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Bayes and minimax estimation of parameters of Markov
transition matrix
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Abstract. Based on sample observations, Bayes estimator and minimax estimator for the transition
probability matrix are worked out in the cases where we have belief regarding the parameters. For
example, where the states seem to be equal or not, are worked out using Dirichlet prior. In both cases
priors are in accordance with our beliefs. Using the Bayes method, minimax estimator is also obtained.

1. Introduction

Internal migration model (Seal and Hossain, 2013b) was used for estimation of the parameters involved in
analysing internal migration data and also testing (Seal and Hossain, 2013a) for the same. Even a measure
of importance of the states and their estimation was developed by the authors (Seal and Hossain, 2013c).
Now we look at another way of estimating the parameters of the transition matrix.

Internal migrational behavior of population is attempted with the Markov model. Estimation of pa-
rameters of transition probability matrix in classical way is available in literature. Now the knowledge of
behaviors of migration pattern should be employed in finding Bayes procedure. For example, if we have
belief that all states are almost equally important then we should try to add such beliefs into estimation
procedures. In this paper we shall work with such notion e.g., Bayes and minimax. The importance of such
work nowadays is important if we follow “In his report (MacPherson, 2004) on the ’Strengthening of United
Nations: an agenda for further change’ UN Secretary-General Kofi Annan identified migration as a priority
issue”.

For several years, a progressive new trend has been growing in applied statistics. It is becoming even
more popular to build application-specific models that are designed to account for the hierarchical and latent
structures inherent in any particular data generation mechanism. But the development of methodological
and computational tools for statistical analysis began to bring such model fitting into routine practice.

In Section 2 Bayes estimation of the parameters under Dirichlet prior is given. Section 3 includes Bayes
estimation where the states or places seem to be equal (i.e., they seem to be equally important). There is a
way to find out minimax estimator through Bayes estimation, e.g. Equaliser Bayes is Minimax. In Section
4, Minimax estimator through Bayes procedure is obtained. Also it is compared with MLE.

2. Bayes estimation under conjugate prior

In this section we would like to evaluate the Bayes’ estimator for the multinomial parameter p, =
(pi1, pi2, -+ ,Pix), for all i = 1,2, -+ |k under Dirichlet prior, which is conjugate to the p.m.f. of n;, for all
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1=1,2,--- , k. Bayes estimator is easier to find out under this prior but if there are sufficiently large sample
then such assumption on prior is immaterial.

Result 2.1. The Bayes estimator of p;; ’s under Dirichlet prior with constant vector c; = (1, g, ++ , k)
foralli=1,2,--- Kk is 6(n;;) = ::”IZ” foralli,j =1,2,--- k.
Proof. A natural conjugate prior for the parameter p;, for all i = 1,2,--- | k is given by the Dirichlet density
with parameter a; = (ay1,- -+ , k), for all i = 1,2, -+ k. Thus the joint prior density is given by

k
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which is the product of k independent Dirichlet distribution with parameter o}, i = 1,2,--- ,k, where
O[; = (a;l, e 7a;k)T = (nil + i, NGk + aik)Tv for all 1 = 1,2, 7k'

Now we are interested to find out the posterior mean of p;;’s. Let r be a specified value of ¢, then from
(1) we have
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Since r and j, are specified value of ¢ and j respectively, so we have,

Qij + Nij
E Q5 + n;.
=1

Therefore the Bayes estimator of p;; under sum of squared error loss is

E(pi;) =  foralli,j=1,2,-- k.

5 _ gt o6 g
(nij) = —; P——
(a (N
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j=1

k
where o;. = > a5, foralli=1,2,--- k. O
j=1

3. Bayes estimation where the states seem to be equal

In this section we would like to evaluate the Bayes estimator under the constraint that all the states are
equally important, i.e. p1y = p22 = -+ = prx = p, where the value of p is unknown.

We have parameters p = (p11, P12, "+, P1k; P21, P22, * »P2ki "+ 3 Pk1,Pk2," "+, Pkk) and our interest is in
(p11, P22, - , Prk), and others are nuisance parameter.
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Let us denote P—i = (pih oy Dii—1,DPii41, 0 7pik:)7 for alli = 17 2a e 7k and also pP-= (P:Cu e ’pzk,)T'
Then we have the joint p.m.f. of n;;’s, and for all 4,5 =1,2,--- |k is
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Under p11 = pag = - -+ = pgr = p (with p unknown), the prior distribution is taken as
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Result 3.1. Bayes estimator of p;;’s when p11 = poa = -+ = pri, = p (with p unknown) is
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Proof. We have from (2) and (3) the joint distribution of n;;’s and p, p;;’s (i # j) is
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Then the posterior distribution is of the form
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where
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where the integration is carried out over the region
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So after integrating w.r.t. p;;’s (¢ # j) from (4) we have
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Thus we get
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From (4) we see that the marginal distribution of p follows Beta distribution with parameters
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Now we want to find out the posterior mean of p;;’s for (i # j)

In particular
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4. Minimax Estimator

In this section, we develop minimax estimator for p;;’s , for all ¢, 7 with respect to the sum of squared
error loss. Here we use the result that a Bayes estimator with constant risk is minimax. Now the risk



Seal and Hossain / ProbStat Forum, Volume 06, October 20183, Pages 107-115

function for ith state is
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Now in order to make it constant over all p;;, we need coefficient of p;; and that of p?j to be zero. Which

implies o —n;. =0, forall i = 1,2, -+, k, and (n;. —2a;.;) — (n;. —20.4,) = 0, for all j = 1,2, -
Which gives ;. = \/n;., forallt =1,2,--- [k, and a1 =1 = - = au = %,/ni., foralli=1,2,---

that minimax estimator of p;;, using sum of squared error loss, is
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This shows that minimax risk is less than the maximum possible risk of m.l.e, for all 4 = 1,2,--- k. This
holds when in particular p;1 = pio =+ = pix = % for all i =1,2,--- ,k. Then risk of MLE rp, = (kgl) %
forall i =1,2,--- ,k, which is larger than minimax risk. Thus minimax estimator is better than maximum

likelihood estimator in this particular case also.

5. Concluding Remarks

More importantly we have worked out in Section 2 and 3 for a class of priors. But from practical point
of view if there are other guesses regarding transitions, then that kind of prior should be chosen by imposing
conditions on hyperparameters of the prior model. The spirit of the thinking behind the investigation and
development reported here came from (Shryoack et al., 1976) and (United Nations, 1970). A good reference
for Bayes and Minimax procedures is (Robbins, 1955).
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