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Abstract. Based on the α-binary representation of a number t ∈ [0, 1], described in the introduction,
we define a random variable (r.v.) X which is a geometrically weighted sum of a sequence of independent
and identically distributed (i.i.d.) Bernoulli random variables. Distributional properties of X and some
of its generalizations are studied.

1. Introduction

It is known that every number t, 0 ≤ t ≤ 1 has a binary representation t =
∑∞
i=1 ai (1/2)

i
, where

{ an}∞1 is sequence of zeros and ones. However tk =
∑k
i=1 ai (1/2)

i
with ak = 1, can also be represented

as
∑∞
i=1 ai (1/2)

i
with ak = 0 and aj = 1 for j > k, and for such a number we use first representation.

Under the above convention, t ∈ [0, 1] corresponds to a unique binary sequence { an}∞1 and conversely. If

t =
∑∞
i=1 ai (1/2)

i
, then 0 ≤ t < 1/2 if and only if a1 = 0. Such a number t can be obtained as the limit of

subintervals identified by selecting appropriate half subintervals based on the sequence {an}∞1 .
Now instead of considering the half intervals, if we partition the interval [0,1) in the ratio α : (1 − α),

0 < α < 1, in the first stage, we obtain subintervals [0, α), and [α, 1). Further by partitioning each one of
these intervals into subintervals in the same ratio α : (1 − α), in the second stage, we obtain subintervals
[0, α2), [α2, α), [α, α + α(1 − α)), [α + α(1 − α), 1). This process can be continued. It can be verified

that after the kth stage, the 2k lower boundaries of subintervals are of the form
∑k
i=1 α

i−si−1 (1− α)
si−1 ai,

k = 1, 2, 3, · · · with ai = 0 or 1, where si =
∑i
j=1 aj , i = 1, 2, 3, · · · and s0 = 0.

For example, if k = 3, the eight lower boundary points are 0, α3, α2, α2 + α2(1− α), α, α+ α2(1− α),
α + α(1 − α), α + α(1 − α) + α(1 − α)2 and correspond to the vectors ( a = (a1, a2, a3)) (0,0,0), (0,0,1),
(0,1,0), (0,1,1), (1,0,0), (1,0,1), (1,1,0), (1,1,1). Every number t, 0 < t < 1, can be obtained as the limit of
subintervals identified by selecting appropriate subintervals, that determines the sequence {an}∞1 of zeros
and ones. Thus every real number t, 0 ≤ t < 1, has unique representation through {an}∞1 as

t =

∞∑
i=1

αi−si−1 (1− α)
si−1 ai. (1)

We refer the representation (1) as the α-binary representation and said to have finite (infinite) α-binary
representation according as aj = 1 for finite (infinite) number of values of j.

Keywords. Binary Representation, Independent and Identically Distribu-ted Random Variables, Geometrically Weighted
Bernoulli Random Variables, Distribution Function.

Received: 04 April 2012; Revised: 25 September 2013; Accepted: 15 January 2014
Email addresses: dipesh089@gmail.com (Deepesh Bhati), rnr5@rediffmail.com (R. N. Rattihalli)



Bhati and Rattihalli / ProbStat Forum, Volume 07, January 2014, Pages 12–20 13

Let the selection of a subinterval and its lower limit be governed by a sequence Z1, Z2, · · · , Zk i.i.d.
Bernouli(1, p) random variables. At the ith stage we select upper or the lower subinterval according as Zi is
1 or 0. For example, if Z1 = 0, Z2 = 1, Z3 = 1, the intervals selected are [0, α), [α2, α), [α2 + α(α − α2), α).
Thus corresponding to the sequence Z1 = 0, Z2 = 1, Z3 = 1, the lower limit of the interval is α2 +α(α−α2).

Let Xk be the lower limit of the kth sub-interval selected on the bases of random variables Z1, Z2, · · · , Zk
and X be the random point obtained from the sequence {Zi}∞i=1. Thus we have

Xk(Z1, Z2, · · · , Zk;α, p) =

k∑
i=1

αi−si−1(1− α)si−1Zi, k = 1, 2, · · · (2)

and

X(Z1, Z2, · · · ;α, p) =

∞∑
i=1

αi−si−1(1− α)si−1Zi, (3)

where si =
∑i
j=1 Zj and {Zk}∞1 is a sequence of i.i.d B(1, p) r.v’s. These random variables Xk and X may

be referred as discrete and continuous α-Bernoulli random variables respectively. Further it is to be noted
that Xk can be represented as

Xk(Z1, Z2, · · · , Zk;α, p) = αZ1 + αZ1(1− α)Z1Xk−1(Z2, Z3, · · · , Zk)

For notational simplicity in the following we write Xk(Z1, Z2, · · · , Zk;α, p) and X(Z1, Z2, · · · , Zk;α, p)
as Xk and X respectively.

