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Abstract. Distributional and inferential results are derived for ARMA models under the multivariate
exponential power (EP) distribution, which includes the Gaussian and Laplace as special cases. Marginal
distributions are obtained in the important Laplace case, both under a multivariate Laplace distributed
process, as well as a process driven by univariate Laplace noise. Asymptotic results are established for the
maximum likelihood estimators under a full EP likelihood, and under a conditional likelihood resulting
from a driving univariate EP noise distribution. Whenever tractability permits, results are fully worked
out with respect to the MA(1) model. The methodology is illustrated on a fund of real estate returns.

1. Introduction

The modeling of time series data, Xt, t = 1, . . . , n, under different distributional assumptions has gene-
rated perennial attention over the years. In the classical parametric autoregressive moving average (ARMA)
framework, maximization of a Gaussian likelihood is implemented by default in most packages. This ap-
proach can be viewed as assuming a multivariate normal joint distribution for the data vector. Of course,
a Gaussian likelihood is not a bad default choice as it corresponds closely to least squares; both estima-
tors enjoying the same asymptotic regime by requiring that the driving white noise sequence, Zt, be only
independent and identically distributed (iid) (Brockwell and Davis, 1991).

An alternative to the full likelihood specification that yields maximum likelihood estimates (MLEs) is to
maximize a conditional likelihood, resulting in quasi or conditional MLEs (QMLEs). This approach treats
the (unobserved iid) white noise sequence as the data, and as such the likelihood is formed by multiplying
together the density function of Zt evaluated at the empirical values, zt, which can be related back to
the (observed) xt through the ARMA recursions, after appropriate truncation to account for unobserved
initial values. In this vein, the milestone paper by Davis and Dunsmuir (1997) establishes consistency and
asymptotic normality for ARMA model parameters under minimization of a least absolute deviations (LAD)
criterion, which corresponds to QMLE with Laplace noise.

There are certainly instances when such alternative likelihoods or optimality criteria may be warranted.
Damsleth and El-Shaarawi (1988) employed an ARMA model driven by Laplace noise to fit weekly data
on sulphate concentration in a Canadian watershed. Anderson and Arnold (1993) observed that IBM daily
stock price returns are adequately modeled by Linnik processes. Recent work by Andrews et al. (2009)
suggests that stable distributions provide useful models for certain types of financial data like asset returns
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and traded stock volume, and they propose a method of maximum likelihood estimation for stable AR
processes. Trindade et al. (2010) investigated ARMA and GARCH models driven by asymmetric Laplace
innovations, and found them particularly suited for processes that are skewed, peaked, and leptokurtic, but
which appear to have some higher order moments.

To this end, this paper seeks to derive some distributional results for ARMA models under a flexible
multivariate family, the exponential power (EP) distribution, first proposed in a multivariate setting by
Gomez et al. (1998). A member of the elliptically contoured family, the shape parameter β of the EP
provides flexible control over the thickness of the tail, such that the classical Gaussian (β = 1) and Laplace
(β = 1/2) are obtained as special cases. One of the key results we will establish, is that maximizing a full EP
likelihood is exactly equivalent to a full Gaussian likelihood, thus further strengthening the case for software
packages to use it by default. However, in the case of QMLE the estimates will differ depending on β.

Although we strive for general ARMA results, in certain cases these will be illustrated with respect to
the first-order moving average model, MA(1),

Xt = θ0Zt−1 + Zt, Zt ∼ iid (0, σ2), (1)

where {Zt} is sequence of zero-mean independent and identically distributed (iid) random variables with
variance σ2. Seemingly a simple model, for n observations the (Gaussian) MLE for the (true) coefficient
θ0 is the root of a polynomial of degree (approximately) 2n in θ. In fact, the distribution of the MLE,
and simpler estimators like method of moments and least squares, is a mixture of a continuous density on
(−1, 1) and point masses at ±1 (Paige et al., 2014). Basic issues concerning asymptotic behavior in the
unit-root (and near unit-root) case, θ0 = −1, were not settled until the Koopmans Econometrics Theory
Prize winning paper by Davis and Dunsmuir (1996).

The rest of this paper is organized as follows. Section 2 discusses the EP family of distributions, presents
some new results concerning the family, and sets the stage for subsequent sections. To this end, section 3
derives results concerning: (i) the one and two-dimensional marginal distributions of ARMA models under a
joint Laplace distribution, and (ii) the one-dimensional marginal distribution of an MA(1) model driven by
iid EP noise for select values of β. Section 4 establishes general asymptotic results for the estimates of the
parameters of an ARMA model under these two regimes: (i) MLEs corresponding to a full EP likelihood,
and (ii) QMLEs corresponding to a conditional likelihood resulting from a driving EP noise distribution.
We conclude in sections 5 and 6 with an illustrative application and some summary remarks.

