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Relations for single and joint moment generating functions of
lower generalized order statistics from generalized exponential

distribution
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Abstract. Distributional and inferential results are derived for ARMA models under the multivariate
exponential power (EP) distribution, which includes the Gaussian and Laplace as special cases. Marginal
distributions are obtained in the important Laplace case, both under a multivariate Laplace distributed
process, as well as a process driven by univariate Laplace noise. Asymptotic results are established for the
maximum likelihood estimators under a full EP likelihood, and under a conditional likelihood resulting
from a driving univariate EP noise distribution. Whenever tractability permits, results are fully worked
out with respect to the MA(1) model. The methodology is illustrated on a fund of real estate returns.

1. Introduction

The concept of generalized order statistics (gos) was introduced by Kamps (1995). A variety of order
models of random variables is contained in this concept. Pawlas and Syznal (2001) introduced the concept of
lower generalized order statistics (lgos) to enable a common approach to descending order random variables
like reversed order statistics and lower record values. In this article we will consider the lgos , which is as
follows:

Let n ∈ N , k ≥ 1, m ∈ <, be the parameters such that

γr = k + (n− r)(m+ 1) ≥ 0, for all 1 ≤ r ≤ n.

The random variables X∗(1, n,m, k) . . . X∗(n, n,m, k) are said to be lgos from an absolutely continuous
distribution function (df) F () with the probability density function (pdf) f () , if their joint pdf is of the
form

k
( n−1∏
r=1

γr

)( n−1∏
j=1

[F (xj)]
m f(xj)

)
[F (xn)]k−1 f(xn) (1)

for F−1(1) > x1 ≥ x2 ≥ . . . ≥ xn ≤ F−1(0).

Note that for m = 0, k = 1, we obtain the joint pdf for the order statistics and when m = −1, we get
the joint pdf of the k−th lower record values.
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In view of (1), the marginal pdf of r−th lgos is given by

fX∗(r,n,m,k)(x) =
Cr−1

(r − 1)!
[F (x)]γr−1 f(x) gr−1m (F (x)). (2)

and the joint pdf of r−th and s−th lgos , r < s , is

fX∗(r,n,m,k),X∗(s,n,m,k)(x, y) =
Cs−1

(r − 1)! (s− r − 1)!
[F (x)]mf(x)gr−1m (F (x))

×[hm(F (y))− hm(F (x))]s−r−1[F (y)]γs−1f(y), x > y, (3)

where

Cr−1 =

r∏
i=1

γi, hm(x) =


− 1

m+ 1
xm+1, m 6= −1

− log x , m = −1

and

gm(x) = hm(x)− hm(1), x ∈ [0, 1).

The work of Burkschat et al. (2003) may also be seen for dual (lower) generalized order statistics.

Ahsanullah and Raqab (1999), Raqab and Ahsanullah (2000, 2003) have established recurrence relations
for moment generating functions of record values from Pareto and Gumble, power function and extreme
value distributions.

Recurrence relations for marginal and joint moment generating functions of gos from power function
distribution are derived by Saran and Pandey (2003). Al-Hussaini et al. (2005, 2007) have established
recurrence relations for conditional and joint moment generating functions of gos based on mixed population,
respectively. Khan et al. (2010) have established explicit expressions and some recurrence relations for
moment generating function of gos from Gompertz distribution.

In the present study, we have established exact expressions and some recurrence relations for single and
joint moment generating functions of lgos from generalized exponential distribution. Results for order statis-
tics and lower record values are deduced as special cases and a theorem for characterizing this distribution
is stated and proved.

A random variable X is said to have generalized exponential distribution (Gupta and Kundu, 1999), if
its pdf is of the form

f(x) = α(1− e−x)α−1e−x, x > 0, α > 0 (4)

and the corresponding df is

F (x) = (1− e−x)α, x > 0, α > 0. (5)

Here α is the shape parameter. The location and scale parameters can be added to this model. Without
loss of generality, the location and scale parameters are taken to the zero and unity, respectively. When
α = 1 , this distribution corresponds to standard exponential distribution.

It is observed in Gupta and Kundu (1999) that the generalized exponential distribution can be used
quite effectively in analyzing many lifetime data, particularly in place of gamma and Weibull distributions.

