
ProbStat Forum, Volume 07, July 2014, Pages 45–54
ISSN 0974-3235

ProbStat Forum is an e-journal.
For details please visit www.probstat.org.in

On information theory and its applications
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Abstract. In this note, we look at several definitions of entropy and some of their consequences in
information theory. We also obtain the entropy and relative entropy for general error distribution which
is used to model errors which are not normal.

1. Introduction

Entropy is a measure of uncertainty and is a central concept in the field of information theory. It appears
that Nyquist (1924, 1928) and Hartley (1928) were the first to study entropy. Shannon (1948) studied the
properties of information sources and of communication channels used to transmit the outputs of these
information sources. Among the many articles and books wherein entropies have been discussed, we would
like to mention Cover and Thomas (1991).

In this note, we look at several definitions of entropy and some of their consequences. In the next
section, we mention several definitions of entropy. In Section 3, we look at entropy in Reliability. We discuss
information theory and central limit theorem in Section 4. In Section 5, we obtain entropy for the general
error distribution and also obtain relative entropy of this with normal and double exponential. Table 2 in
Appendix gives a table of entropies for some transformations of random variables proved in Ravi and Saeb
(2012) and tables 3 and 4 contain entropies of some standard discrete and continuous distributions some of
which are from Johnson (2006), Lazo and Rathie (1978), Ebrahimi et al. (1999) and some from Ravi and
Saeb (2012).

2. Definitions of Entropies

Shannon (1948) defined an entropy measure known as Shannon entropy. For a discrete random variable
(rv) X with probability mass function {p1, p2, . . . , pn}, the Shannon entropy is defined as

H(X) = −
n∑
i=1

pi log2 pi, (1)

where the logarithm is to the base 2 and the entropy is expressed in bits of information. If the base of the
logarithm is e, then the entropy is measured in nats. As a continuous analogue of (1) Cover and Thomas
(1991) define the differential entropy of a continuous rv Y with probability density function (pdf) f as

H(Y ) = H(f) = −
∫
f(y) log f(y)dy,
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where, by convention, the integral is over those values for which the pdf f is positive.
For pdfs f and g, a related concept is the Kullback-Leibler distance or relative entropy, denoted as

D(f‖g) and defined by

D(f‖g) =

∫
f(x) log

(
f(x)

g(x)

)
dx,

=

∫
f(x) log f(x)dx−

∫
f(x) log g(x)dx,

= −H(X) + ∆Y (X). (2)

Whenever the support of f, supp f * supp g then D(f‖g) is considered to be equal to ∞.
Wyner and Ziv (1969) show that the entropy of a continuous rv X takes values in R, and E(X2) < ∞

implies that H(X) <∞, but the converse may not hold. If E |X|k <∞, it can be shown that

H(X) ≤ 1

k
log

2kΓk(1/k)eE |X|k

kk−1
, k > 0. (3)

The equality in (3) is attained by the maximum entropy distribution with density

f(x) = C(θ)e−θ|x|
k

,

where θ is obtained by maximizing the function subject to the constraint E |X|k ≤ θ and C(θ) is the

normalizing constant. For the case of k = 2, relation (3) gives e2H(X)

2πe ≤ V ar(X). The equality holds if and
only if f(·) is normal distribution.

For a random vectorX ∈ Rn, entropy power denoted byN(X), is defined as N(X) =
1

2πe
exp

{ 2

n
H(X)

}
.

In particular, N(X) = |Σ|
1
n when X has multivariate normal distribution with variance-covariance matrix Σ.

Dembo et al. (1991) derived inequalities for entropy power, for example, they showed that for independent
n−dimensional random vectors X and Y, 22H(X+Y )/n ≥ 22H(X)/n + 22H(Y )/n, with equality if and only
if X and Y are normally distributed with proportional covariance matrices. Madiman and Barron (2007)
generalized the entropy power inequalities and examined monotonicity properties of information.