We note that for (α, p) fixed, {Xk}∞1 is a pointwise non decreasing sequence of r.v’s converging to X.
Kunte and Rattihalli (1992) have shown that when (α, p) = (1/2, 1/2), X has U(0,1) distribution. Bhati et
al. (2011) have obtained the distribution function (d.f.) of X when α = 1/2. In Section 2, we obtain (4)
Fk(·), d.f. of Xk and F (·), d.f. of X. (5) Φk(·) characteristic function (c.f.) of Xk, (6) recursive properties
of Fk, F , Φk, and Φ c.f. of Xk and X, (7) an upper bound for Fk(t) − F (t) and remark on stochastic
ordering is also given. In Section 3, we consider the vector versions of p and α, p = (p0, p1, . . . , pm−1) and

α =
(

1
m ,

1
m , . . . ,

1
m

)
. The graphs of d.f. of X10,F10(·), for different α, p are given in the Appendix.

2. The distributional properties of α−Bernoulli random variables

2.1. The distribution function of Xk

On Ak, the set of all k-dimensional vectors of zeroes and ones define the ordering (0, 0, · · · , 0) ≺
(0, 0, · · · , 0, 1) ≺ (0, 0, · · · , 1, 0) ≺ (0, 0, · · · , 1, 1) ≺ · · · ≺ (1, 1, · · · , 1, 0) ≺ (1, 1, 1, · · · , 1, 1) and the corre-

sponding values of t be denoted by t(0) = 0 < t(1) < · · · < t(2
k−1). For example t(0) = 0, t(2

k−1) = 1−(1−α)k,

equivalently for a, b ∈ Ak, a ≺ b iff ta < tb. The r.v. Xk takes the values t(0), t(1), ·, t(2k−1) and hence the
d.f.‘s’ of Xk is given by

Fk(t) = P (Xk ≤ t) =

r∑
j=0

P
(
Xk = t(j)

)
, t(r) ≤ t < t(r+1) (4)

Theorem 2.1. The d.f. of X is given by

F (t) =


0, t ≤ 0∑∞
i=1 q

i−si−1psi−1ai , 0 ≤ t ≤ 1

1, t ≥ 1.

(5)

where for 0 < t < 1, t has the α-binary representation
∑∞
i=1 α

i−si−1 (1− α)
si−1 ai.
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Proof. Let t have an infinite α-binary representation, i.e t =
∑∞
i=1 α

i−si−1 (1 − α)si−1ai, and aj = 1 for
infinite number of values of j. Let akr be the rth non-zero element in the sequence {ai}, r = 1, 2, · · · . Let
tr be the number having the binary representation (a1, a2, . . . , akr , 0, 0, . . . ) and t0 = 0. It is to be noted
that tr has a α-finite binary termination. If t has an infinite α-binary representation then the sequence {tr}
increases to t. If t has a finite α-binary termination then t = tr for some finite r. Note that

P (X = tr) = P (Zi = ai; i = 1, 2, · · · , kr − 1, Zkr = 1, Zkr+j = 0, j = 1, 2, · · · )
≤ P (Zkr = 1, Zkr+j = 0, j = 1, 2, · · · = 0).

Hence

P (X = tr) = 0 (6)

Thus F does not have a jump at tr and F (tr) ↑ F (t). Let t have finite α-binary representation. We note
that

P (0 ≤ X < t1) = P (Z1 = 0, · · · , Zk1 = 0) = qk1 ,

P (t1 ≤ X < t2) = P (Z1 = 0, · · · , Zk1−1 = 0, Zk1 = 1, Zk1+1 = 0, · · · , Zk2 = 0) = qk2−1p,

P (t2 ≤ X < t3) = P (Z1 = · · · = Zk1−1 = 0, Zk1 = 1, Zk1+1 = · · · = Zk2−1 = 0, Zk2 = 1, Zk2+1 = · · · = Zk3 = 0)

= qk3−2p2.

