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Abstract. In this article, we generalize the Pareto distribution using the quadratic rank transmutation
map studied by Shaw et al. [Shaw, W. T., Buckley, I. R. (2009) The alchemy of probability distributions:
beyond Gram-Charlier expansions, and a skew-kurtotic-normal distribution from a rank transmutation
map. arXiv preprint arXiv:0901.0434] to develop a transmuted Pareto distribution. We provide a com-
prehensive description of the mathematical properties of the subject distribution along with its reliability
behavior. The usefulness of the transmuted Pareto distribution for modeling data is illustrated using real
data.

1. Introduction

The Pareto distribution is named after an Italian-born Swiss professor of economics, Vilfredo Pareto
(1848-1923). Pareto’s law (Pareto, 1897) dealt with the distribution of income over a population and can
be stated as N = Ax−a, where N is the number of persons having income greater than x, and A, and a are
parameters (a is known both as Pareto’s constant and as a shape parameter). It was felt by Pareto that this
law was universal and inevitable-regardless of taxation and social and political conditions. ”Refutations”
of the law have been made by several well-known economists over the past 70 years [e.g., Pigou; Shirras;
Hayakawa]. More recently attempts have been made to explain many empirical phenomena using the Pareto
distribution or some closely related form.For more detail see Johnson et al. (1995).

In this article we use transmutation map approach suggested by Shaw and Buckley (2009) to define a new
model which generalizes the Pareto model. We will call the generalized distribution as the transmuted Pareto
distribution. According to the Quadratic Rank Transmutation Map (QRTM), approach the cumulative
distribution function(cdf) satisfy the relationship

F (x) = (1 + λ)G(x) − λG2(x), |λ| ≤ 1,

where G(x) is the cdf of the base distribution.

Observe that at λ = 0 we have the distribution of the base random variable. Aryal and Tsokos (2009)
studied the the transmuted Gumbel distribution and it has been observed that transmuted Gumbel distri-
bution can be used to model climate data. In the present study we will provide mathematical formulations
of the transmuted Pareto distribution and some of its properties.
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2. Transmuted Pareto distribution

Definition 2.1. The pdf of a Pareto distribution is

g(x, a, x0) =
axa

0

xa+1
,

and the respective cdf is

G(x, a, x0) = 1−
(x0

x

)a

,

where x0is the (necessarily positive) minimum possible value of X, and a is a positive parameter.
The transmuted cdf is

F (x, a, x0, λ) =
[

1−
(x0

x

)a][

1 + λ
(x0

x

)a]

, (1)

and its pdf

f(x, a, x0, λ) =
axa

0

xa+1

[

1− λ+ 2λ
(x0

x

)a]

. (2)

Note that the transmuted Pareto distribution is an extended model to analyze more complex data. The
Pareto distribution is clearly a special case for λ = 0. Figure 1 illustrates some of the possible shapes of the
pdf of a transmuted Pareto distribution for selected values of the parameters λ and a.

Lemma 2.2. The limit of transmuted Pareto density as x → ∞ is 0 and the limit as x → x0 is a(1+λ)
x0

.

Proof. It is straightforward to show the above from the transmuted Pareto density in (2). ✷
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Figure 1: The pdf’s of various transmuted Pareto distributions.

3. Moments and associated measures

Theorem 3.1. Let X have a transmuted Pareto distribution. Then the rth moment of X, say E[Xr], is

E[Xr] =
axr

0

(

2a− r(1 + λ)
)

(a− r)(2a − r)
, a > r.
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Especially we have

µ = E(X) =
ax0(2a− 1λ)

(a− 1)(2a− 1)
,

σ2 = var(X) =
ax2

0

a− 1

[2a− 1− λ

2a− 1
− ax2

0(a− 1− λ)2

(a− 2)2

]

, a > 2.

Proof. The rth order moment is given by

E[Xr] =

∞
∫

x0

xrf(x)dx =

∞
∫

x0

axa
0

xa−r+1

[

1− λ+ 2λ
(x0

x

)a]

dx

= axa
0(1− λ)

∞
∫

x0

dx

xa−r+1
+ 2λax2a

0

∞
∫

x0

dx

x2a−r+1

= axa
0(1− λ)

[

− 1

(a− r)xa−r

∣

∣

∣

∣

∣

∞

x0

]

+ 2λax2a
0

[

− 1

(2a− r)x2a−r

∣

∣

∣

∣

∣

∞

x0

]

= axa
0(1− λ)

[ 1

(a− r)xa−r
0

]

+ 2λax2a
0

[ 1

(2a− r)x2a−r
0

]

=
axr

0(1− λ)

a− r
+

2λaxr
0

2a− r

=
axr

0

(

2a− r(1 + λ)
)

(a− r)(2a − r)
.