Since the pioneering work of Shannon (1948), the concept of entropy has been generalized by several
researchers and is used in several disciplines and contexts. The entropy has also been used in various
branches of statistics and related fields, and has become an integral part of probability and statistics. Renyi
(1961) generalizes the Shannon entropy as the following which is called the Renyi entropy of order β :

H(X;β) =
1

1− β
log

(∫
fβ(x)dx

)
=

β

1− β
log(‖f‖β), (4)

for 0 < β <∞, β 6= 1, where ‖f‖β = (
∫
fβ(x)dx)

1
β . Renyi has pointed out that different sorts of problems

may require different better measures of information. The Renyi entropy of order 2, H(X; 2), is called the
collision entropy. It is to be noted here that, as β → 1, the Renyi entropy tends to Shannon entropy, which
can be seen as the negative expected log likelihood. Considering Renyi entropy as a function of β, H(X;β)
may be called the spectrum of Renyi information.

For pdfs f and g, the relative β entropy is defined as

Dβ(f‖g) =
1

β − 1
log

(∫
f(x)

(
f(x)

g(x)

)β)
dx.

By L’Hospital’s rule, limβ→1Dβ(f‖g) = D(f‖g). Hayashi (2002) gives this definition and the limiting
behaviour of Dβ .

Khinchin (1957) generalized the Shannon entropy by choosing a convex function φ(·) such that φ(1) = 0
and defined the entropy as Hφ(X) =

∫
f(x)φ(f(x))dx. The Shannon entropy can be obtained from
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Khinchin’s entropy by choosing φ(x) = − log x. Burbea and Rao (1982) generalized Shannon entropy as∫
φ(f(x))dx for some real concave function φ defined on [0,∞). Shannon entropy can be obtained from

Burbea-Rao entropy by choosing φ(x) = −x log x, x > 0. It is to be noted that Renyi entropy cannot be
obtained as special case of either of the two generalized entropies discussed above. But it can be obtained
as a particular case of the (h, φ)−entropy defined by Salicru et al. (1993) and Menendez et al. (1997) as in
the following theorem: Consider (Ω, Pθ) where θ ∈ Θ, an open subset of RM . Assume that there exists a
pdf f(x; θ) for the probability Pθ with respect to a σ−finite measure µ. Then the (h, φ)−entropy associated

with f(x; θ) is given by Hφ
h (X) = h

(∫
Ω
φ(f(x; θ))dµ(x)

)
, where either φ : [0,∞) → R is concave and

h : R+ → R is increasing or φ : [0,∞) → R is convex and h : R+ → R is decreasing. Note also that if h is

increasing and φ is convex or h is decreasing and φ is concave, Hφ
h (X) plays the role of a certainty function.

In Table 1, we present some examples of certainty and (h, φ)− entropy measures.

Table 1: (h, φ) Entropy

Measure h(x) φ(x)
Shannon (1948) x −x log x
Renyi (1961) (1− β)−1 log x xβ

Another measure of uncertainty proposed in the recent literature is the weighted entropy by Crescenzo
and Longobardi (2006), defined as Hw(X) = −

∫∞
0
xf(x) log(f(x))dx. As an alternative measure of

uncertainty, Rao et al. (2004) proposed the cumulative residual entropy (CRE) of X defined by E(X)
= −

∫
FX(t) log(FX(t))dt. Note that CRE is always non-negative and its definition is valid in the discrete

and continuous cases. Other properties of this measure can be seen in Rao (2005). In analogy with CRE,
Crescenzo and Longobardi (2009) define the cumulative entropy (CE) of a rv X with df F as CE(X)
= −

∫
F (x) logF (x)dx. For a non-negative absolutely continuous rv X with survival function (sf) F , Sunoj

and Linu (2010) define the cumulative Renyi entropy of order β as

E(X;β) =
1

1− β
log

(∫ ∞
0

F
β
(x)dx

)
, β > 0, β 6= 1. (5)

When β → 1, (5) reduces to E(X; 1) = −
∫∞

0
F (x) log(F (x))dx, which is cumulative entropy and hence

possesses all the properties discussed in Rao et al. (2004).

3. Reliability based Entropy

Ebrahimi (1996) considered the Shannon entropy for the residual lifetime Xt = [X − t|X > t] of a non
negative rv X, called the residual entropy at time t and defined it as

H(X; t) = −
∫ ∞
t

fX(x)

FX(t)
log

(
fX(x)

FX(t)

)
dx.

