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Abstract. Suppose distribution functions F1, F2, · · · , Fk are in the max domains of attraction of max
stable laws. Let F be a function of the dfs F1, F2, · · · , Fk. We consider some distribution functions F
and investigate conditions on F1, F2, · · · , Fk under which F belongs to max domain of attraction of max
stable laws. Sums, mixtures and maxima of independent random variables are covered by the results
proved.
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1. Introduction

Consider a collection of distribution functions (dfs) {F1, F2, . . . , Fk}. Suppose each Fj is in the max
domain of attraction (MDA) of a max stable law. Let F be a function of F1, F2, . . . , Fk. We consider func-
tions F that are dfs and find conditions on Fj , j = 1, 2, . . . , k so that F belongs to MDA of a max stable
law. Some work of this nature has already been done; specifically when F is a convolution and when F is
a mixture. This is reviewed here and we refer to Sreehari and Ravi (2010) and Sreehari et al. (2011) for
details. The main aim of this paper is to consider the case when F is a product of dfs Fj . Resnick (1971 a,
b) has earlier studied this problem. We briefly review Resnick’s work and investigate the problem in power
normalization set up.

To make the paper self contained we present definitions and some important results that we need con-
cerning `-max stable laws and p-max stable laws. It is known that if Mn = max (X1, . . . , Xn) , where Xis
are independent identically distributed (iid) random variables (rvs) with df F, and if

lim
n→∞

P

(
Mn − bn

an
≤ x

)
= lim
n→∞

Fn (an.x+ bn) = G(x), x ∈ C(G),

where an > 0, bn ∈ R are norming constants, G is a non-degenerate df and C(G) is the set of all continuity
points of G, then G has to be one of the three types of the well known extreme value distributions, namely,

the Fréchet law: Φα(x) =

{
0, x < 0,

exp(−x−α), 0 ≤ x;
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the Weibull law: Ψα(x) =

{
exp(−|x|α), x < 0,
1, 0 ≤ x;

the Gumbel law: Λ(x) = exp(− exp(−x)), x ∈ R.

Here α > 0 is a parameter.

These laws have been called `-max stable dfs in Mohan and Ravi (1993), to emphasize that these are
obtained as limit laws of linearly normalized partial maxima of iid rvs and F belongs to the `-max domain
of attraction (`-MDA) of the limit law. Necessary and sufficient conditions for a df F to belong to `-MDA
of G, henceforth denoted by D`(G), for each of the three types of `-max stable dfs are well known and are
given below.

Theorem A Let the right extremity of F be given by r(F ) = sup {x : F (x) < 1}

1. F ∈ D`(Φα) for some α > 0 iff 1 − F is regularly varying with exponent −α, that is, iff

limt→∞
1−F (tx)
1−F (t) = x−α, x > 0. In this case, one may take an = F−(1 − 1

n ) and bn = 0 so that

limn→∞ Fn (an.x+ bn) = Φα(x), x ∈ R. Here F−(y) = inf {x : F (x) ≥ y} , y ∈ R.

2. F ∈ D`(Ψα) for some α > 0 iff r(F ) < ∞ and 1− F
(
r(F )− 1

.

)
is regularly varying with exponent

−α, that is, iff limt→∞
1−F(r(F )− 1

tx )
1−F(r(F )− 1

t )
= x−α, x > 0. In this case, one may take an = r(F )− F−(1− 1

n )

and bn = r(F ) so that limn→∞ Fn (an.x+ bn) = Ψα(x), x ∈ R.

3. F ∈ D`(Λ) iff there exists a positive function f such that limt↑r(F )
1−F (t+f(t).x)

1−F (t) = exp(−x), x ≥
0, r(F ) ≤ ∞. If this condition holds for some f, then

∫ r(F )

a
(1− F (s)) ds < ∞, a < r(F ), and

the condition holds with the choice f(t) =
∫ r(F )
t

(1−F (s))ds

(1−F (t)) . In this case, one may take an = f(bn)

and bn = F−
(
1− 1

n

)
so that limn→∞ Fn (an.x+ bn) = Λ(x), x ∈ R. One may also take an =

F−
(
1− 1

ne

)
− bn, bn = F−

(
1− 1

n

)
. Also, f(.) may be taken as the mean residual life time of a ran-

dom variable X given X > t where X has df F.

