j \neq i}} dp
\]

\[= \frac{\prod_{i=1}^k \prod_{j=1, j \neq i}^k \Gamma(n_{ij} + \alpha_{ij}) \Gamma \left(\sum_{i=1}^k (n_{ii} + \alpha_{ii}) - (k - 1) \right) \Gamma \left(\sum_{i=1}^k \sum_{j=1, j \neq i}^k (n_{ij} + \alpha_{ij}) - (k - 1) \right)}{\prod_{i=1}^k \Gamma \left(\sum_{j=1, j \neq i}^k (n_{ij} + \alpha_{ij}) \right) \Gamma(n + \alpha - 2(k - 1))},
\]

where \(n = \sum_{i=1}^k \sum_{j=1}^k n_{ij} \) and \(\alpha = \sum_{i=1}^k \sum_{j=1}^k \alpha_{ij} \).
Thus we get

\[
\frac{1}{C(n, \alpha)} = \frac{\Gamma(n + \alpha - 2(k - 1))}{\Gamma\left(\sum_{i=1}^{k} (n_{ii} + \alpha_{ii}) - (k - 1)\right) \Gamma\left(\sum_{j=1}^{k} \sum_{j \neq i}^{k} (n_{ij} + \alpha_{ij}) - (k - 1)\right) \prod_{i=1}^{k} \prod_{j \neq i}^{k} \Gamma(n_{ij} + \alpha_{ij})}.
\] (6)

From (4) we see that the marginal distribution of \(p\) follows Beta distribution with parameters

\[
\sum_{i=1}^{k} (n_{ii} + \alpha_{ii}) - (k - 1) \quad \text{and} \quad \sum_{i=1}^{k} \sum_{j=1}^{k} (n_{ij} + \alpha_{ij}) - (k - 1).
\]

Therefore we have

\[
E(p) = \frac{\sum_{i=1}^{k} (n_{ii} + \alpha_{ii}) - (k - 1)}{n + \alpha - 2(k - 1)}.
\]

Thus Bayes estimator of \(p_{ii}\) is

\[
\hat{\delta}(n_{ii}) = \frac{\sum_{i=1}^{k} (n_{ii} + \alpha_{ii}) - (k - 1)}{n + \alpha - 2(k - 1)} \quad \text{for all} \quad i = 1, 2, \ldots, k.
\]

Now we want to find out the posterior mean of \(p_{ij}\)’s for \((i \neq j)\)

In particular

\[
E(p_{12}) = \frac{1}{C(n, \alpha)} \int_{0}^{1} p^{\sum_{i=1}^{k} (n_{ii} + \alpha_{ii}) - k} \int_{S_{1}}^{1} p_{12}^{n_{12} + \alpha_{12}} \prod_{j=3}^{k} p_{1j}^{n_{1j} + \alpha_{1j} - 1} \prod_{j=2}^{k} dp_{1j} \times \int_{S_{2}}^{1} \prod_{j=1}^{k} p_{2j}^{n_{2j} + \alpha_{2j} - 1} \prod_{j \neq 2}^{k} dp_{2j} \times \cdots \times \int_{S_{k}}^{1} \prod_{j=1}^{k} p_{kj}^{n_{kj} + \alpha_{kj} - 1} \prod_{j \neq k}^{k} dp_{kj} dp.
\] (7)

Now,

\[
\int_{S_{1}}^{1} p_{12}^{n_{12} + \alpha_{12}} p_{13}^{n_{13} + \alpha_{13} - 1} \cdots p_{1k}^{n_{1k} + \alpha_{1k} - 1} \prod_{j=2}^{k} dp_{1j} = \frac{\Gamma(n_{12} + \alpha_{12} + 1) \prod_{j=3}^{k} \Gamma(n_{1j} + \alpha_{1j}) \prod_{j=2}^{k} (n_{1j} + \alpha_{1j})}{\Gamma\left(\sum_{j=2}^{k} (n_{1j} + \alpha_{1j}) + 1\right)}.
\] (8)