2. The Exponential Power Family

The EP family of distributions was first proposed in a multivariate setting by Gomez et al. (1998). It
is a member of the elliptically contoured family, which is extensively documented in Fang, Kotz, and Ng
(1990), and Fang and Zhang (1990). Fang and Anderson (1990) contains further studies on distributional
properties and applications in statistical inference. The n-dimensional random vector y ∼ ECn (µ,Σ, φ) is
elliptically contoured with location and dispersion parameters µ and Σ, if its characteristic function is of
the form Ξ(s) = eis

′µφ(s′Σs), for some function φ(u), u ∈ R. An equivalent characterization is through
the “generator” function of the pdf, h(·), in which case we write y ∼ ECn (µ,Σ, h), with pdf

f(y) = |Σ|−1/2cnh (z) ≡ |Σ|−1/2g(z), with z = (y − µ)′Σ−1(y − µ) ∈ R+, (2)

where the normalizing constant cn is given by

cn =
Γ(n/2)

πn/2ιn
, ιn =

∫ ∞
0

zn/2−1h(z)dz = 2

∫ ∞
0

un−1h(u2)du. (3)

If the first and second moments exist, then E(y) = µ and Var(y) = −2φ′(0)Σ.
Provost and Cheong (2002, Lemma 2) presented an expression for the pdf of y ∼ ECn (µ,Σ, φ), as

f (y) =

∫ ∞
0

w (t)φn (y;µ,Σ/t) dt, (4)
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where φn (y;µ,Σ/t) denotes the pdf of an n-dimensional normal with mean µ and covariance matrix Σ/t,
and w(t) is a “weighting” function that is defined through the inverse Laplace transform of f(t), t =
(y − µ)′Σ−1(y − µ)/2 ≡ z/2, denoted by L−1

f (t). More explicitly, we have

w(t) = (2π)
n/2 |Σ|1/2 t−n/2L−1

f (t) , with

∫ ∞
0

w (t) dt = 1, (5)

which results in the following relationship between the pdf at z and w(t),

f(z) = (2π)
−n/2 |Σ|−1/2

∫ ∞
0

tn/2e−tz/2w (t) dt.

Two noteworthy special cases of the elliptically contoured family with finite moments of all orders are
presented in Table 1. The weighting function for the normal is the Dirac delta centered at 1. The Laplace
listed here is a scaled version of the ”bilateral exponential” in Table 1 of Provost and Cheong (2002). Both
the Gaussian and Laplace are special cases of the EP, with shape parameters β = 1 and β = 1/2 respectively.

Table 1: Two classical elements of the elliptically contoured family, the Gaussian and Laplace, which are elements of the
exponential power sub-family (Gomez et al., 1998), with shape parameters β = 1 and β = 1/2 respectively.

Distribution φ(u) g(z) w(t)

Gaussian e−u/2 (2π)−n/2e−z/2 δ(t− 1)

Laplace Not Explicit (2π)−n/2Γ(n/2)
Γ(n)21+n/2 e−

√
z/2 Γ(n/2)e−1/(8t)t−(n+3)/2

Γ(n)2(5+n)/2
√
π

If y ∼ EPn (µ,Σ, β) denotes an n-dimensional EP random vector, the values µ, Σ, and β play the role
of location, scale, and shape parameters, with pdf given by

f(z) =
nΓ(n/2)

πn/2Γ(1 + n
2β )21+ n

2β
|Σ|−1/2

exp{−zβ/2}, z = (y − µ)′Σ−1(y − µ).

The mean and variance are related to the location and scale parameters by the relations

E(y) = µ, and Var(y) = cn,βΣ, where cn,β =
21/βΓ

(
n+2
2β

)
nΓ
(
n
2β

) . (6)

The EP is a multivariate generalization of the univariate exponential power distribution (EPD), where
β > 0 controls the thickness of the tails: for β < 1 (β > 1) the tails are heavier (lighter) than the normal.
Gomez et al. (1998) originally termed this power exponential, but later realized the inadvertent switching of
the names (Gomez et al., 2002). The EPD is also variously called Subbotin, Generalized Error Distribution
(Mineo and Ruggieri, 2005), and Generalized Normal Distribution (Nadarajah, 2005), with slight differences
in the parametrizations. However, Gomez et al. (1998) were the first to provide a multivariate extension of
the EPD.

It is obvious that y ∼ EPn (µ,Σ, β) implies y ∼ ECn (µ,Σ, h), with generator function h(z) =
exp{−zβ/2}. Gomez et al. (1998) gave the following expression for the function φ(u) that defines the
characteristic function Ξ(s) = eis

′µφ(s′Σs):

φ(u) =
n

Γ(1 + n
2β )21+ n

2β

∫ ∞
0

Φn(ru)rn−1 exp{−r2β/2}dr, (7)

where for x > 0 and n ≥ 2

Φn(x) =
Γ(n/2)
√
πΓ(n−1

2 )
ιn(x), and ιn(x) =

∫ π

0

eix cos θ sinn−2 θ dθ. (8)
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In this section we state and prove two new results concerning the EP distribution that will be needed in
subsequent sections. The following Proposition simplifies the expression for φ(u).