Following Pancheva (1985), Mohan and Ravi (1993) studied the limit laws of power normalized partial
maxima of iid rvs and their max domains. It is known, (see, for example, Mohan and Ravi, 1993) that if,
for x ∈ C(H),

lim
n→∞

P

((
|Mn|
αn

)1/βn

sign(Mn) ≤ x

)
= lim
n→∞

Fn
(
αn|x|βnsign(x)

)
= H(x),

where αn > 0, βn > 0 are norming constants, and H is a non-degenerate df, then H has to be a p-type of
one of the six types of p-max stable laws, namely,

H1,α(x) =

{
0, x < 1,
exp(−(log x)−α), 1 ≤ x;

H2,α(x) =

 0, x < 0,
exp(−| log x|α), 0 ≤ x < 1,
1, 1 ≤ x;

H3,α(x) =

 0, x < −1,
exp(−| log |x||−α), −1 ≤ x < 0,
1, 0 ≤ x;

H4,α(x) =

{
exp(− log |x|)α, x < −1,
1, −1 ≤ x;
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Φ(x) = Φ1(x), x ∈ R; and Ψ(x) = Ψ1(x), x ∈ R.

These have been called p-max stable dfs in Mohan and Ravi (1993), to emphasize that these are obtained
as limit laws of power normalized partial maxima of iid rvs and F belongs to the p-MDA of the limit law.
Necessary and sufficient conditions for a df F to belong to p-MDA of H, henceforth denoted as Dp(H) for
each of the six p-max stable dfs are given in Mohan and Ravi (1993). Max domains under linear and power
normalizations have been compared in Mohan and Ravi (1993).(See Theorem B below). It is shown that if
a df F belongs to some max domain under linear normalization then it necessarily belongs to the p-MDA
of a p-max stable law and that the converse is not true. So p-max stable laws attract more dfs than `-max
stable laws.

Theorem B Let F be a df. Then

(a) (i) F ∈ D`(Φα)⇒ F ∈ Dp(Φ), (ii) F ∈ D`(Λ), r(F ) =∞⇒ F ∈ Dp(Φ);

(b) F ∈ D`(Λ), 0 < r(F ) <∞⇔ F ∈ Dp(Φ), r(F ) <∞;

(c) F ∈ D`(Λ), r(F ) < 0⇔ F ∈ Dp(Ψ), r(F ) < 0;

(d) (i) F ∈ D`(Λ), r(F ) = 0⇒ F ∈ Dp(Ψ), (ii) F ∈ D`(Ψα), r(F ) = 0⇒ F ∈ Dp(Ψ)

(e) F ∈ D`(Ψα), r(F ) > 0⇔ F ∈ Dp(H2,α)

(f) F ∈ D`(Ψα), r(F ) < 0⇔ F ∈ Dp(H4,α).

The theory concerning max stable laws can be presented in greater generality than above.

Definition 1: A df H is said to be max stable if for every positive integer n there exists a strictly monotone
continuous transformation fn(x) such that

Hn (fn(x)) = H(x) ∀x ∈ R.

Pancheva (1985) proved that the class of max stable laws is given by the two parameter family H(x) =
exp (− exp (−c.h(x))) , where 0 < c ∈ R and h is a strictly increasing invertible continuous function in S(H),
the support of H. A df H is max stable iff Hr is max stable for all r > 0. This class of distributions,
called general max stable laws, naturally contains both the well known extreme value distributions (Fréchet,
Weibull and Gumbel types) as well as the six p-max stable laws derived by Pancheva (1985). The transfor-
mation fn(.) is given by h−1 (h(.) + log n) . Pancheva proved that the class of possible limit distributions of
normalized maxima of iid rvs coincides with the class of general max stable laws.

Definition 2: A df F is said to belong to the MDA of general max stable law H if there exists a se-
quence of strictly monotone continuous transformations {gn(.)} such that

Fn (gn(x))
w→ H(x),

where gn(.) is such that gλ(x) = limn→∞ g−1
mn (gn(x)) , with mn < n, mnn → λ, and gn(.) considered as a

function of λ is solvable, i.e., gλ(x) = t has a unique solution λ = ḡ(x, t). Here gλ has to be continuous
and strictly increasing in x. Sreehari (2009) proved a necessary and sufficient condition for a given df F to
belong to the MDA of H.

Section 2 contains a few lemmas needed for the analysis. In Sections 3 and 4 we briefly discuss the problems
concerning convolutions and mixtures respectively. In section 5 we consider products of dfs.
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2. Preliminary Lemmas

Here we give a few lemmas which will be used later.

Lemma 2.1 For independent rvs X, Y, and t > 0,

P (X + Y > t) ≥ P (X > t(1 + ε))P (| Y |< tε)
+ P (Y > t(1 + ε))P (| X |< tε), ε > 0,

and

P (X + Y ≥ t) ≤ P (X > t(1− ε))
+ P (Y > t(1− ε)) + P (X > tε)P (Y > tε), 0 < ε < 1

2 .

Lemma 2.2 For independent nonnegative rvs X, Y and t > 0,

P (X + Y ≤ t) ≤ P (X ≤ t(1 + ε))P (Y ≤ t(1 + ε)), ε > 0.