For more details on this distribution and its applications one may refer to Gupta and Kundu (2001a, b).
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2. Relations for single moment generating function

Note that for generalized exponential distribution defined in (4)

αF (x) = (ex − 1)f(x). (6)

The relation in (6) will be used to derive some recurrence relations for the moment generating functions of
lgos from generalized exponential distribution.

Let us denote the single moment generating functions of X∗(r, n,m, k) by MX∗(r,n,m,k)(t) and its j−th

derivative by M
(j)
X∗(r,n,m,k)(t).

We shall first establish the explicit expression for MX∗(r,n,m,k)(t). Using (2), we have when m 6= −1

MX∗(r,n,m,k)(t) =
Cr−1

(r − 1)!

∫ ∞
0

etx[F (x)]γr−1 f(x) gr−1m (F (x))dx

=
Cr−1

(r − 1)!
J(γr−1, r − 1), (7)

where

J(a, b) =

∫ ∞
0

etx[F (x)]a f(x) gbm(F (x))dx. (8)

On expanding gbm(F (x)) =
[

1
m+1{1− (F (x))

m+1}
]b

binomially in (8), we get when m 6= −1

J(a, b) = A

∫ ∞
0

etx[F (x)]a+u(m+1)f(x)dx, (9)

where

A =
1

(m+ 1)
b

b∑
u=0

(−1)
u
(
b
u

)
.

Making the substitution z = [F (x)]1/α in (9), we find that

J(a, b) = αA

∫ 1

0

(1− z)−tzα[a+u(m+1)+1]−1dz.

On using the Maclaurine series expansion

(1− z)−t =

∞∑
p=0

(t)p z
p

p !
,

where

(t)p =

{
t(t+ 1) . . . (t+ p− 1), p = 1, 2, . . .

1, p = 0

and integrating the resulting expression, we get

J(a, b) = A

∞∑
p=0

(t)p
p![a+ u(m+ 1) + 1 + p/α]

. (10)
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Now on substituting for J(γr − 1, r − 1) from (10) in (7) and simplifying, we obtain when m 6= −1

MX∗(r,n,m,k)(t) =
Cr−1

(r − 1)!(m+ 1)r−1

∞∑
p=0

r−1∑
u=0

(−1)u
(
r − 1

u

)
(t)p

p! [γr−u + p/α]
. (11)

Applying D’Alembert’s ratio test for convergence, it can easily be seen that MX∗(r,n,m,k)(t) exists
∀ t, −∞ < t <∞ and is analytic in t.

And when m = −1 that

MX∗(r,n,m,k)(t) =
0

0
as

r−1∑
u=0

(−1)u
(
r − 1

u

)
= 0 .

Since (11) is of the form 0
0 at m = −1, therefore, we have

MX∗(r,n,m,k)(t)=A∗
r−1∑
u=0

(−1)u
(
r − 1

u

)
[k + (n− r + u)(m+ 1) + p/α]−1

(m+ 1)r−1
, (12)

where

A∗ =
Cr−1

(r − 1)!

∞∑
p=0

(t)p
p!

.

Differentiating numerator and denominator of (12) (r − 1) times with respect to m , we get

MX∗(r,n,m,k)(t) = A∗
r−1∑
u=0

(−1)u+(r−1)
(
r − 1

u

)
(n− r + u)r−1

[k + (n− r + u)(m+ 1) + p/α]r

= A∗
r−1∑
u=0

(−1)u
(
r − 1

u

)
(r − n− u)r−1

[k + (n− r + u)(m+ 1) + p/α]r
.

On applying the L’ Hospital rule, we have

lim
m→−1

MX∗(r,n,m,k)(t) =
A∗

(k + p/α)r

r−1∑
u=0

(−1)u
(
r − 1

u

)
(r − n− u)r−1. (13)

But for all integers n ≥ 0 and for all real numbers x , we have Ruiz (1996)

n∑
i=0

(−1)i
(
n

i

)
(x− i)n = n!. (14)

Therefore

b∑
u=0

(−1)u+b
(
b

u

)
ub = b!. (15)

Now on substituting (14) in (13), we find that

MX∗(r,n,−1,k)(t) = M
(Z

(k)
r )

(t) = kr
∞∑
p=0

(t)p
p!(k + p/α)r

. (16)
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Differentiating MX∗(r,n,m,k)(t) and evaluating at t = 0 , we get the mean of the r−th lgos when m 6= −1

E[X∗(r, n,m, k)] =
Cr−1

(r − 1)!(m+ 1)r−1

∞∑
p=1

r−1∑
u=0

(−1)u
( r − 1

u

) 1

p (γr−u + p/α)

and when m = −1 that

E[X∗(r, n,−1, k)] = E(Z(k)
r ) = kr

∞∑
p=1

1

p (k + p/α)r
.