Proposition 2.1. For n ≥ 2, the expression for φ(u) in the characteristic function of y ∼ EPn (µ,Σ, β),
becomes

φ(u) =
βΓ(n/2)

Γ( n2β )
2
n(β−1)

2β u1−n/2
∫ ∞

0

rn/2Jn/2−1(ru) exp{−r2β/2}dr,

where Jm(·) denotes a Bessel function of the 1st kind of order m.

Proof. From Watson (1944, p.48), it follows that for any x > 0 and n ≥ 2, ιn(x) in (8) can be expressed as

ιn(x) =
√
π Γ

(
n− 1

2

)(
2

x

)n/2−1

Jn/2−1(x).

Substituting this result into the expression for Φn(·) with x = ru and thence into φ(u) gives the desired
result.

Of interest also is an expression for the moments of an EP distribution in the one-dimensional case,
Y ∼ EP1

(
µ, σ2, β

)
.

Proposition 2.2. If Y ∼ EP1

(
µ, σ2, β

)
, then the n-th order moment is

E(Y n) =

n∑
k=0

(
n

k

)
µn−kσk

2k/(2β)Γ
(
k+1
2β

)
2Γ
(

1
2β

) [
1 + (−1)k

]
.

Proof. Nadarajah (2005) computes the n-th moment of a generalized normal distribution, which is equivalent
to an EP1 with a slightly different shape parametrization. A consequence of this computation is that we
obtain the following result for any s > 0:∫ ∞

−∞
yk exp{−|y|s}dy =

1 + (−1)k

s
Γ

(
k + 1

s

)
. (9)

Letting X ∼ EP1 (0, 1, β), a standardized EP1, we simplify notation by setting α = 2β, and compute the
k-th order moment as

E(Xk) =
α

21+1/αΓ
(

1
α

) ∫ ∞
−∞

xk exp

{
−1

2
|x|α

}
dx.

Substituting x = 21/αy, implies |x|α = 2|y|α, and we obtain

E(Xk) =
2k/α+1/αα

21+1/αΓ
(

1
α

) ∫ ∞
−∞

yk exp {−|y|α} dy =
2k/αΓ

(
k+1
α

)
2Γ
(

1
α

) [
1 + (−1)k

]
,

which follows by substituting the expression for the integral from (9). Finally, the desired result is obtained
by invoking the binomial formula:

E(Y n) = E [(µ+ σX)n] =

n∑
k=0

(
n

k

)
µn−kσkE(Xk).
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In particular, we obtain E(Y ) = µ and Var(Y ) as in (6) with n = 1 and Σ = σ2.
We end this section by stating an ancillary result involving an integral that will be needed in a subsequent

section in order to derive the asymptotic covariance matrix of MLEs. This parallels the corresponding result
obtained by Nadarajah (2005) in the course of deriving the Fisher information matrix.

Lemma 2.3. For α > 0 and integer k:

A(α, k) ≡
∫ ∞

0

xα(log x)ke−x
α/2dx

=
21+1/α

αk+1
Γ(1 + 1/α)


1, k = 0,

[log 2 + Ψ(1 + 1/α)] , k = 1,{
[log 2 + Ψ(1 + 1/α)]

2
+ Ψ′(1 + 1/α)

}
, k = 2.

where Ψ(z) = ∂ log Γ(z)/∂z and Ψ′(z) = ∂Ψ(z)/∂z are respectively the digamma and trigamma functions.

Proof. See the Appendix.

3. Marginals of ARMA Models Under EP Distributions

This section considers what marginals arise from a joint EP distributional specification, and from a
process driven by EP noise.

3.1. ARMA marginals for a Laplace process
We first derive the marginal distributions of Xn = (X1, . . . , Xn)′ ∼ EPn (0,Σ, β = 1/2), a zero mean

stationary ARMA(p, q) with covariance function Γn = 4(n+ 1)Σ, whose joint distribution is Laplace.

Proposition 3.1. Let Xn = (X1, . . . , Xn)′ be a zero mean stationary ARMA(p, q) with covariance function
Γn = [Cov(Xi, Xj)]

n
i,j=1 ≡ [γ|i−j|]

n
i,j=1 whose joint distribution follows a Laplace random vector (EP with

β = 1/2). Then, the marginal densities of X1 and X2 = (X1, X2)′ are given respectively by:

fX1
(x1) =

√
n+1
πγ0

Γ(n+1
2 )2n

zn/4Kn/2(
√
z/2), z =

4(n+ 1)x2
1

γ0
,

fX2
(x2) =

(n+ 1)|Γ2|−1/2

2nπΓ(n+1
2 )

z(n−1)/4K(n−1)/2(
√
z/2), z = 4(n+ 1)x2

′Γ−1
2 x2,

where Km(·) denotes a modified Bessel function of the 2nd kind of order m.