Lemma 2.3 For independent nonnegative rvs X, Y and t > 0,

P (X + Y ≤ t) ≥ P (X ≤ t(1− ε))P (Y ≤ t(1− ε))
− P (tε < X < t(1− ε), tε < Y < t(1− ε)), 0 < ε < 1

2 .

Lemma 2.4 For independent rvs X ∼ F1 and Y ∼ F2, r(F1 ∗ F2) = r(F1) + r(F2), and r(F1F2) =
max {r(F1), r(F2)} .

Lemma 2.5 (Lemma 4.4.2 in Samoridnitsky and Taqqu, 1994) Suppose X is a rv with a regularly vary-

ing tail, i.e., there is a real number θ > 0 such that for all x > 0, limt→∞
P (X>tx)
P (X>t) = x−θ. Suppose also

that the tail of X dominates the tail of a positive rv Y in the sense that limt→∞
P (Y >t)
P (X>t) = 0. Then

limt→∞
P (X+Y >t)
P (X>t) = limt→∞

P (X−Y >t)
P (X>t) = 1.

3. Results for convolutions

In this section we mainly discuss answers to the following questions.

For independent rvs X and Y,

1. if X ∼ F1 ∈ D`(H1), Y ∼ F2 ∈ D`(H2) for some H1 and H2, under what conditions the con-
volution X + Y ∼ F1 ∗ F2 ∈ D`(H) and what dfs H are possible?

2. if X + Y ∼ F1 ∗ F2 ∈ D`(H) for some df H, then what can we say about the max domains to
which the individual dfs F1 and F2 may belong?

Consider a service center in which the service has two phases which work one after another for any
customer. Suppose the information is available on the maximum service times of the two phases on each
day for a fixed period. In order to study the maximum time a customer is likely to spend in the center for
service, one needs the information about the behaviour of the total (unobserved) time for each customer.
Conversely, one may have information on the maximum time any customer might have spent on a day in the
service center but to study the efficiency of each of the phases, one needs information on maximum service
time a phase takes for a customer, which may not be available. Thus it is of interest to know the behaviour
of X + Y (∼ F1 ∗ F2) given information about X(∼ F1) and Y (∼ F2) as also the behaviour of X and
Y given the information about X + Y.

Results similar to those above have been obtained for stable laws in Sreehari (1970), Tucker (1968),
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etc. There has been some work of this type in some special cases. It is known (see problem 25 in Chapter
2 of Galambos, 1978) that if F1 is the Gamma distribution with parameters n and α (and hence
F1 ∈ Dl(Λ)) and the df F2 is absolutely continuous with r(F2) = ∞ and

∫∞
−∞ exp(αy)yn−1dF2(y) < ∞,

then F2 ∈ Dl(Λ), and F1 ∗F2 ∈ Dl(Λ). Also, if F1 is the standard lognormal distribution and F2 is the
standard normal distribution then Fi ∈ Dl(Λ), i = 1, 2, and F1 ∗ F2 ∈ Dl(Λ).

Theorem 3.1 (Sreehari et al., 2011) For independent rvs X and Y, if X ∼ F1 ∈ D`(Φα), Y ∼ F2 ∈
D`(Φβ), 0 < α ≤ β , then X + Y ∼ F1 ∗ F2 ∈ D`(Φα).

Remark. In view of Lemma 2.5, if X ∈ D`(Φα) for some α > 0, and the tail of X dominates the
tail of a positive rv Y, then X + Y ∈ D`(Φα). Note that Y need not belong to any `-max domain or Y
may belong to D`(Ψα) or D`(Λ). Note that if X belongs to D`(Φα) and the right extremity of the df of
Y is finite, then the tail of X dominates that of Y and hence by Lemma 2.5, X + Y belongs to D`(Φα)
irrespective of Y belonging to any other max domain.

To address the second question above we give an example to show that F1 ∗ F2 ∈ D`(Φα) but both
F1, F2 do not belong to D`(Φα). We then give a sufficient condition for the assertion to hold. Consider
independent rvs X and Y with

X ∼ F1(x) =

{
0 if x ≤ 1,

1− 1
x
√

2

(
1 + 1

12 sin(log x)
)

if 1 < x,

Y ∼ F2(x) =

{
0 if x ≤ 1,

1− 1
x
√

2

(
1− 1

12 sin(log x)
)

if 1 < x,

Note that Fi /∈ D`(Φα), since Fi is not regularly varying, i = 1, 2, However, G = F1 ∗ F2 ∈ D√2(Φα).
(For details we refer to Sreehari et al., 2011.)

We now give sufficient conditions for a positive answer to question 2 above.

Theorem 3.2 (Sreehari et al., 2011) For independent rvs X ∼ F1 and Y ∼ F2 with r(F1) = r(F2) =∞,
suppose that

lim
x→∞

1− F2(x)

1− F1(x)
= A, 0 < A <∞,

and

lim sup
x→∞

1− F1(xθ)

1− F1(x)
<∞, for all 0 < θ < 1.