Thus we have, from (7) using (8) and (5) for \(i = 2, 3, \ldots, k\)

\[
E(p_{12}) = C'(n, \alpha) \int_{0}^{1} p^{\sum_{i=1}^{k} (n_{ii} + \alpha_{ii}) - k} \prod_{j=1}^{k} \prod_{j \neq i}^{k} (n_{ij} + \alpha_{ij}) - (k - 1) \times (1 - p) \times dp.
\]
where

\[
C'(n, \alpha) = \frac{1}{C(n, \alpha)} \times \frac{\Gamma(n_{12} + \alpha_{12} + 1) \prod_{j=3}^{k} \Gamma(n_{j1} + \alpha_{j1})}{\Gamma \left(\sum_{j=2}^{k} (n_{1j} + \alpha_{1j}) + 1 \right)} \times \frac{\prod_{i=2}^{k} \prod_{j=1, j \neq i}^{k} \Gamma \left(\sum_{j=1}^{k} (n_{ij} + \alpha_{ij}) \right)}{\Gamma(n + \alpha - 2(k-1))}.
\]

(9)

Therefore

\[
E(p_{12}) = C'(n, \alpha) \frac{\prod_{i=1}^{k} \sum_{j=1, j \neq i}^{k} (n_{ij} + \alpha_{ij}) - (k-1)}{\Gamma(n + \alpha - (2k-3))} \Gamma \left(\sum_{i=1}^{k} \sum_{j=1, j \neq i}^{k} (n_{ij} + \alpha_{ij}) - (k-2) \right)
\]

\[
= \frac{n_{12} + \alpha_{12}}{\sum_{j=2}^{k} (n_{1j} + \alpha_{1j})} \frac{\prod_{i=1}^{k} \sum_{j=1, j \neq i}^{k} (n_{ij} + \alpha_{ij}) - (k-1)}{\Gamma(n + \alpha - 2(k-1))} \frac{\Gamma(n + \alpha - (2k-3))}{\Gamma(n + \alpha - (2k-3))} \Gamma \left(\sum_{i=1}^{k} \sum_{j=1, j \neq i}^{k} (n_{ij} + \alpha_{ij}) - (k-2) \right)
\]

[using (6)].

(9)

Therefore we get, Bayes estimate of \(p_{ij} \), \((j \neq i)\) to be

\[
\hat{\delta}(n_{ij}) = \frac{n_{ij} + \alpha_{ij}}{\sum_{j=1, j \neq i}^{k} (n_{ij} + \alpha_{ij})} \frac{\prod_{i=1}^{k} \sum_{j=1, j \neq i}^{k} (n_{ij} + \alpha_{ij}) - (k-1)}{\Gamma(n + \alpha - 2(k-1))} \Gamma \left(\sum_{i=1}^{k} \sum_{j=1, j \neq i}^{k} (n_{ij} + \alpha_{ij}) - (k-2) \right), \text{ for all } i, j(j \neq i) = 1, 2, \cdots, k,
\]

and that completes the proof. \(\square \)

4. Minimax Estimator

In this section, we develop minimax estimator for \(p_{ij} \)’s, for all \(i, j \) with respect to the sum of squared error loss. Here we use the result that a Bayes estimator with constant risk is minimax. Now the risk
function for \(i \)th state is

\[
E_{p_i} \left[\sum_{j=1}^k \{\delta(n_{ij}) - p_{ij}\}^2 \right] = \sum_{j=1}^k \left[\text{Bias}(\delta(n_{ij})) \right]^2 + \sum_{j=1}^k \text{Var}[\delta(n_{ij})]
\]

\[
= \sum_{j=1}^k \left[p_{ij} - E\left(\frac{\alpha_{ij} + n_{ij}}{\alpha_i + n_i} \right) \right]^2 + \sum_{j=1}^k \text{Var}\left(\frac{\alpha_{ij} + n_{ij}}{\alpha_i + n_i} \right)
\]

\[
= \sum_{j=1}^k \left[p_{ij} - \left(\frac{\alpha_{ij} + n_{ij}}{\alpha_i + n_i} \right) \right]^2 + \sum_{j=1}^k \left[\frac{n_i p_{ij}(1 - p_{ij})}{(\alpha_i + n_i)^2} \right]
\]