Proof. From (iii) of Proposition 3.2 of Gomez et al. (1998),

Xn ∼ EPn
(
µ = 0,Σ = [4(n+ 1)]−1Γn, β = 1/2

)
,

whence a straightforward application of Proposition 5.1 of Gomez et al. (1998) gives the following elliptically
contoured marginals

X1 ∼ ECn (µ = 0, Σ = γ0/(4(n+ 1)), h1) , X2 ∼ ECn (µ = 0, Σ = Γ2/(4(n+ 1)), h2) ,

with respective generator functions

h1(z) = z(n−1)/2

∫ 1

0

x−(n+1)/2(1− x)(n−3)/2 exp

{
−
√

z

4x

}
dx

=
Γ(n−1

2 )2n−1

√
π

zn/4Kn/2(
√
z/2) (10)

h2(z) = zn/2−1

∫ 1

0

x−n/2(1− x)n/2−2 exp

{
−
√

z

4x

}
dx

=
Γ(n2 − 1)2n−2

√
π

z(n−1)/4Kn−1
2

(
√
z/2) (11)
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The proofs of (10) and (11) involve elementary Bessel and Gamma function manipulations, and are provided
in the Appendix. It remains to compute the correct norming constants, c1 and c2, such that c1h1(z) and
c2h2(z) are EC1 and EC2 pdf’s upon multiplication by the appropriate values of |Σ|−1/2. These norming
constants are obtained from (3) with n = 1 and n = 2, respectively. For the first case, we obtain

1

c1
= ι1 =

Γ(n−1
2 )2n−1

√
π

∫ ∞
0

zn/4−1/2Kn/2(
√
z/2)dz = 22nΓ

(
n+ 1

2

)
Γ

(
n− 1

2

)
,

which follows from standard results on integrals of Bessel functions, e.g. equation (A.0.13) in Kotz et al.
(2001, Appendix). Since Σ = γ0/(4(n + 1)), |Σ|−1/2 = 2

√
(n+ 1)/γ0, we thus obtain the given expression

for the pdf of X1: fX1
(x1) = |Σ|−1/2c1h1(z) with z = 4(n+ 1)x2

1/γ0.
For the second case, we obtain similarly

1

c2
= πι2 = π

Γ(n2 − 1)2n−2

√
π

∫ ∞
0

z(n−1)/4K(n−1)/2(
√
z/2)dz = π

Γ(n2 − 1)2n−2

√
π

22+nΓ

(
n+ 1

2

)
,

whence the desired result follows by noting that since Σ = Γ2/(4(n + 1)), |Σ|−1/2 = 4(n + 1)|Γ2|−1/2, and
the pdf of X2 is: fX2

(x2) = |Σ|−1/2c2h2(z) with z = 4(n+ 1)x′2Γ−1
2 x2.

3.2. Marginals of an MA(1) process driven by EP1 noise

We now focus on the marginal of an MA(1) process driven by iid EP1 noise. Specifically, we consider
the distribution of X = θZ1 + Z2, where Z1, Z2 are iid EP1(0, σ2, β) with common pdf

fZ(z|σ, β) =
1

cβσ
exp

{
−1

2

∣∣∣ z
σ

∣∣∣2β} , cβ = 21+ 1
2β Γ

(
1 +

1

2β

)
. (12)

The pdf of X then corresponds to the density of an MA(1), and would be given by the convolution formula:

fX(x) =

∫ ∞
−∞

1

|θ|σ
fZ(y)fZ

(
x/σ − y

θ

)
dy =

1

|θ|c2βσ

∫ ∞
−∞

exp

{
−1

2

[∣∣∣∣x/σ − yθ

∣∣∣∣2β + |y|2β
]}

dy. (13)

A general solution of this integral in closed-form is a difficult problem. (A representation of the integral as
an infinite double summation involving pochhammer and Gamma functions is available from the authors
upon request.) However, for two special cases of β, the solution is readily obtained.

Normal. In the case β = 1 we obtain (as we must) that X ∼ N(0, (1 + θ2)σ2).

Laplace. The case β = 1/2 is solved by first noting that the standardized EP1 with pdf fZ(z) = 1
4 exp{−|z|/2}

is related to the standard Laplace with pdf fW (w) = 1√
2

exp{−
√

2|w|} via the simple scale transform:

Z = 2
√

2W . Scaling Z by σ then means that the latter filters through as a scaling parameter for X,
and hence the pdf of X is given by Corollary 1 of Trindade et al. (2010) with skewness parameter
κ = 1 and scale parameter τ = 2

√
2σ.

4. Asymptotics for ARMA MLEs and QMLEs Under EP Likelihoods

We consider the asymptotic regime for the MLEs and QMLEs of the vector of coefficients α = (φ1, . . . , φp,
θ1, . . . , θq)

′ in the causal and invertible mean zero ARMA(p, q), where the AR and MA polynomials φ(z) =
1− z − · · · − zp and θ(z) = 1 + z + · · ·+ zq, respectively, have no common zeros

φ(B)Xt = θ(B)Zt, Zt ∼ iid(0, σ2), (14)

and σ is a scale parameter for the distribution of Zt. Let η = (α′, β, σ2)′ denote the entire vector of unknown
parameters, and xn = (x1, . . . , xn)′ the vector of observations.
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4.1. Asymptotics under a full EP likelihood