Then,
X + Y ∼ F1 ∗ F2 ∈ D` (Φα) implies Fi ∈ D` (Φα) , i = 1, 2.

Proof is based on Lemma 2.1.

Remarks

1. If F1 ∗ F2 ∈ D`(Φα) then r(F1 ∗ F2) = ∞. So, either only r(F1) = ∞ or only r(F2) = ∞ or
both r(F1) = ∞ and r(F2) = ∞. If only r(F1) = ∞ then A = 0 in Theorem 3.2. In this
case F1 ∈ D`(Φα) and there is no need to assume the second condition in Theorem 3.2. Also,
F2 /∈ D`(Φδ) for any δ > 0. However, F2 may belong to D`(Ψδ) for some δ > 0 or F2 may
belong to D`(Λ), but satisfying the condition concerning A. But, if in addition, F2 ∈ D`(G) for
some G, then G may be Φβ with β > α, in view of Theorem 3.1.

2. If r(F1) <∞ but r(F2) =∞ then F2 ∈ D`(Φα).

Next we consider the `-MDA of Weibull laws. If r(F1) > 0, r(F2) > 0, then note that F1 ∗ F2 = G ∈
Dl(Ψα) iff 1−G∗(x) = 1−G

(
r(F1) + r(F2)− 1

x

)
is regularly varying at ∞ with exponent (−α).
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Theorem 3.3 (Sreehari et al., 2011) If r(F1) > 0, r(F2) > 0, then note that F1 ∗ F2 = G ∈ Dl(Ψα) iff
1−G∗(x) = 1−G

(
r(F1) + r(F2)− 1

x

)
is regularly varying at ∞ with exponent (−α).

The proof is based on Lemmas 2.2, 2.3 and Theorem A in introduction.

Our final result of this section is for the case D`(Λ). The result in Galambos (1978) mentioned ear-
lier pertains to r(F2) =∞. The following result is for the case when r(F2) <∞.

Theorem 3.4 (Sreehari et al., 2011) Let X be a Gamma rv with probability density function (pdf) f1(x) =
f1(x; p, θ) = θp

Γ(p)e
−θxxp−1, x > 0, where p > 0, an integer, and θ > 0 are parameters. Let Y be a rv with

support in (0, a], a <∞, and with pdf f2, and let X and Y be independent. Suppose that Z = X + Y. Then
the df G of Z belongs to the `-MDA of the Gumbel law Λ.

Remarks

1. In the above theorem, if

(a) Y has uniform df over (0, 1), then Y belongs to the `- MDA of the Weibull law, and Z = X + Y
belongs to the `- MDA of the Gumbel law.

(b) Y has df F2 with 1− F2(x) = exp
(
− x

1−x

)
, 0 < x < 1, one can verify that F2 ∈ D`(Λ) using the

von-Mises sufficient conditions, and Z = X + Y belongs to the `- MDA of the Gumbel law.

2. From the previous two remarks, we conclude that if X and Y are independent rvs with the df of X+Y
belonging to the `-MDA of Λ, then it is not true that the dfs of both X and Y should belong to the
`- MDA of Λ.

The above results also hold for convolutions of dfs F1, F2, . . . , Fk, k a fixed positive integer. Similar results
for p-max stable laws are discussed by Sreehari et al., (2011).

4. Results for mixtures

Suppose that F1, F2, . . . , Fk are dfs. Set F = p1F1 + · · ·+ pkFk, where pi > 0, p1 + · · ·+ pk = 1. Then
F is a df and we denote the left extremity of a df F by l(F ) = inf {x : F (x) > 0} . In this section we discuss
the following questions.

1. If Fj is in the MDA of a general max stable law for each j, 1 ≤ j ≤ k, is F in the MDA of some general
max stable law H, and if yes, what is the structure of H?

2. If the mixture F is in the MDA of a general max stable law H, what can be said about Fj , 1 ≤ j ≤ k?

These problems are of interest in reliability and statistical analysis concerning mixed populations. Kale
and Sebastian (1995) discussed the limit behaviour of the maximum of sample observations from the mixture
distribution G = αF1 + (1 − α)F2, where F1 is in the `- MDA of an extreme value distribution of Gumbel
type or Frećhet type and the support of F2 is (−δ, δ). They were investigating non-normal symmetric dis-
tributions with kurtosis 3. AL-Hussaini and El-Adll (2004) also investigated the problems cited above and
their results are somewhat ambiguous and partly wrong. We give an affirmative answer to the first question
above under some assumptions while the second question has a negative answer. We give some interesting
examples in this connection.