If 0 < a ≤ r, then a− r < 0 and

− 1

(a− r)xa−r
=

1

r − a
xr−a, − 1

(2a− r)x2a−r
=

1

r − 2a
xr−2a

goes to infinity as x → ∞. Moreover, as a → r these expressions approaches infinity for all positive x.
Therefore, E[Xr] does not exist for 0 < a ≤ r.

The second moment is

E(X2) =
ax2

0(a− 1− λ)

(a− 1)(a− 2)
,

and the variance is

σ2 =
ax2

0

a− 1

[2a− 1− λ

2a− 1
− ax2

0(a− 1− λ)2

(a− 2)2

]

, a > 2. ✷

The skewness and kurtosis measures can be obtained from the expressions

Skewness(X) =
E(X3)− 3E(X2)µ+ 2µ3

σ3
,

Kurtosis(X) =
E(X4)− 4E(X3)µ+ 6E(X2)µ2 − 3µ4

σ4
,

upon substituting for the raw moments.
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Figure 2: The cdf’s of various transmuted Pareto distributions.

Theorem 3.2. Let X have a transmuted Pareto distribution. Then the moment generating function of X,
say MX(t), is

MX(t) =

∞
∑

i=0

ti

i!

axi
0

(

2a− i(1 + λ)
)

(a− i)(2a− i)
.

Proof. The moment generating function of the random variable X is given by

MX(t) = E[etx] =

∫ ∞

0

etxf(x) dx

=

∫ ∞

0

(

1 + tx+
t2x2

2!
+ · · ·+ tnxn

n!
+ · · ·

)

f(x) dx

=
∞
∑

i=0

tiE(X i)

i!

=

∞
∑

i=0

ti

i!

axi
0

(

2a− i(1 + λ)
)

(a− i)(2a− i)
. ✷

The pth quantile xp of the transmuted Pareto distribution can be obtained from (1) as

xp = x0
a

√

2λ

λ− 1 +
√

(1 − λ)2 − 4λ(p− 1)
.

In particular, the distribution median is

x0.5 = x0
a

√

2λ

λ− 1 +
√
1 + λ2

.
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4. Random number generation and parameter estimation

Using the method of inversion we can generate random numbers from the transmuted Pareto distribution
as

1− λ
(x0

x

)2a

+ (λ− 1)
(x0

x

)a

= u,

where u ∼ U(0, 1). After simple calculation this yields

x = x0

[

λ− 1 +
√

(1 − λ)2 − 4λ(u− 1)

2λ

]− 1
a

. (3)

One can use equation (3) to generate random numbers when the parameters a and λ are known. The
maximum likelihood estimates, MLEs, of the parameters that are inherent within the transmuted Pareto
probability distribution function is given by the following: Let X1, X2, · · · , Xn be a sample of size n from a
transmuted Pareto distribution. Then the likelihood function is given by

L =

n
∏

i=1

f(xi, a, x0, λ) =
anxan

0
n
∏

i=1

xa+1
i

n
∏

i=1

[

1− λ+ 2λ
(x0

x

)a]

, (4)

so, the log-likelihood function is:

LL = lnL = n ln(a) + na ln(x0)− (a+ 1)

n
∑

i=1

ln(xi) +

n
∑

i=1

ln
[

1− λ+ 2λ
(x0

x

)a]

.

Now setting LLa = 0 and LLλ = 0, we have

0 =
n

a
+ n ln(x0)−

n
∑

i=1

ln(xi) +
n
∑

i=1

2λ
(

x0

x

)a

ln
(

x0

x

)

1− λ+ 2λ
(

x0

x

)a ,

0 =
n
∑

i=1

2
(

x0

x

)a

− 1

1− λ+ 2λ
(

x0

x

)a .