The MLEs in this case are obtained by maximizing a joint EPn likelihood for the data vector, Xn =
(X1, . . . , Xn)′ ∼ EPn (0,Σn, β), a zero mean ARMA(p, q) with covariance function Γn ≡ σ2Ωn,α = cn,βΣn,
where cn,β is as defined in (6), Ωn,α depends only on n and α, and σ2 is the variance of Zt. The corresponding
log-likelihood for η is given by

`(η) = log(kn,β)− 1

2
log |Σn| −

1

2
(x′nΣ−1

n xn)β , where kn,β =
nΓ(n/2)

πn/2Γ(1 + n
2β )21+ n

2β
. (15)

Substitution of Σn = σ2Ωn,α/cn,β then leads to the alternate version of the log-likelihood with terms that
allow us to see the dependence on each of the unknown parameters,

`(α, β, σ2) = log(kn,βc
n/2
n,β )− n

2
log(σ2)− 1

2
log |Ωn,α| −

1

2

(cn,β
σ2

)β
(x′nΩ−1

n,αxn)β . (16)

Computing ∂`/∂σ2 and setting equal to zero gives the profile MLE for σ2

σ̂2 = cn,β

(
β

n

)1/β

Qn,α, where Qn,α = (x′nΩ−1
n,αxn), (17)

which upon substitution into (16) gives the profile log-likelihood

`(α, β, σ̂2) =
n

2β

[
log

(
nk

2β/n
n,β

β

)
− 1

]
− 1

2
log |Ωn,α| −

n

2
log(Qn,α) ≡ `1(β) + `2(α). (18)

The separability of this log-likelihood in the parameters β and α, means that the MLEs of the latter are
obtained by maximizing

`2(α) = −1

2
log |Ωn,α| −

n

2
log(Qn,α),

which coincides with the objective function for the usual Gaussian likelihood. Hence, the asymptotics of the
resulting MLEs (α̂, σ̂2) are identical to that case, e.g. Brockwell and Davis (1991, §8.8). Note that `1(β)
is monotone increasing in β, and so it does not appear that (useful) estimation of β is possible under this
paradigm. On the other hand, this finding sheds new light on the importance of maximizing a Gaussian
likelihood, in particular of its robustness with respect to an EP criterion.

4.2. Asymptotics under a driving EP noise distribution

In this case the driving iid noise sequence Zt ∼ EP1

(
0, σ2, β

)
is assumed to follow a univariate EP1 ∼

fZ(z|σ, β) pdf as in (12), and we maximize the conditional log-likelihood

`(α, β, σ) =

n∑
t=p+1

log fZ(zt|σ, β).

This expression can be profiled in σ similarly to the above case, to yield

`(α, β) = `(α, β, σ̂) = −n log cβ −
n

2β

[
log

(
βSα,β
n

)
+ 1

]
, (19)

where

σ̂ =

[
β

n
Sβ(α)

]1/(2β)

, and Sβ(α) =

n∑
t=p+1

|zt(α)|2β , (20)
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Using the ARMA equations (14) to obtain the values of zt(α) recursively from the data vector xn, the `(α, β)
criterion can be numerically optimized to give η̃ = (α̃′, β̃, σ̃)′, the corresponding QMLEs. An application of
the Theorem in Li and McLeod (1988), allows us to conclude that η̃ is asymptotically normal with mean η
and covariance matrix n−1Ω−1, that is, with Ω in block form, we have

√
n(η̃ − η)

d−→ N(0,Ω−1), where Ω =

[
Jp+q 0

0 I2

]
. (21)

I2 is the 2 × 2 Fisher Information matrix (per observation) corresponding to n iid observations from the
EP1

(
0, σ2, β

)
pdf, whose elements are given by the following Theorem.

Theorem 4.1. If Z ∼ EP1

(
0, σ2, β

)
, then the elements of the Fisher Information matrix (per observation)

are given by

I2(2, 2) =
21+ 1

2β (2β + 1)

σ2cβ
Γ

(
1 +

1

2β

)
− 1

σ2
, I2(1, 2) =

21+ 1
2β Γ

(
1 + 1

2β

)
σcββ

[
Ψ

(
1 +

1

2β

)
+ log(2)− 1

]
,

and

I2(1, 1) =
2

1
2β Γ

(
1 + 1

2β

)
cββ3

{[
log(2) + Ψ

(
1 +

1

2β

)]2

+ Ψ′
(

1 +
1

2β

)}

+
1

4β4

{
Ψ′
(

1 +
1

2β

)
+ 4β

[
log(2) + Ψ

(
1 +

1

2β

)]}
.

Proof. Straightforward differentiation gives (Wickramasinghe, 2012):

∂2 log f(z|σ, β)

∂σ2
=

1

σ2
− β(2β + 1)

σ2

∣∣∣ z
σ

∣∣∣2β , ∂2 log f(z|σ, β)

∂σ∂β
= −2β

σ

∣∣∣ z
σ

∣∣∣2β log |z/σ|+ 1

σ

∣∣∣ z
σ

∣∣∣2β ,
and

∂2 log f(z|σ, β)

∂β2
= −

Ψ′(1 + 1
2β ) + 4β[log(2) + Ψ(1 + 1

2β )]

4β4
− 2

∣∣∣ z
σ

∣∣∣2β (log |z/σ|)2
.