Denote support of a df F by S(F ).
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Theorem 4.1 (Sreehari and Ravi, 2010) Let F1, . . . , Fk be dfs such that

Fnj (gn(x))
w→ Hj(x), 1 ≤ j ≤ k,

where gn(x) is a strictly monotone continuous function for each n. Let pi > 0, 1 ≤ i ≤ k, and
∑k
i=1 pi = 1.

Set F (x) = p1.F1(x) + · · ·+ pk.Fk(x). Let S(Hi) ∩ S(Hj) 6= φ for 1 ≤ i < j ≤ k. Then as n→∞,

Fn(gn(x))
w→ H(x) =

{
0 if x ≤ max1≤i≤k l(Hi)∏k

i=1H
pi
i (x) if x > max1≤i≤k l(Hi).

Remarks

1. The above result is essentially the sufficiency part of Theorem 1 in AL-Hussaini and El-Adll (2004).
They also claimed the converse of the above result to be true. The following examples demonstrate that the
converse of Theorem 3.2 is false in linear normalization setup and nonlinear normalization setup.
2. In case r(Hi) < r(Hj) for some pair (i, j) then the corresponding Hpi

i will become unity in the product
term in H.

Next we give two examples that demonstrate that the converse to theorem 4.1 is false in the `-max
and non-linear normalization setup.

Example 1. Let

F1(x) =

{
0 if x < 1,

1− x−α.
(
1 + 1

c sin(log x)
)

if 1 ≤ x,

and

F2(x) =

{
0 if x < 1,

1− x−α.
(
1− 1

c sin(log x)
)

if 1 ≤ x, ,

where c > 1 + 1
α . Let

F (x) =
1

2
.F1(x) +

1

2
.F2(x) =

{
0 if x < 1,

1− x−α if 1 ≤ x.

Then F1 and F2 do not belong to the max domain of attraction of any max stable law under linear norming
but

Fn(n
1
α .x)

w→ Φα(x) =

{
0 if x < 0,

exp− (x−α) if 0 ≤ x.

Example 2. Suppose p1 = p2 = 1
2 . Let

Fj(x) =

{
0 if x < 0,

1− 1
(1+x)j

if 0 ≤ x, j = 1, 2.

Then F (x) = F1(x)+F2(x)
2 . Set gn(x) = nx2

1+x , x > 0. Then Fn (gn(x))
w→
∏2
j=1H

1
2
j (x), where the max

stable law Hj is given by

Hj(x) =

{
0 if x < 0,

exp
(
−x−j

)
if 0 ≤ x.

However, Fnj (gn(x)) does not converge weakly to Hj(x), j = 1, 2.

Remarks
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1. In the above example, H(x) = (H1(x).H2(x))
1
2 is a general max stable law with the transformation

fn(x) =
nx2 +

√
n2x4 + 4nx2(1 + x)

2(1 + x)

in definition 1.

2. Theorem 4.1 goes through even when F (x) =
∑∞
i=1 pi.Fi(x), pi > 0,

∑∞
i=1 pi = 1 under the

additional condition on His that
∑∞
i=1 (1−Hpi

i (x)) < ∞ for x > sup1≤i<∞ l(Hi). (See, for example,
Lemma 6.1, Karlin and Taylor, 1975).

5. Results for products of dfs

Consider the product G = F1F2 of dfs F1 and F2. Then G is a df and 1−G = (1−F1) + (1−F2)− (1−
F1)(1 − F2). Since (1 − F1(x))(1 − F2(x)) = o(min {1− F1(x), 1− F2(x)}) the behavior of 1 − F1(x)F2(x)
depends only on the behavior of 1− F1(x) and 1− F2(x). If

lim
x→∞

1− F2(x)

1− F1(x)
= A (1)

exists and is finite, 1−G is regularly varying at ∞ with exponent (-α) iff 1− F1 is regularly varying at ∞
with exponent(-α). If the limit in (1) is∞ then 1−G is regularly varying at∞ with exponent (-α) iff 1−F2

is regularly varying at ∞ with exponent(-α). In particular if F1 = F2 = F , 1−G is regularly varying at ∞
with exponent (-α) iff 1−F1 is regularly varying at ∞ with exponent (-α). If 1−F1 is regularly varying at
∞ with exponent (-α) and 1− F2 is regularly varying at ∞ with exponent (-β) , 0 < α < β the limit in (1)
is 0. We then have

Theorem 5.1 For independent rvs X and Y , if X ∼ F1 ∈ D`(Φα) and Y ∼ F2 ∈ D`(Φβ), 0 < α < β, then
max(X,Y ) ∼ G = F1F2 ∈ D`(Φα). Further, for a fixed positive integer k and iid rvs X1, X2, . . . , Xk with df
F , max(X1, X2, · · · , Xk) ∼ F k ∈ D`(Φα) iff F ∈ D`(Φα).