Thus in general for r = 1, 2, 3, · · · , we have

P (tr−1 ≤ X < tr) = qkr−(r−1)pr−1.

Hence,

P (X < t) =

∞∑
r=1

P (tr−1 ≤ X < tr) =

∞∑
r=1

qkr−(r−1)pr−1.

If we let kr = j, then r − 1 =
∑j−1
i=1 ai = sj−1 and we will have

P (X < t) =

∞∑
j=1

aj(q
j−sj−1psj−1).

In fact F does not have jump at t(0 < t < 1). Hence,

P (X ≤ t) = P (X < t) =

∞∑
j=1

qj−sj−1psj−1aj .

However, if t is an finite α-binary termination then t =
∑r
i=1 α

i−si−1 (1− α)
si−1 ai for some finite number

r and

P (X ≤ t) = P (X < tr) + P (X = tr)

= P (X < tr) from (6)

=

∞∑
j=1

aj
(
qj−sj−1psj−1

)
since aj = 0 for j = r + 1, r + 2, · · · .
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Particular Case. If p = α = 1/2, then

P (X < t) =

∞∑
j=1

aj(1/2)j = t, t ∈ (0, 1).

Hence, X ∼ U( 0, 1).

Corollary 2.2. If p = 1− α, then X ∼ U (0, 1). By substituting p = 1− α in (5), we have

P (X ≤ t) =

∞∑
i=1

αi−si−1(1− α)si−1ai = t

and hence the corollary.

2.2. The characteristic function of Xk

The r.v. Xk defined in (2) takes 2k distinct values ta =
∑k
i=1 α

i−si−1 (1 − α)si−1ai, where a =
(a1, a2, . . . , ak) ∈ Ak, the set of all k-dimensional vectors of zeroes and ones. Let Zi’s be i.i.d. B(1, p)

r.v’s and Z = (Z1, Z2, . . . , Zk) ∈ Ak, then P (Z = a) = psk (1− p)k−sk .
The characteristic function of Xk is given by

Φk(u) =
∑
a∈Ak

p

k∑
j=1

aj
q
k−

k∑
j=1

aj
eiuta

=
∑
a∈Ak

p

k∑
j=1

aj
q
k−

k∑
j=1

aj
e
iu

k∑
i=1

αi−si−1 (1−α)si−1ai
. (7)

In particular, if α = 1/2 then

Φk(u) =
∑
a∈Ak

p

k∑
j=1

aj
q
k−

k∑
j=1

aj
e
iu

k∑
i=1

( 1
2 )

iai
.

We note that, by conditioning on Z1 the c.f. of Xk can be also be written as

Φk(u) =E
(
eiuXk

)
=pE(eiu(α+(1−α)Xk−1)) + q E(eiu(αXk−1))

=p eiuαE(eiu(1−α)Xk−1) + q E(eiuαXk−1)

=p eiuαE(eiu(1−α)Xk−1) + q E(eiuαXk−1)

Φk(u) =p eiuαΦk−1 ((1− α)u) + qΦk−1 (αu) (8)

One can verify that Φk(u) given by (7) also satisfies the recurrence relation (8). As k tends to infinity, we get

Φ(u) = p eiuαΦ((1− α)u) + qΦ(αu).

However for α = 1/2 we have Φ(u) =
(
p eiuα + q

)
Φ(u/2). Repeating this and replacing u by 2u each time,

we get, for n = 1, 2, · · · .

Φ(u) = Φ(u/2n)

∞∏
k=1

(
1− p+ peiu/2

k
)
,

which is exactly same relation obtained in (3) Bhati et al. (2011).
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2.3. Recursive property

The d.f. F (t) is such that F (t) = 0 for t ≤ 0, F (t) = 1 for t ≥ 1 and for 0 < t < 1, it satisfies the
following

F (t) = (1− p)F (t/α) + pF ((t− α) / (1− α)) (9)

By conditioning on Z1 from (3) we have

P (X ≤ t) = P (X ≤ t|Z1 = 1) · P (Z1 = 1) + P (X ≤ t|Z1 = 0) · P (Z1 = 0). (10)