Since Z ∼ EP1

(
0, σ2, β

)
, it follows immediately that X ≡ Z/σ ∼ EP1 (0, 1, β), and thus to compute

expectations in the above we need expressions for

E
[
|X|α (log |X|)k

]
, α = 2β > 0 and k = 0, 1, 2. (22)

Now, noticing that the integrand in (22) is an even function, we obtain

E
[
|X|α (log |X|)k

]
=

∫ ∞
−∞

|x|α

cβ
(log |x|)ke−|x|

α/2dx =
2

cβ

∫ ∞
0

xα(log x)ke−x
α/2dx =

2

cβ
A(α, k),

where A(α, k) is as defined in Lemma 2.3, whence an application of the expressions therein yields the desired
result for I2.

Jp+q has dimension p+ q, its elements being functions of the driving noise pdf fZ(z|λ), parametrized by
λ, and the autocovariance of the process {Xt}. Let {Ut} and {Vt} be the auxiliary autoregressive processes
φ(B)Ut = Wt and θ(B)Vt = Wt, where {Wt} is iid with mean zero and variance one. If U := (U1, . . . , Up)

′

and V := (V1, . . . , Vq)
′, then define

Υp+q(α) =

[
E(UU′) E(UV′)
E(VU′) E(VV′)

]
and $(λ) =

∫
R

(
∂fZ(z|λ)

∂z

)2
1

fZ(z|λ)
dz.

From the Theorem in Li and McLeod (1988), we then have that

Jp+q = σ2Υp+q(α)$(λ).
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Remark 4.2. If {Zt} ∼ N(0, σ2), a straightforward computation gives $(σ) = 1/σ2, so that Jp+q =
Υp+q(α), which coincides with the classical result for Gaussian MLEs (Brockwell and Davis, 1991, §8.8).

Lemma 4.3. If Z ∼ EP1

(
0, σ2, β

)
, then for β > 1/4, $(σ, β) is given by

$(σ, β) =

∫
R

(
∂fZ(z|σ, β)

∂z

)2
1

fZ(z|σ, β)
dz =

β22−1/(2β)

σ2cβ
Γ

(
2− 1

2β

)
.

Proof. Straightforward computations give the integrand as(
∂fZ(z|σ, β)

∂z

)2
1

fZ(z|σ, β)
=

β2

σ4β
|z|4β−2fZ(z|σ, β),

whence we need to develop an expression for the k-th absolute moment, E|Z|k. Noticing that |z|kfZ(z|σ, β)
is an even function, this can be computed as

E|Z|k =
2

σcβ

∫ ∞
0

zk exp

{
−1

2

( z
σ

)2β
}
dz,

which, by means of the substitution x = 1
2

(
z
σ

)2β
, can be written as

E|Z|k =
2(21/(2β)σ)k+1

2σβcβ

∫ ∞
0

x
k+1
2β −1e−xdx =

2(k+1)/(2β)σk

βcβ
Γ

(
k + 1

2β

)
,

and is convergent provided k > −1. Evaluating this at k = 4β − 2, then yields the desired result.

We are now ready to state the main result in this section, which specifies the asymptotic distribution of
the QMLEs under EP1 white noise.

Theorem 4.4. Consider the MA(1) model (1) where the driving white noise sequence {Zt} has the EP1

density given by (12) with β > 1/4. Then the vector of QMLEs, η̃, has the asymptotic distribution given by
(21) with the constituent matrices in Ω given by

Jp+q ≡ J1 =

(
β21−1/β

1− θ2

)
Γ(2− 1

2β )

Γ(1 + 1
2β )

,

and I2 as in Theorem 4.1.

Proof. In the case of an MA(1), Υp+q(α), computed with p = 0 and q = 1, is just the variance of the process
Vt, i.e. (1− θ2)−1. Hence, invoking Lemma 4.3, we obtain

Jp+q ≡ J1 =
β21−1/β

1− θ2

Γ(2− 1
2β )

Γ(1 + 1
2β )

.

5. Application: Modeling the TIAA Real Estate Account

In this section we consider the TIAA Real Estate Account3) over the period 15 June 2004 to 31 December
2006; a total of 650 daily values for which returns were computed by taking differences of successive log
values. Trindade et al. (2010) found an MA(1) driven by iid asymmetric Laplace noise to be a plausible

3)www.tiaa-cref.org/
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model for the returns, and obtained the corresponding QMLEs by maximizing the appropriate conditional
likelihood. The estimates for this model are displayed in the first row of Table 2, where 0 < κ <∞ controls
skewness, and standard errors for non-fixed parameters appear in parentheses. Repeating this, but using
iid EP1

(
0, σ2, β

)
noise as in subsection 4.2 instead, results in the estimates in the second row of Table 2.