Remarks

1. In general if α = β

lim
x→∞

1− F2(x)

1− F1(x)

may not exist as one can construct functions 1− F1 and 1− F2 both regularly varying at ∞ but the above
ratio oscillating (see, Sreehari, 1973-74).

2. Theorem 5.1 and similar results for `-max setup were discussed in Resnick (1971 a, b). The proofs
depend on the tail equivalence property and Khinchine’s convergence of types theorem (see lemma 1, P. 246,
Feller, 1966).

3. Interestingly Resnick arrived at this problem while investigating the limit distributions of {Xn}, when
the rvs are defined on a finite Markov chain. Products of dfs come up in a natural way in survival analysis.
For example, consider a system with two non-identical components with life-time dfs F1 and F2 working
simultaneously. Suppose the system works as long as at least one of the components works and working or
non-working status of a component has no impact on the life-time of the other component. Further sup-
pose administrative policy for the system is to immediately replace both the components when the system
becomes non-functional. Then the duration between two successive non-functional situations of the system
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follows the df F1F2.

4. Resnick (1971 b) discussed, with suitable examples, the possibilities (a) of F1 ∈ D`(Λ) and F2 ∈ D`(Λ)
but F1F2 /∈ D`(Λ), and (b) of F1F2 ∈ D`(Λ) but neither F1 ∈ D`(Λ) nor F2 ∈ D`(Λ).

The main result of Resnick is

Theorem 5.2 Let F1, F2 be dfs and let ϕ be an extreme value distribution. Suppose F1 ∈ D`(ϕ) and that

Fn1 (anx+bn)
w→ ϕ(x) for normalizing constants an > 0, bn real. Then Fn2 (anx+bn)

w→ ϕ∗(x), non-degenerate,
iff for some A > 0, B real

ϕ∗(x) = ϕ(Ax+B), r(F1) = r(F2) = x0,

limx→x0−
1−F1(x)
1−F2(x) exists, and if

(a) ϕ(x) = Φα(x), then B = 0 and limx→∞
1−F1(x)
1−F2(x) = Aα;

(b) ϕ(x) = Ψα(x), then B = 0 and limx→x0−
1−F1(x)
1−F2(x) = A−α;

(c) ϕ(x) = Λ(x), then A = 1 and limx→x0−
1−F1(x)
1−F2(x) = eB .

Next we discuss similar results in the p-max stable setup. Before we proceed further we note that in the
above result of Resnick one is checking if Fn2 (anx+ bn)

w→ ϕ∗(x) where ϕ∗(x) is of same type as ϕ and the

norming constants are same as those in Fn1 (anx+ bn)
w→ ϕ(x). Hence it may seem natural to look for such

a possibility in the p-max setup.

If F1(x) = 0 for x < 1 and = 1− exp(− log2 x) for x ≥ 1, then

Fn1

(
e
√

logn|x|
1

2
√

logn

)
w→ Φ(x),

and if F2(x) = 0 for x < 1 and = 1− 1
x for x ≥ 1,

Fn2 (nx)
w→ Φ(x).

However, Fn2

(
e
√

logn|x|
1

2
√

logn

)
→ 0 while Fn1 (nx) converges weakly to the df which is degenerate at 1.

We recall the Remark 2 after Theorem 5.1. In the context of power normalization we need a convergence
of types theorem (See Lemma 5.1 below). We recall that Mohan and Ravi defined two dfs F1 and F2 to be
same p -type if there exist positive numbers A,B such that F1(x) = F2

{
A|x|Bsign(x)

}
.

Lemma 5.1 Let U and V be two non-degenerate dfs satisfying V (x) = U(A|x|Bsign(x)), A > 0, B > 0. If
for a sequence {Fn} of dfs and constants an > 0, αn > 0, bn > 0, and βn > 0

Fn
(
an|x|bnsign(x)

)
→ U(x), Fn

(
αn|x|βnsign(x)

)
→ V (x) (2)

at all continuity points of U and V , then(
αn
an

) 1
bn

→ A > 0,
βn
bn
→ B > 0 (3)

Conversely, if (3) holds then each of the two limiting relations in (2) holds and implies the other with
V (x) = U(A|x|Bsign(x)).
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Proof Suppose the two limiting relations in (2) hold with V (x) = U(A|x|Bsign(x)). Suppose S(U)∩S(V )∩
(0,∞) 6= φ. Let x′, x′′ ∈ C(U) such that 0 < x′ < x′′ < ∞. Then there exist 0 < y′ < y′′ < ∞ such that
V (y′) < U(x′) and V (y′′) > U(x′′). Then for sufficiently large n

0 < αn (y′)βn < an (x′)bn < an (x′′)bn < αn (y′′)βn <∞,

which in turn gives the following relations :

(a)
x′′

(y′′)
βn
bn

<

(
αn
an

) 1
bn

<
x′

(y′)
βn
bn

,

and

(b)
βn
bn

>
log x′′ − log x′

log y′′ − log y′
= θ1 > 0,

say.