Since x ≥ x0, the maximum likelihood estimate of x0 is the first-order statistic x(1). The maximum likelihood

estimator θ̂ = (â, λ̂)
′

of θ = (a, λ)
′

is obtained by solving this nonlinear system of equations. It is usually
more convenient to use nonlinear optimization algorithms such as the quasi-Newton algorithm to numerically
maximize the log-likelihood function given in (4). Applying the usual large sample approximation (assuming
x0 to be known), the maximum likelihood estimators of θ can be treated as being approximately bivariate
normal with mean θ and variance-covariance matrix equal to the inverse of the expected information matrix.
That is,

√
n(θ̂ − θ) → N(0, I−1

(

θ̂)
)

,
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where I−1
(

θ̂) is the variance-covariance matrix of the unknown parameters θ = (σ, λ). The elements of the

2× 2 matrix I−1, Iij
(

θ̂), i, j = 1, 2, can be approximated by Iij
(

θ̂), where Iij
(

θ̂) = −LLθiθj θ=θ̂. Also

I11 = −∂2 lnL

∂a2
=

n

a2
− 2λ(1− λ)

n
∑

i=1

(

x0

x

)a

ln2
(

x0

x

)

[

1− λ+ 2λ
(

x0

x

)a
]2 ,

I12 = −∂2 lnL

∂a∂λ
= 2λ(λ− 1)

n
∑

i=1

(

x0

x

)a

ln
(

x0

x

)(

1− 2
(

x0

x

)a)

[

1− λ+ 2λ
(

x0

x

)a
]2 ,

I22 = −∂2 lnL

∂λ2
==

n
∑

i=1

[

2
(

x0

x

)a

− 1

1− λ+ 2λ
(

x0

x

)a

]2

.

Approximate 100(1− α)% two sided confidence intervals for a and λ are, respectively, given by

â± zα/2

√

I−1
11

(

θ̂), and λ̂± zα/2

√

I−1
22

(

θ̂),

where zα is the upper α−th percentiles of the standard normal distribution. Using R we can easily compute
the Hessian matrix and its inverse and hence the values of the standard error and asymptotic confidence
intervals.

We can compute the maximized unrestricted and restricted log-likelihoods to construct the likelihood
ratio (LR) statistics for testing some transmuted Pareto sub-models. For example, we can use LR statistics to
check whether the fitted transmuted Pareto distribution for a given data set is statistically ”superior” to the
fitted Pareto distribution. In any case, hypothesis tests of the type H0 : Θ = Θ0 versus H0 : Θ 6= Θ0 can be
performed using LR statistics.In this case, the LR statistic for testing H0 versus H1 is ω = 2(L(Θ̂)−L(Θ̂0)),
where Θ̂ and Θ̂0 are the MLEs under H1 and H0. The statistic ω is asymptotically( as n → ∞) distributed
as χ2

k, where k is the dimension of the subset Ω of interest. The LR test rejects H0 if ω > ξγ , where ξγ
denotes the upper 100γ% point of the χ2

k distribution.

5. Reliability analysis

The reliability function R(t), which is the probability of an item not failing prior to some time t, is
defined by R(t) = 1− F (t). The reliability function of a transmuted Pareto distribution is given by

R(t) =
(x0

t

)a
(

λ
(x0

t

)a

− λ+ 1

)

.

The other characteristic of interest of a random variable is the hazard rate function defined by

h(t) =
f(t)

1− F (t)
,

which is an important quantity characterizing life phenomenon. It can be loosely interpreted as the condi-
tional probability of failure, given it has survived to the time t. The hazard rate function for a transmuted
Pareto random variable is given by

h(t) =

a

(

1− λ+ 2λ
(

x0

t

)a
)

t

(

1− λ+ λ
(

x0

t

)a
) .
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Lemma 5.1. The limit of transmuted Pareto hazard function as t → ∞ is 0 and the limit as t → x0 is
a(1+λ)

x0
.

Proof. It is straightforward to show the results of Lemma 2.2 by taking the limit of transmuted Pareto
hazard function. ✷

Figure 3 illustrates the reliability function of a transmuted Pareto distribution for different combinations
of parameters a and λ.
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Figure 3: The reliability function of a transmuted Pareto distribution

6. Order statistics

In statistics, the kth order statistic of a statistical sample is equal to its kth smallest value. Together
with rank statistics, order statistics are among the most fundamental tools in non-parametric statistics and
inference. For a sample of size n, the nth order statistic (or largest order statistic) is the maximum, that
is X(n) = max{X1, X2, . . . , Xn}. The sample range is the difference between the maximum and minimum.
It is clearly a function of the order statistics Range{X1, X2, . . . , Xn} = X(n) − X(1). We know that if
X(1) ≤ X(2) ≤ . . . ≤ X(n) denotes the order statistics of a random sample X1, X2, . . . , Xn from a continuous
population with cdf FX(x) and pdf fX(x) then the pdf of X(j) is given by

fX(j)
(x) =

n!