The standard errors in the latter were calculated by plugging the QMLEs into the formulas of Theorems 4.1
and 4.4. Noting that the β̂ = 0.4625 shape parameter in the latter is very close to 0.5, suggests one might
approximate the EP noise model with a (symmetric, κ = 1) Laplace distribution, where the shape parameter
could then be computed from the relationship discussed in subsection 3.2,

τ = 2
√

2σ = 2
√

2(2.20E-04) = 6.22E-04,

obtained by plugging in the estimate σ̂ = 2.20E-044). Finally, we entertained the usual Gaussian QMLE
model, iid EP1

(
0, σ2, β = 1

)
noise, which is routinely obtained with a software package (e.g., arima function

in R with the option “method=CSS”) since it corresponds to minimizing a least-squares criterion. The
estimates of these last two models appear in the third and fourth rows of Table 2.

Table 2: QMLEs (and standard errors) for four MA(1) models fitted to the TIAA-CREF returns with different noise structures.
(“n/a”: standard errors “not applicable”.)

IID Noise Parameter QMLEs (Standard Errors)

Structure MA (θ) Skewness (κ) Scale (σ) Shape (β) AIC

Asymmetric 0.0621 0.664 6.31E-04 0.5 -7703.7
Laplace (2.38E-02) (3.68E-02) (4.28E-05) (fixed)

Exponential 0.1350 1.0 2.20E-04 0.4625 -7603.5
Power (8.487E-02) (fixed) (9.000E-06) (7.852E-03)

Laplace 0.1350 1.0 6.22E-04 0.5 -7580.7
(approx.) (n/a) (fixed) (n/a) (fixed)

Gaussian 0.1488 1.0 8.202E-04 1.0 -7377.8
(3.52E-02) (fixed) (2.277E-05) (fixed)

The corresponding Akaike Information Criterion (AIC) values for each model are given in the rightmost
column of Table 2. If these are taken as suggestive of model adequacy, then we would conclude that the
asymmetric Laplace noise structure is more plausible than the competing EP model (which in turn fares
better than the remaining two models). It is interesting to consider the trade-off between these two competing
models with the same number of non-fixed parameters; the inclusion of a skewness parameter appears to
be more important than that of a shape parameter in this particular case, but that is because the Laplace
shape of β = 0.5 is already close to optimal, as evidenced by the EP fit. There is some confirmatory evidence
for this finding, in that an inspection of the marginal histogram of returns suggests marked peakedness and
right-skewness, consistent with the asymmetric Laplace distribution.

6. Summary

Distributional and inferential results were derived for ARMA models under the multivariate EP distri-
bution. These were obtained by entertaining two different regimes: (i) a full multivariate EP distribution
for the process, and (ii) a process driven by iid univariate EP noise. Under the first regime we provided
closed-form expressions for the marginal distributions of ARMA processes in the Laplace case (β = 1/2),

4)Of course, one would need to compute the appropriate QMLEs in this case, but for illustrative purposes only we retained
the values obtained from the EP model, making this only an approximate symmetric Laplace model for which standard errors
are not applicable.
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and discovered that maximization of a full likelihood (general β) is identical to maximization of the usual
Gaussian likelihood (β = 1) routinely implemented by default in software packages; a result which further
strengthens the rationale for this default criterion. Under the second regime we were only able to provide
closed-form expressions for the marginal distribution of the MA(1) process in the Laplace case (the Gaussian
case being trivial), but presented a complete development of the asymptotics for a general ARMA and any β.
The methodology was illustrated on a real dataset, where it was shown that allowing for a shape parameter
(β) by using the EP to drive the process, provides a useful extension to the QMLE method.
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7. Appendix

7.1. Proof of Lemma 2.3

In all cases we use the substitution y = xα/2, which implies x = (2y)1/α and dx = 21/αy(1/α−1)/αdy.

Case k = 0:∫ ∞
0

xαe−x
α/2dx =

∫ ∞
0

(2y)e−y(1/α)21/αy1/α−1dy =
2(1+1/α)

α

∫ ∞
0

e−yy(1+1/α)−1dy

=
21+1/α

α
Γ(1 + 1/α).
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Case k = 1:∫ ∞
0

xα(log x)e−x
α/2dx =

21/α

α2

∫ ∞
0

xαe−y(2y)
log(2y)

α
y1/α−1dx

=
21+1/α

α2

∫ ∞
0

xαe−yy1/α {log(2) + log(y)} dy

=
21+1/α

α2

{
log(2)Γ(1 + 1/α) +

∫ ∞
0

e−yy(1/α+1)−1 log(y)dy

}
=

21+1/α

α2
{log(2)Γ(1 + 1/α) + Γ′(1 + 1/α)} ,

where the last line follows from equation (4.352) of Gradshteyn and Ryzhik (2000) with µ = 1.