Obviously H(X; 0) = H(X). Abraham and Sankaran (2005) defined Renyi entropy of order β residual
lifetime as

H(X;β; t) =
1

1− β
log

(∫∞
x
fβ(t)dt

F
β
(x)

)
, β > 0, β 6= 1.

Asadi and Zohrevand (2007) introduced the CRE for the residual lifetime distribution Xt. This function,
called the dynamic cumulative residual entropy (DCRE), is defined by

E(X; t) = −
∫ ∞
t

FX(x)

FX(t)
log

(
FX(x)

FX(t)

)
dx.



Ravi and Saeb / ProbStat Forum, Volume 07, July 2014, Pages 45–54 48

It is clear that E(X; 0) = E(X). The DCRE can be rewritten as

E(X; t) = eX(t) log(FX(t))− 1

FX(t)

∫ ∞
t

FX(x) log(FX(x))dx,

where eX(t) = E(X − t|X > t) = 1
F (t)

∫∞
t
F (x)dx, is the mean residual life (MRL) function. They showed

that for any non-negative rv X, the CRE of X is the expectation of the MRL of X, that is, E(X) = E(eX(X)).
They also proved that E(X; t) = E(eX(X)|X > t).

For a non-negative rv X with an absolutely continuous sf F , Sunoj and Linu (2010) define the dynamic
cumulative Renyi residual lifetime entropy (DCRRE) of order β denoted by E(X;β; t) as

E(X;β; t) =
1

1− β
log

(∫ ∞
t

F
β
(x)

F
β
(t)

dt

)
, β > 0 β 6= 1,

which can be written as

(1− β)E(X;β; t) = log

(∫ ∞
t

F
β
(x)dx

)
− β log

(
F (t)

)
.

Differentiating, we have

(1− β)E ′(X;β; t) = βrX(t)− e−(1−β)E(β;X;t),

where E ′(X;β; t) denotes the derivative of E(X;β; t) with respect to t and rX(t) = fX(t)

FX(t)
is the hazard

rate of X. Obviously, when a system has completed t units of time, for different values of β, E(X;β; t) gives
Renyis information for the remaining life of the system. Also, E(X;β; 0) = E(X;β).

4. Information Theory and Central Limit Theorem

For many random systems, the Shannon entropy plays a fundamental role in the analysis of how they
evolve towards an equilibrium. It is interesting to study the convergence of the normalized sums of iid rvs to
the Gaussian distribution: the central limit theorem. The idea of tracking the central limit theorem using
Shannon entropy goes back to Linnik (1959) and Shimizu (1975), who used it to give a particular proof of
the central limit theorem. Brown (1982), Barron (1986) and Takano (1987) were the first to prove a central
limit theorem with convergence in the Shannon entropy sense. Artstein et al. (2004) and Johnson and
Barron (2004) obtained the rate of convergence under some conditions on the density. According to Johnson
and Vignat (2007), the Renyi entropy H(X;β) is not maximum when X is normal, among all rvs with mean
zero and variance 1. Therefore, the Renyi entropy is not monotonic increasing for the normalized sum. That
the entropy convergence is increasing was proved by Artstein et al. (2004) and some simpler proofs can be
found in Tulino and Verdu (2006) and Madiman and Barron (2007). Johnson (2006) is a good reference to
the application of information theory to limit theorems, especially the central limit theorem. Cui and Ding
(2010) showed the following for convergence of the Renyi entropy, where Y has normal distribution:

|H(Sn;β)−H(Y ;β)| =



o

(
1

n

)
, if β ≥ 2,

o

(
1√
n

)
, if

3

2
≤ β < 2,

o

(
1

nβ−1

)
, if 1 < β <

3

2
.