Consider

P (X ≤ t|Z1 = 1) =P
(
α+

∞∑
i=2

αi−si−1 (1− α)
si−1 Zi ≤ t

)
=P (α+ α

∞∑
u=1

αu−Su (1− α)
su Zu+1 ≤ t)

=P (α+ α(1− α)

∞∑
u=1

αu−1−s
′
u−1 (1− α)

s′u−1 Z ′u ≤ t)

(since su =

u∑
i=1

Zi = 1 +

u∑
i=2

Zi = 1 + s′u−1)

=P (α+ (1− α)Y ≤ t),

where Y =
∑∞
u=1 α

u−s′u−1 (1− α)
s′u−1 Zu, which is distributed as that of X. Hence,

P (α+ (1− α)Y ≤ t) = P (X ≤ (t− α)/(1− α)) = F ((t− α)/(1− α)). (11)

Similarly, by conditioning on Z1 = 0 one can show that

P (X < t|Z1 = 0) = F (t/α) (12)

Now (9) follows from (10), (11) and (12).

2.4. Upper bound for Fk(t)− F (t)

If p = 0 we have Xk = X = 0 for all k = 1, 2, · · · and if p = 1 then Xk =
∑k
i=1 α(1−α)i−1 = 1− (1−α)k,

k = 1, 2, · · · and X = 1. Hence Fk(t)− F (t) = 1 if t ∈ [1− (1− α)k, 1) and 0 (otherwise).
Let 0 < p < 1, We note that tk = (a1, a2, · · · , ak, 0) ≤ t ≤ tk = (a1, a2, · · · , ak, 1), where 0 (1) is the

sequence of zeroes (ones) then tk is non-decreasing and increases to t, while tk is non-increasing, decreasing
to t as k tends to infinity and F

(
tk
)
≤ F (t) ≤ F

(
tk
)

Fk(t)− F (t) ≤F (tk)− Fk(tk)

=

{
k∑
i=1

qi−si−1psi−1ai +

∞∑
i=k+1

qi−si−1psi−1

}
−

{
k∑
i=1

qi−si−1psi−1ai

}

=

∞∑
i=k+1

qi−si−1psi−1

=qk+1−skpsk
(
1 + p+ p2 + ....

)
=qk−skpsk ≤ ρk

where, ρ = max(p, q) ∈ (0, 1).
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Figure 1: The graphs of Fk(t) and F (t)

Theorem 2.3. Let u < v have α-binary representation in terms of (a1, a2, · · · , ar, 0, 0, · · · ) and (a1, a2, · · · ,
ar, 1, 1, 1, · · · ) respectively. Then the conditional distribution of X given u ≤ X ≤ v is the same as that of
u+ αr−sr (1− α)srX.

Proof. Observe that the conditioning event implies that Zi = ai, i = 1, 2, · · · , r. Further by (3), X − u
depends on Zi = ai, i = r + 1, r + 2, · · · , which are independent of Zi = ai, i = 1, 2, · · · , r. Hence the
result.

Remark 2.4. From the description of the variables Xk(α, p) : 0 < α < 1, < p < 1 given above (2) it follows
that Xk(α, p) is stochastically increasing in both α, p. This is also evident from the graphs given in the
appendix.

3. A generalization

In this section, we consider r.v’s taking values, 0, 1, 2, · · · ,m − 1 and for m = 2 these will be Bernoulli
random variables. Let {Zn}∞1 be a sequence of i.i.d. r.v’s taking values, 0, 1, 2, · · · ,m − 1 with respective
probabilities p0, p1, · · · , pm−1. Consider the formation of m equal length subintervals of an interval, (in gene-
ral they may be in certain fixed proportions). We know that every number t, 0 ≤ t < 1 can be represented
in terms of the sequence {an}∞1 , an = 0, 1, 2, · · · ,m− 1 where

t =

∞∑
i=1

(1/m)
i
ai. (13)

This may be referred as the m-ary representation. For m = 2(10) the above representation is referred as
binary(decimal) representation of the number t.