Case k = 2:∫ ∞
0

xα(log x)2e−x
α/2dx =

21/α

α2

∫ ∞
0

xαe−y(2y)

{
log(2y)

α

}2

y1/α−1dy

=
21/α

α3

{
(log 2)2

∫ ∞
0

e−yy(1+1/α)−1dy + 2 log 2

∫ ∞
0

e−yy(1+1/α)−1(log y)dy

}
+

21/α

α3

∫ ∞
0

e−yy(1+1/α)−1(log y)2dy

=
21/α

α3

{
(log 2)2Γ(1 + 1/α) + 2 log 2Γ′(1 + 1/α)

}
+

21/α

α3
Γ(1 + 1/α)

[
Ψ(1 + 1/α)2 + ζ(2, 1 + 1/α)

]
,

where ζ(·, ·) is the Generalized Riemann-Zeta function, and the last step follows by §4.358 of Grad-
shteyn and Ryzhik (2000). Finally, substituting the expression ζ(2, 1+1/α) = Ψ′(1+1/α) from §8.363,
equation (8), of Gradshteyn and Ryzhik (2000), gives the desired result.

7.2. Proof of Equations (10) and (11)

By definition,

Kν (z) =

√
π (2z)

ν
e−z

Γ
(
ν + 1

2

) ∫ ∞
0

e−2zttν−
1
2 (1 + t)

ν− 1
2 dt, (23)

so that upon replacing z with
√
z

2 and substituting ν = n
2 gives

Kn
2

(√
z

2

)
=

√
π (
√
z)

n
2 e−

√
z

2

Γ
(
n
2 + 1

2

) ∫ ∞
0

e−
√
ztt

n−1
2 (1 + t)

n−1
2 dt

=

√
πz

n
4

Γ
(
n−1

2 + 1
) ∫ ∞

0

e−
√
z(t+ 1

2 )t
n−1
2 (1 + t)

n−1
2 dt

=

√
πz

n
4(

n−1
2

)
Γ
(
n−1

2

) ∫ ∞
0

e−
√
z(t+ 1

2 )t
n−1
2 (1 + t)

n−1
2 dt,

using basic properties of the Gamma function. Thus,

Γ
(
n−1

2

)
√
π

Kn
2

(√
z

2

)
=

2z
n
4

n− 1

∫ ∞
0

e−
√
z(t+ 1

2 )t
n−1
2 (1 + t)

n−1
2 dt.
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Now, letting t + 1
2 = 1

2
√
x

implies t = 1−
√
x

2
√
x
, dt = − 1

4x
− 3

2 dx , and the limits become t → 0 ⇒ x → 1, and

t→∞⇒ x→ 0, which upon substitution into the previous step yields,

Γ
(
n−1

2

)
√
π

Kn
2

(√
z

2

)
=

2−121−nz
n
4

n− 1

∫ 1

0

e−
√

z
4x

(
1− x

4x

)n−1
2
(
−1

4

)
x−

3
2 dx

=
2−nz

n
4

n− 1

∫ 1

0

e−
√

z
4x (1− x)

n−1
2 (x)

−n+2
2 dx.

Now consider the derivative of e−
√

z
4x .

d
(
e−
√

z
4x

)
dx

= e−
√

z
4x

(
−1

2

)( z
4x

)− 1
2
(
− z

4x2

)
=
e−
√

z
4xx−

3
2 z

1
2

22

=⇒ e−
√

z
4x = 22x

3
2 z−

1
2

d
(
e−
√

z
4x

)
dx

Substitution of this result into the integrand of the previous equation gives,

Γ
(
n−1

2

)
√
π

Kn
2

(√
z

2

)
=

2−121−nz
n
4

n− 1

∫ 1

0

d
(
e−
√

z
4x

)
dx

22x
3
2 z−

1
2 (1− x)

n−1
2 (x)

−n+2
2 dx

=
2−n+2z

n−2
4

n− 1

∫ 1

0

d
(
e−
√

z
4x

)
dx

(
1− x
x

)n−1
2

dx

=
2−n+2z

n−2
4

n− 1

∫ 1

0

e−
√

z
4x

(
n− 1

2

)(
1− x
x

)n−3
2

x−2dx.

A final simplifying step then establishes the required result of (10):

Γ
(
n−1

2

)
2n−1z

n
4

√
π

Kn
2

(√
z

2

)
= z

n
4 +n−2

4

∫ 1

0

e−
√

z
4x (1− x)

n−3
2 (x)

−n+1
2 dx

= z
n−1
2

∫ 1

0

e−
√

z
4x (1− x)

n−3
2 (x)

−n+1
2 dx.

As for the proof of (11), replacing z with
√
z

2 and substituting ν = n−1
2 into (23) gives,

Kn−1
2

(√
z

2

)
=

√
π (
√
z)

n−1
2

Γ
[(
n
2 − 1

)
+ 1
] ∫ ∞

0

e−
√
z(t+ 1

2 ) (t)
n−2
2 (1 + t)

n−1
2 −

1
2 dt.

Following steps very similar to the proof of (10), we obtain the desired result,

zn/2−1

∫ 1

0

x−n/2(1− x)n/2−2 exp

{
−
√

z

4x

}
dx =

Γ(n2 − 1)2n−2

√
π

z(n−1)/4Kn−1
2

(
√
z/2).