Next starting with 0 < v′ < v′′ ∈ C(V ) we can find 0 < u′ < u′′ < ∞ such that for sufficiently large
n

0 < an (u′)bn < αn (v′)βn < αn (v′′)βn < an (u′′)bn <∞
which gives the inequality

(c)
βn
bn

<
log u′′ − log u′

log v′′ − log v′
= θ2

say. From (a), (b) and (c) we observe that
{
βn
bn

}
and

{(
αn
an

) 1
bn

}
are bounded sequences satisfying

θ1 <
βn
bn

< θ2;
x′′

(y′′)θ2
<

(
αn
an

) 1
bn

<
x′

(y′)θ1
.

In case S(U)∩S(V )∩ (0,∞) = φ, we may consider continuity points that are negative and proceed as above
and arrive at similar conclusion. Let {n′} ⊂ {n} be a subsequence for which both the above converge to
give

βn′

bn′
→ B∗ > 0,

(
αn′

an′

) 1
b
n′

→ A∗ > 0.

Then Gn′(an′ |x|bn′ sign(x))→ U(x), while

Gn′(α
′
n|x|βn′ sign(x)) = Gn′

an′ {(αn′
an′

) 1
b
n′

|x|
β
n′
b
n′

}bn′
sign(x)

→ U(A∗|x|B
∗
sign(x)). (4)

But by assumption Gn′(α
′
n|x|βn′ sign(x))→ V (x) = U(A|x|Bsign(x)) also. Hence A = A∗ and B = B∗

proving (3). Sufficiency of (3) is easily seen from (4).

Proceeding as in Resnick (1971 a) one can get similar results in the p− max set up. But the proofs are
going to be cumbersome. However, we derive results using Resnick’s results in `− max set up. It will be
noted that this method is useful in case of Fi ∈ Dp(Ψ), r(Fi) <∞ and Fi ∈ Dp(H2,.) and Fi ∈ Dp(H4,.).

Theorem 5.3 Let X and Y be independent positive rvs. If X ∼ F1 ∈ Dp(H1,α) and Y ∼ F2 ∈ Dp(H1,β),
0 < α < β, then G = F1F2 ∈ Dp(H1,α).
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Proof
X ∼ F1 ∈ Dp(H1,α)⇔ logX ∼ G1 ∈ D`(Φα)

where G1(x) = F1(ex). Similarly

Y ∼ F2 ∈ Dp(H1,β)⇔ log Y ∼ G2 ∈ D`(Φβ)

where G2(x) = F2(ex). Since log[max(X,Y )] = max[log(X,Y )], and by theorem 5.1 max(logX, log Y ) ∼
G1G2 ∈ D`(Φα), we have log[max(X,Y )] ∼ G1G2 ∈ D`(Φα) or equivalently max(X,Y ) ∼ F1F2 ∈ Dp(H1,α).

Remark If α = β this result may not hold in view of remark 1 following Theorem 5.1. It will however hold
if

lim
x→∞

1− F2(ex)

1− F1(ex)

exists and is finite.

We now give the results for dfs in the MDA of H2,α.

Theorem 5.4 Let X and Y be independent positive rvs. If X ∼ F1 ∈ Dp(H2,α) and Y ∼ F2 ∈ Dp(H2,β),
0 < α < β and 0 < r(F1) = r(F2) = x0 <∞, then F = F1F2 ∈ Dp(H2,α).

Proof By Theorem B, F1 ∈ D`(Ψα), F2 ∈ D`(Ψβ) and r(F ) = x0 by Lemma 2.4. Hence by Theorem
A, 1− F1(x0 − 1

x ) is RV (−α) while 1− F2(x0 − 1
x ) is RV (−β). Then 1− F1F2(x0 − 1

x ) is RV (−α) and by
Theorem A, F ∈ D`(Ψα). By Theorem B we have the result.

In the case of dfs in the MDA of H3,α, the above line of proof will not work because Theorem B is not
applicable.

Theorem 5.5 Let X and Y be independent negative rvs. If X ∼ F1 ∈ Dp(H3,α) and Y ∼ F2 ∈ Dp(H3,β),
0 < α < β then F = F1F2 ∈ Dp(H3,α).

Proof By theorem 2.3 in Mohan and Ravi (1993), X ∼ F1 ∈ Dp(H3,α) implies r(F1) = 0 and

lim
t→∞

1− F1(−e−tx)

1− F1(−e−t)
= x−α.