Theorem 3.1. Let X =
∑∞
i=1 (1/m)

i
Zi. Then the d.f. of X is given by

F (t) =


0, if t < 0∑∞
r=1 p

kr−r
0

{∏r−1
i=1 paki

}{∏akr−1
j=0 pj

}
, if 0 ≤ t < 1

1, if t ≥ 1

where for 0 < t < 1, t has the m-ary representation (13) and akr is the rth non zero element in the sequence
{an}∞n=1 .
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Proof. Let tr be the number having the m-ary representation (a1, a2, · · · , akr , 0, 0, · · · ) with t0 = 0,

tr =
∑r
i=1 (1/m)

i
ai. It is to be noted that {tr} is an non-decreasing sequence increasing to t. We then have

P (t1 ≤ X < t2) =P (Z1 = 0, · · · , Zk1−1 = 0, Zk1 = ak1 , Zk1+1 = 0, · · · , Zk2−1 = 0, Zk2 < ak2)

=pk2−20 pak1

ak2
−1∑

j=0

pj


P (t2 ≤ X < t3) =P (Z1 = · · · = Zk1−1 = 0, Zk1 = ak1 , Zk1+1 = · · · = Zk2−1 = 0,

Zk2 = ak2 , Zk2+1 = · · · = Zk3−1 = 0, Zk3 = ak3)

=pk3−30 pak1
pak2

ak3
−1∑

j=0

pj

 .

In general, we have P (tr−1 ≤ X < tr) = pkr−r0 (
∏r−1
i=1 paki

)(
∑akr−1
j=0 pj). Thus

Pr(X < t) =

∞∑
r=1

Pr(tr−1 ≤ X < tr) =

∞∑
r=1

pkr−r0

(
r−1∏
i=1

paki

)akr−1∑
j=0

pj

 . (14)

However, Pr(X = t) = Pr(Zi = ai : i = 1, 2, 3, · · · ) = 0

Hence we have from (14) ,

F (t) =

∞∑
r=1

pkr−r0

(
r−1∏
i=1

paki

)akr−1∑
j=0

pj

 .

Particular Cases.
Case(i): Let p0 = p, pj = pj+1, for j = 0, 1, · · · ,m− 1, but as

∑m
j=1 p

j = 1, we have p
(

1−pm
1−p

)
= 1. Then(∏r−1

i=1 paki

)
=
(∏r−1

i=1 p
aki

+1
)

= p
∑r−1

i=1 aki
+r−1 and

{∑akr−1
j=0 pj

}
=
{∑akr−1

j=0 pj+1
}

= p
(1−pakr )

(1−p) . Hence

P (X ≤ t) =

∞∑
r=1

pkr−rp
∑r−1

i=1 aki
+r−1p

(1− pakr )

(1− p)
=

∞∑
r=1

pkr+
∑r−1

i=1 aki

(
1− pakr

1− p

)
.

Case(ii): If pi = 1/m, i = 1, 2, · · · ,m. then

P (X ≤ t) =

∞∑
r=1

pkr−r0

(
r−1∏
i=1

paki

)akr−1∑
j=0

pj


=

∞∑
r=1

pkr−r0

(
r−1∏
i=1

(1/m)

)akr−1∑
j=0

(1/m)


P (X ≤ t) =

∞∑
r=1

(1/m)
kr−r+(r−1)

akr (1/m)

=

∞∑
r=1

(1/m)
kr akr

=

∞∑
j=1

(1/m)
j
aj (since aj = 0 for j 6= kr)

=t
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Hence X ∼ U(0, 1)
Case(iii) : As a particular case, if we take m = 2, p0 = 1 − p = q, p1 = p then it reduced to F (t) =∑∞
i=1 q

i−si−1psi−1ai which is (5) of Bhati et al. (2011). Note that in this case akr = 1, r = 1, 2, · · · .

F (t) =

∞∑
r=1

qkr−r

(
r−1∏
i=1

p

) 0∑
j=0

pj

 .

=

∞∑
r=1

qkr−rpr−1q =

∞∑
r=1

qkr−(r−1)pr−1.

By setting kr = i then si = r, si−1 = r − 1 and since ai = 0 for i 6= kr,we have F (t) =
∑∞
i=1 q

i−si−1psi−1ai,
for 0 < t < 1.
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Appendix: Graphs of D.F. F10(t) for different values of α and p
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Figure 2: Based on the graphs one can observe (i) for t0, (0 < t0 < 1) any fixed value, (a) the function F10(t0) is decreasing
in, for each fixed value of p, (b) F10(t0) is decreasing in p for each fixed value of α. (ii) for p = 1 − α for F10(t) = t for t = ta.