Barron (1986) showed the following: If X1, X2, . . . are iid with densities, zero mean and have finite
variances v1, v2, . . . and D(gm‖φ) is finite for some m then limm→∞D(gm‖φ) = 0, where gm is the density of∑m
i=1Xi/

√
mv. D(f‖g) is not a metric; it is asymmetric and does not satisfy the triangle inequality. However,

D(f‖g) ≥ 0 with equality iff f(x) = g(x) for almost all x ∈ R. Furthermore (see Kullback (1967) for details),
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‖f − g‖L1(dx) ≤
√

2D(f‖g). The normal distribution maximises entropy amongst rvs of given variance, so
the Central limit theorem corresponds to the entropy tending to its maximum. Fisher information is used
to prove that the maximum is achieved. If W is a rv with differentiable density g(u), we define the score

function ρW (u) = ∂
∂u log g(u) = g′(u)

g(u) I(g(u) > 0) and the Fisher Information J(W ) = Eρ2
W (W ). If U is a rv

with density f and variance 1, and Zτ is N(0, τ), independent of U, then

D(f‖φ) =
1

2

∫ ∞
0

(
J(U + Zτ )− 1

1 + τ

)
.

This is a rescaling of Lemma 1 of Barron (1986), which is an integral from of de Bruijn’s identity. Also it is
shown that if X is a rv with density f, and φ is standard normal density, then:

sup
x
|f(x)− φ(x)| ≤

(
1 +

√
6

π

)√
J(X),∫

|f(x)− φ(x)|dx ≤ 2dH(f, φ) ≤
√

2J(X),

where dH(f, φ) is the Hellinger distance
(∫
|
√
f(x)−

√
φ(x)|2dx

)0.5

.

5. Entropy and Relative entropy of General Error Distribution

Consider iid observations X1, . . . , Xn with common distribution as the general error distribution, n ≥ 1.
The class of general error distributions (GEDs) of which normal distribution is a particular case, was
introduced by Nelson (1991) for modelling the error in linear / regression models and also for modelling
time series data with heavy tails when there is evidence to believe that the errors are not normal. The pdf
of the standardized GED is given by

f(x) =
ve−

1
2 | xλ |v

λ21+ 1
v Γ( 1

v )
, v > 0, x ∈ R,

where λ =
(

2−
2
v

Γ( 1
v )

Γ( 3
v )

) 1
2

, Γ(·) denoting the gamma function. Nadarajah (2005) studies the properties of

GED but the definition of GED used there is different from the one used here.

Lemma 5.1. Let X be a rv with df GED. Then the Renyi entropy is

H(X;β) =
1

1− β

[
log β−1/v − (1− β) log

(
v

λ21+ 1
v Γ( 1

v )

)]
.

And, the Shannon entropy is

H(X) =
1

v
− log

(
v

λ21+ 1
v Γ( 1

v )

)
. (6)

Proof. From (4), we have

H(X;β) =
1

1− β
log

∫ ∞
−∞

(
ve−

1
2 | xλ |v

λ21+ 1
v Γ( 1

v )

)β
dx

 ,

=
1

1− β
log

β−1/v

(
v

λ21+ 1
v Γ( 1

v )

)β−1 ∫ ∞
−∞

ve
− 1

2

∣∣∣∣ x

β−1/vλ

∣∣∣∣v
β−1/vλ21+ 1

v Γ( 1
v )
dx

 ,

=
1

1− β

[
log β−1/v − (1− β) log

(
v

λ21+ 1
v Γ( 1

v )

)]
.



Ravi and Saeb / ProbStat Forum, Volume 07, July 2014, Pages 45–54 50

Taking limit as β → 1, we obtain the Shannon Entropy as

H(X) = lim
β→1

1

1− β

[
log β−1/v − (1− β) log

(
v

λ21+ 1
v Γ( 1

v )

)]
,

= lim
β→1

log β

v(β − 1)
− log

(
v

λ21+ 1
v Γ( 1

v )

)
,

=
1

v
− log

(
v

λ21+ 1
v Γ( 1

v )

)
.

Theorem 5.2. Let X be a rv with GED pdf f and Y be rv with the normal (0, 1) pdf φ. Then

D(X‖Y ; v) = −1

v
+ log

(
v
√

Γ(3/v)

2(Γ(1/v))3/2

)
+ log

√
2π + 1/2.

Proof. From (2), D(X‖Y ) = −H(X) + ∆Y (X), and we have

∆Y (X) = −
∫ ∞
−∞

f(x) log g(x)dx,

= −
∫ ∞
−∞

ve−
1
2 | xλ |v

λ21+ 1
v Γ( 1

v )
log

(
1√
2π
e−x

2/2

)
dx,

= log
√

2π +

∫ ∞
−∞

x2ve−
1
2 | xλ |v

λ22+ 1
v Γ( 1

v )
dx,

= log
√

2π +
v

λ21+ 1
v Γ( 1

v )

∫ ∞
0

x2e−
xv

2λv dx.