\[
= \sum_{j=1}^k (p_{ij} \alpha_i - \alpha_{ij})^2 + \sum_{j=1}^k n_i p_{ij}(1 - p_{ij}) - \frac{(\alpha_i^2 - n_i)\sum_{j=1}^k p_{ij}^2 + \sum_{j=1}^k \alpha_j^2 + \sum_{j=1}^k (n_i - 2\alpha_i \alpha_{ij})p_{ij}}{(\alpha_i + n_i)^2}
\]

\[
= \frac{1}{(\alpha_i + n_i)^2} \left[(\alpha_i^2 - n_i) \left(\sum_{j=1}^{k-1} p_{ij}^2 + (1 - \sum_{j=1}^{k-1} p_{ij})^2 \right) + \sum_{j=1}^k \alpha_j^2 \right.
\]

\[
+ \sum_{j=1}^{k-1} (n_i - 2\alpha_i \alpha_{ij})p_{ij} + (n_i - 2\alpha_i \alpha_{ik})(1 - \sum_{j=1}^{k-1} p_{ij})
\]

\[
= \frac{1}{(\alpha_i + n_i)^2} \left[(\alpha_i^2 - n_i) \left(\sum_{j=1}^{k-1} p_{ij}^2 + (1 - \sum_{j=1}^{k-1} p_{ij})^2 \right) + \sum_{j=1}^k \alpha_j^2 \right.
\]

\[
+ \sum_{j=1}^{k-1} ((n_i - 2\alpha_i \alpha_{ij}) - (n_i - 2\alpha_i \alpha_{ik}))p_{ij} + (n_i - 2\alpha_i \alpha_{ik}) \right].
\]

(10)

Now in order to make it constant over all \(p_{ij} \), we need coefficient of \(p_{ij} \) and that of \(p_{ij}^2 \) to be zero. Which implies \(\alpha_i^2 - n_i = 0 \), for all \(i = 1, 2, \ldots, k \), and \((n_i - 2\alpha_i \alpha_{ij}) - (n_i - 2\alpha_i \alpha_{ik}) = 0 \), for all \(j = 1, 2, \ldots, k-1 \). Which gives \(\alpha_i = \sqrt{m_i} \), for all \(i = 1, 2, \ldots, k \), and \(\alpha_1 = \alpha_2 = \cdots = \alpha_k = \frac{1}{k} \sqrt{m_i} \), for all \(i = 1, 2, \cdots, k \). So that minimax estimator of \(p_{ij} \), using sum of squared error loss, is

\[
\delta^*(n_{ij}) = \frac{n_{ij} + \frac{1}{k} \sqrt{m_i}}{n_i + \sqrt{m_i}}, \text{ for all } i, j = 1, 2, \cdots, k.
\]

From (10) we have the minimax risk

\[
r_{\delta^*} = \frac{k - 1}{k} \cdot \frac{1}{(1 + \sqrt{m_i})^2}, \text{ for all } i = 1, 2, \cdots, k
\]

and risk of ML estimator

\[
r_p = E \left[\sum_{j=1}^k (p_{ij} - \hat{p}_{ij})^2 \right] = \sum_{j=1}^k \frac{p_{ij}(1 - p_{ij})}{n_i} = \frac{1 - \sum_{j=1}^k p_{ij}^2}{n_i}, \text{ for all } i = 1, 2, \cdots, k.
\]
This shows that minimax risk is less than the maximum possible risk of m.l.e, for all $i = 1, 2, \cdots, k$. This holds when in particular $p_1 = p_2 = \cdots = p_k = \frac{1}{k}$ for all $i = 1, 2, \cdots, k$. Then risk of MLE $r_{\hat{p}_i} = \frac{(k-1)}{k} \frac{1}{n_i}$ for all $i = 1, 2, \cdots, k$, which is larger than minimax risk. Thus minimax estimator is better than maximum likelihood estimator in this particular case also.

5. Concluding Remarks

More importantly we have worked out in Section 2 and 3 for a class of priors. But from practical point of view if there are other guesses regarding transitions, then that kind of prior should be chosen by imposing conditions on hyperparameters of the prior model. The spirit of the thinking behind the investigation and development reported here came from (Shryoack et al., 1976) and (United Nations, 1970). A good reference for Bayes and Minimax procedures is (Robbins, 1955).

References