(j − 1)!(n− j)!
fX(x)[FX (x)]j−1[1− FX(x)]n−j

for j = 1, 2, . . . , n. The pdf of the jth order statistic for transmuted Pareto distributions is given by

fX(j)
(x) =

n!

(j − 1)!(n− j)!

axa
0

xa+1

[

1−λ+2λ
(x0

x

)a]
[

[

1−
(x0

x

)a][

1+λ
(x0

x

)a]
]j−1[

(x0

x

)a
(

λ
(x0

x

)a

−λ+1

)]n−j

.

Therefore, the pdf of the largest order statistic X(n) is given by

fX(n)
(x) =

naxa
0

xa+1

[

1− λ+ 2λ
(x0

x

)a]

×
[

[

1−
(x0

x

)a][

1 + λ
(x0

x

)a]
]n−1

,
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and the pdf of the smallest order statistic X(1) is given by

fX(1)
(x) =

naxa
0

xa+1

[

1− λ+ 2λ
(x0

x

)a]
[

(x0

x

)a
(

λ
(x0

x

)a

− λ+ 1

)]n−1

.

7. Application of transmuted Pareto distribution

In this section, we use a real data set to show that the transmuted Pareto distribution can be a better
model than one based on the Pareto distribution.

Data Set 1. The data are the exceedances of flood peaks (in m3/s) of the Wheaton River near Carcross
in Yukon Territory, Canada. The data consist of 72 exceedances for the years 1958–1984, rounded to one
decimal place. This data were analyzed by Choulakian and Stephens (2011) and are given in Table 1.

Table 1. Exceedances of Wheaton River flood data.
1.7 2.2 14.4 1.1 0.4 20.6 5.3 0.7
13.0 12.0 9.3 1.4 18.7 8.5 25.5 11.6
14.1 22.1 1.1 2.5 14.4 1.7 37.6 0.6
2.2 39.0 0.3 15.0 11.0 7.3 22.9 1.7
0.1 1.1 0.6 9.0 1.7 7.0 20.1 0.4
14.1 9.9 10.4 10.7 30.0 3.6 5.6 30.8
13.3 4.2 25.5 3.4 11.9 21.5 27.6 36.4
2.7 64.0 1.5 2.5 27.4 1.0 27.1 20.2
16.8 5.3 9.7 27.5 2.5 27.0 1.9 2.8

Model Parameter Estimates Standard Error -LL
Transmuted â = 0.349 0.031 286.201

Pareto λ̂ = −0.952 0.047
x0 = min(x) = 0.1

Pareto â=0.2438634 0.028 303.064
x0 = min(x) = 0.1

Generalized Pareto â=12.192 2.294 252.128

k̂ = −0.932 · 10−3 0.146
Exponentiated Weibull α̂ = 0.0502 0.021 251.025

λ̂ = 1.386 0.614

θ̂ = 0.518 0.324
Table 2. Estimated parameters of the Pareto and transmuted Pareto distribution for exceedances of

Wheaton River flood data by assuming x0 = min(x).

The hessian matrix of transmuted Pareto(â = 0.349, λ̂ = −0.952) by assuming x0 = min(x) = 0.1 is
computed as

(

1047.543 71.888
71.888 448.564

)

and the variance covariance matrix

I(θ̂)−1 =

(

0.965× 10−3 −0.546× 10−3

−0.546× 10−3 0.225× 10−2

)

.

Thus, the variances of the MLE of a and λ become V ar(â) = 0.965× 10−3 and V ar(λ̂) = 0.225× 10−2.
Therefore, the 95% C.I of a and λ, respectively, are [0.289, 0.410] and [−0.859,−1].