Taking xv

2λv = u, we have x = 2
1
v λu1/v and dx = 2

1
v λ
v u

1
v−1du, so that

∆Y (X) = log
√

2π +
2

2
v−1λ2

Γ( 1
v )

∫ ∞
0

u
3
v−1e−udu,

= log
√

2π +
2

2
v−1λ2Γ( 3

v )

Γ( 1
v )

,

= log
√

2π +
1

2
. (7)

From (6) and (7), we have

D(X‖Y ; v) = −1

v
+ log

(
v

λ21+ 1
v Γ( 1

v )

)
+ log

√
2π + 1/2,

= −1

v
+ log

(
v
√

Γ(3/v)

2(Γ(1/v))3/2

)
+ log

√
2π + 1/2.

Remark 5.3. Note that, if v = 2 then D(X‖Y ; 2) = 0, and GED is standard normal distribution.
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Theorem 5.4. Let X be a rv with df double exponential with parameter θ with df f and Y be a rv with df
GED and pdf g. Then

D(X‖Y ; v) = log(θ/2)− 1− log

(
v

λ21+ 1
v Γ( 1

v )

)
+

Γ(1 + v)

2(θλ)v
.

Proof. From (2), D(X‖Y ) = −H(X) + ∆Y (X), and we have

∆Y (X) = −
∫ ∞
−∞

f(x) log g(x)dx,

= −
∫ ∞

0

θ

2
e−θx log

(
ve−

1
2 ( xλ )

v

λ21+ 1
v Γ( 1

v )

)
dx−

∫ 0

−∞

θ

2
eθx log

(
ve−

1
2 (− xλ )

v

λ21+ 1
v Γ( 1

v )

)
dx,

= − log

(
v

λ21+ 1
v Γ( 1

v )

)
+

θ

4λv

(∫ ∞
0

e−θxxvdx+

∫ 0

−∞
eθx(−x)vdx

)
,

= − log

(
v

λ21+ 1
v Γ( 1

v )

)
+

1

2λv

∫ ∞
0

θe−θxxvdx.

Taking θx = u, dx = du/θ, and

∆Y (X) = − log

(
v

λ21+ 1
v Γ( 1

v )

)
+

1

2(θλ)v

∫ ∞
0

e−uuvdu,

= − log

(
v

λ21+ 1
v Γ( 1

v )

)
+

Γ(1 + v)

2(θλ)v
. (8)

Using the entropy of double exponential distribution (see Table. 4) and (8), we have

D(X‖Y ; v) = log(θ/2)− 1− log

(
v

λ21+ 1
v Γ( 1

v )

)
+

Γ(1 + v)

2(θλ)v
.

Remark 5.5. Note that, if v = 1 then λ = 1/2
√

2 and D(X‖Y ; 1) = 0, and GED is double Exponential
with parameter

√
2.

6. Appendix

Table 2: Transformation on Entropies

Random Variable Transformation Entropy
X is a rv Y = (X − b)/a, H(Y ) = − log a+H(X)

X is a positive rv Y = (Xc − b)/a, H(Y ) = − log(a/c) + (c− 1)EX(logX) +H(X)

X is a negative rv Y = −((−X)c − b)/a, H(Y ) = − log(a/c) + (c− 1)EX(log(−X)) +H(X)
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Table 3: Entropies of some discrete distributions

Distribution Probability Mass Function Entropy
Poisson e−λλx/x!, x = 0, 1, . . . , λ > 0 λ− λ log λ+ E log Γ(k + 1)

Bernoulli pkq1−k, k = 0, 1, q = 1− p −q log q − p log p

Binomial
(
n
x

)
pkqn−k, x = 0, 1, . . . , n, q = 1− p −np log p− nq log q − log Γ(n+ 1)

+E(log Γ(k + 1) + log Γ(n− k + 1)).

Geometric pqk, k = 0, 1, . . . −(q log q + p log p)/p

Uniform 1/n, x = 1, 2, . . . , n logn
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Table 4: Entropies of some continuous distributions
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