Let Z1 = − log(−X), Z2 = − log(−Y ) and Z = max(Z1, Z2). Then

P (Z1 > tx)

P (Z1 > t)
=

1− F1(−e−tx)

1− F1(−e−t)
→ x−α

as t → ∞. Similarly 1 − P (Z2 > t) is RV (−β) and hence 1 − P (Z > t) is RV (−α). Thus with F = F1F2

we have, 1 − F (−e−t) is RV (−α). Further r(F ) = 0 by Lemma 2.4. Hence by theorem 2.3 in Mohan and
Ravi (1993) again it follows that F ∈ Dp(H3,α).

Next result deals with the case of Dp(H4,.) and the proof is similar to that of Theorem 5.4 and we omit
the details.

Theorem 5.6 Let X and Y be independent positive rvs. If X ∼ F1 ∈ Dp(H4,α) and Y ∼ F2 ∈ Dp(H4,β),
0 < α < β and r(F1) = r(F2), then F = F1F2 ∈ Dp(H4,α).

Ravi (2000) gave an example in which Fi ∈ Dp(Φ), i = 1, 2 but F1F2 /∈ Dp(Φ). Recall Φ is the fifth p-max
stable law. However, using the A-eqivalence property defined by Resnick (1971 b), we get some positive
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results in this context.

Associate with the df F of a rv X, its A-function

AF (z) =
1

z
E(X − z|X > z).

Resnick defined A-equivalence classes of dfs and their role in determining the `-max stable laws to which
products of dfs belong.

Definition 3: Two dfs F1 and F2 are A-equivalent if r(F1) = r(F2) = x0 ≤ ∞ and AF1
(z) ∼ AF2

(z) as
z ↑ x0.

The following result then follows.

Theorem 5.7 Suppose Fi ∈ Dp(Φ), i = 1, 2, 0 < r(F1) = r(F2) < ∞. If F1 and F2 are A-equivalent then
F1F2 ∈ Dp(Φ)

Proof Fi ∈ Dp(Φ), i = 1, 2, 0 < r(F1), r(F2) < ∞ ⇔ Fi ∈ D`(Λ), i = 1, 2 by Theorem B. Then F1F2 ∈
D`(Λ), 0 < r(F1F2) = x0 <∞ by Resnick (1971 b) in view of the assumptions that 0 < r(F1) = r(F2) <∞,
and that F1 and F2 are A-equivalent. This is equivalent to F1F2 ∈ Dp(Φ) by Theorem B.

On the same lines we have

Theorem 5.8 Suppose Fi ∈ Dp(Ψ), i = 1, 2, r(F1) = r(F2) < 0. If F1 and F2 are A-equivalent then
F1F2 ∈ Dp(Ψ).

Remarks

1. The above results have obvious extensions to the case of products of finite number of dfs.

2. Hebbar (1981) in the linear normalization setup and Ravi (2000) in the power normalization setup
studied the following problem, which is an analogue of Gnedenko’s hypothesis in the limit theory concerning
sums of independent rvs. Suppose {Xn} is a sequence of independent rvs with corresponding dfs {Fn} such
that for each n, the df Fn ∈ {G1, G2, . . . , Gm}. Suppose that for each n, τk(n) of {F1, F2, . . . , Fn} are equal
to Gk, 1 ≤ k ≤ m. Suppose further that each Gk belongs to the MDA of some max stable law Hk. Let
Mn = max {X1, X2, . . . , Xn}. Will the df F ∗n of Mn, properly normalized, converge weakly to a proper df,

which is a function of H1, H2, . . . ,Hm ? Note that F ∗n =
∏m
k=1G

τk(n)
k . This problem can be analysed in the

light of above results for products and mixtures. In particular, we have the following observation comparable
to results in Ravi (2000).

Let τk(n)
n → ak, 0 < ak < 1, 1 ≤ k ≤ m. Let G1, G2, . . . , Gm be dfs such that

Gnk (gn(x))
w→ Hk(x), 1 ≤ k ≤ m,

where gn(x) is a strictly monotone continuous function for each n. Let ai > 0, 1 ≤ i ≤ m, and
∑m
i=1 ai = 1.

Set G(x) = a1.G1(x) + · · ·+ am.Gm(x). Let S(Hi) ∩ S(Hk) 6= φ for 1 ≤ i < k ≤ m. . Then by Theorem

4.1, Gn(gn(x))
w→ H(x) given in Theorem 4.1. We also have

m∏
k=1

Gnakk (gn(x))
w→

m∏
k=1

Hak
k (x)
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which in turn gives

F ∗n(gn(x)) = P (Mn ≤ (gn(x)) =

m∏
k=1

G
τk(n)
k (gn(x))

w→
m∏
k=1

Hak
k (x).

Conclusions We reviewed the `-max , p-max stable laws and general max stable laws and their MDAs. We
considered functions of dfs such as the convolutions, mixtures and products of dfs which belong to MDAs
of some of these max stable laws and investigated if these functions belong to MDAs of max stable laws.
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