Special cases

i) Putting m = 0 , k = 1 in (11), the explicit formula for single moment generating function of order
statistics of the generalized exponential distribution can be obtained as

MXn−r+1:n
(t) = Cr:n

∞∑
p=0

r−1∑
u=0

(−1)u
( r − 1

u

) (t)p
p!(n− r + 1 + u+ p/α)

.

That is

MXr:n(t) = Cr:n

∞∑
p=0

n−r∑
u=0

(−1)u
( n− r

u

) (t)p
p!(r + u+ p/α)

,

where

Cr:n =
n!

(r − 1)! (n− r)!
.

ii) Setting k = 1 in (16), we get the explicit expression for single moment generating function of lower
record values from generalized exponential distribution, which verify the result of Raqab (2002).

A recurrence relation for single moment generating function for lgos from df (5) can be obtained in the
following theorem.

Theorem 2.1. For the distribution given in (5) and for 2 ≤ r ≤ n, n ≥ 2 and k = 1, 2 . . . ,(
1− t

αγr

)
M

(j)
X∗(r,n,m,k)(t) = M

(j)
X∗(r−1,n,m,k)(t) +

j

αγr
M

(j−1)
X∗(r,n,m,k)(t)

− 1

αγr
{tM (j)

X∗(r,n,m,k)(t+ 1) + jM
(j−1)
X∗(r,n,m,k)(t+ 1)}. (17)

Proof. From (2), we have

MX∗(r,n,m,k)(t) =
Cr−1

(r − 1)!

∫ ∞
−∞

etx[F (x)]γr−1 f(x) gr−1m (F (x))dx. (18)

Integrating by parts treating [F (x)]γr−1f(x) for integration and rest of the integrand for differentiation,
we get

MX∗(r,n,m,k)(t) = MX∗(r−1,n,m,k)(t)−
tCr−1

(r − 1)!γr

∫ ∞
−∞

etx[F (x)]γrgr−1m (F (x))dx,

the constant of integration vanishes since the integral considered in (18) is a definite integral. On using (6),
we obtain
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MX∗(r,n,m,k)(t) = MX∗(r−1,n,m,k)(t)

− tCr−1
(r − 1)!γr

∫ ∞
0

etx[F (x)]γr−1
{

(ex − 1)

α
f(x)

}
gr−1m (F (x))dx

= MX∗(r−1,n,m,k)(t)−
t

αγr
{MX∗(r,n,m,k)(t+ 1)−MX∗(r,n,m,k)(t)}. (19)

Differentiating both the sides of (19) j times with respect to t , we get

M
(j)
X∗(r,n,m,k)(t) = M

(j)
X∗(r−1,n,m,k)(t)−

t

αγr
M

(j)
X∗(r,n,m,k)(t+ 1)

− j

αγr
M

(j−1)
X∗(r,n,m,k)(t+ 1) +

t

αγr
M

(j)
X∗(r,n,m,k)(t) +

t

αγr
M

(j−1)
X∗(r,n,m,k)(t).

The recurrence relation in equation (17) is derived simply by rewriting the above equation.

By differentiating both sides of equation (17) with respect to t and then setting t = 0 , we obtain the
recurrence relations for moments of lgos from generalized exponential distribution in the form

E[X∗j(r, n,m, k)] = E[X∗j(r − 1, n,m, k)]

+
j

αγr
{E[X∗j−1(r, n,m, k)]− E[φ(X∗(r, n,m, k))]},

where
φ(x) = xj−1ex.