In order to compare the distributions, we consider some other criterion like K-S (Kolmogorow-Smirnov),
−2 log(L), AIC (Akaike Information Criterion), AICC (Akaike Information Criterion Corrected) and BIC
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(Bayesian information criterion) for the real data set. The best distribution corresponds to lower K-S,
−2 log(L), AIC, AICC and BIC values:

KS = max
1≤i≤n

(

F (Xi)−
i− 1

n
,
i

n
− F (Xi)

)

,

AIC = 2k − 2 log(L), AICC = AIC +
2k(k + 1)

n− k − 1
, and BIC = k log(n)− 2 logL,

where k is the number of parameters in the statistical model, n the sample size and L is the maximized
value of the likelihood function for the estimated model. Also, here for calculating the values of K-S we use
the sample estimates of λ and a. Table 1 shows parameter MLEs to each one of the two fitted distributions,
table 2 shows the values of K-S, −2 log(L), AIC, AICC and BIC values. The values in Table 2 indicate that
the transmuted Pareto distribution leads to a better fit than the Pareto distribution.

Model K-S -2LL AIC AICC BIC
Pareto. 0.456 606.128 610.128 610.302 610.405

T. Pareto 0.389 572.401 578.402 578.755 580.955
Table 3.Criteria for comparison.

The LR statistics to test the hypotheses H0 : λ = 0 versus H1 : λ 6= 0 : ω = 33.7265 > 3.841 = χ2
1(α = 0.05),

so we reject the null hypothesis.
Data Set 2. The second flood data is for the Floyd River located in James, Iowa, USA. The Floyd

River flood rates for the years 1935–1973 are provided in Table 4. For more details and the source of the
data, see Mudholkar and Hutson (1996).

Table 4. Annual flood discharge rates of the Floyd River.
1935 - 1944 1460 4050 3570 2060 1300 1390 1720 6280 1360 7440
1945 - 1954 5320 1400 3240 2710 4520 4840 8320 13900 71500 6250
1955 - 1964 2260 318 1330 970 1920 15100 2870 20600 3810 726
1965 - 1973 7500 7170 2000 829 17300 4740 13400 2940 5660

Model Parameter Estimates Standard Error -LL
Pareto â=0.412 0.066 392.810

Transmuted â = 0.585 0.072 385.349

Pareto λ̂ = −0.910 0.089
Generelazied Pareto â=4582.526 1061.214 379.543

k̂=-0.301 0.174
Exponentiated Weibull α̂ = 0.092 0.214 376.362

λ̂ = 0.254 0.060

θ̂ = 52.127 57.525
Table 5. Estimated parameters of the Pareto and transmuted Pareto distribution for the annual flood

discharge rates of the Floyd River by assuming x0 = min(x).

The hessian matrix of transmuted Pareto(â = 0.585, λ̂ = −0.910) by assuming x0 = min(x) = 318 is
computed as

(

197.257 23.940
23.940 128.290

)

and the variance covariance matrix is

I(θ̂)−1 =

(

0.518× 10−2 −0.967× 10−3

−0.967× 10−3 0.797× 10−2

)

.
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Figure 4: Empirical, fitted Pareto and transmuted Pareto cdf of exceedances of annual flood discharge rates of the Floyd River

Thus, the variances of the MLE of a and λ become V ar(σ̂) = 0.518× 10−2 and V ar(λ̂) = 0.797× 10−2.
Therefore, the 95% C.I of a and λ, respectively, are [0.444, 0.727] and [−0.735,−1].

Model K-S -2LL AIC AICC BIC
Pareto. 0.459 785.619 789.619 789.722 789.283

T. Pareto 0.287 770.698 776.698 777.014 778.025
Table 6. Criteria for comparison.

The LR statistics to test the hypotheses H0 : λ = 0 versus H1 : λ 6= 0 : ω = 14.921 > 3.841 = χ2
1(α = 0.05),

so we reject the null hypothesis.
Table 5 shows parameter MLEs to each one of the two fitted distributions, Table 6 shows the values

of K-S, −2 log(L), AIC, AICC and BIC values for data set 2. The values in Table 6 indicate that the
transmuted Pareto distribution leads to a better fit than the Pareto distribution.

8. Conclusion

In this article, we propose a new model: the so-called the transmuted Pareto distribution which extends
the Pareto distribution in the analysis of data with real support. An obvious reason for generalizing a
standard distribution is because the generalized form is that it provides greater flexibility in modeling real
data. We derive expansions for the expectation, variance, moments and the moment generating function.
The estimation of parameters is approached by the method of maximum likelihood, also the information
matrix is derived. We consider the likelihood ratio statistic to compare the model with its baseline model.
An application of the transmuted Pareto distribution to real data show that the new distribution can be
used quite effectively to provide better fits than the Pareto distribution.
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