Remark 2.2. Putting m = 0 , k = 1 in (17), we obtain the recurrence relation for single moment
generating function of order statistics for generalized exponential distribution in the form(

1− t

α(n− r + 1)

)
M

(j)
Xn−r+1:n

(t) = M
(j)
Xn−r+2:n

(t) +
j

α(n− r + 1)
M

(j−1)
Xn−r+1:n

(t)

− 1

α(n− r + 1)
{tM (j)

Xn−r+1:n
(t+ 1) + jM

(j−1)
Xn−r+1:n

(t+ 1)}.

Replacing (n− r + 1) by (r − 1) , we have

M
(j)
Xr:n

(t) =
(

1− t

α(r − 1)

)
M

(j)
Xr−1:n

(t)− j

α(r − 1)
M

(j−1)
Xr−1:n

(t)

+
1

α(r − 1)
{tM (j)

Xr−1:n
(t+ 1) + jM

(j−1)
Xr−1:n

(t+ 1)}.

For r = r + 1 , the result was obtained by Raqab (2004).

Remark 2.3. Setting m = −1 and k ≥ 1 in Theorem 2.1, we get a recurrence relation for single moment
generating function of lower k record values for generalized exponential distribution in the form(

1− t

αk

)
M

(j)

Z
(k)
r

(t) = M
(j)

Z
(k)
r−1

(t) +
j

αk
M

(j−1)
Z

(k)
r

(t)− 1

αk
{tM (j)

Z
(k)
r

(t+ 1) + jM
(j−1)
Z

(k)
r−1

(t+ 1)}.
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3. Relations for joint moment generating function

Before coming to main results we shall prove the following Lemmas.

Lemma 3.1. For generalized exponential distribution as given in (4) and non-negative integers a, b and
c with m 6= −1 ,

J(a, 0, c) =

∞∑
p=0

∞∑
q=0

(t1)q(t2)p
p! q! (c+ 1 + p/α)[a+ c+ 2 + (p+ q)/α]

, (20)

where

J(a, b, c) =

∫ ∞
0

∫ x

0

et1x+t2y[F (x)]af(x)

×[hm(F (y))− hm(F (x))]b[F (y)]cf(y)dydx. (21)

Proof. From (21), we have

J(a, 0, c) =

∫ ∞
0

et1x[F (x)]af(x)G(x)dx, (22)

where

G(x) =

∫ x

0

et2y[F (y)]cf(y)dy. (23)

By setting z = [F (y)]1/α in (23), we get

G(x) =

∞∑
p=0

(t2)p
p! (c+ 1 + p/α)

[F (x)]c+1+p/α.

On substituting the above expression of G(x) in (22), we find that

J(a, 0, c) =

∞∑
p=0

(t2)p
p! (c+ 1 + p/α)

∫ ∞
0

et1x[F (x)]a+c+1+p/αf(x)dx. (24)

Again by setting w = [F (x)]1/α in (24) and simplifying the resulting expression, we derive the relation given
in (20).

Lemma 3.2. For the distribution as given in (4) and any non-negative integers a, b and c ,

J(a, b, c) =
1

(m+ 1)b

∞∑
p=0

∞∑
q=0

b∑
v=0

(−1)b
(
b

v

)
(t1)q

p! q![c+ v(m+ 1) + 1 + p/α]

× (t2)p
[a+ c+ b(m+ 1) + 2 + (p+ q)/α]

, m 6= −1 (25)

= b!

∞∑
p=0

∞∑
q=0

(t1)q(t2)p
p! q!(c+ 1 + p/α)b+1[a+ c+ 2 + (p+ q)/α]

, m = −1, (26)

where J(a, b, c) is as given in (21).
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Proof. When m 6= −1 , we have

[hm(F (y))− hm(F (x))]b =
1

(m+ 1)b
[(F (x))m+1 − (F (y))m+1]b

=
1

(m+ 1)b

b∑
v=0

(−1)v
(
b

v

)
[F (x)](b−v)(m+1)[F (y)]v(m+1).

Now substituting for [hm(F (y))− hm(F (x))]b in (21), we get

J(a, b, c) =
1

(m+ 1)b

b∑
v=0

(−1)v
(
b

v

)
J(a+ (b− v)(m+ 1), 0, c+ v(m+ 1)).

Making use of Lemma 3.1, we derive the relation given in (25).

When m = −1 , J(a, b, c) = 0
0 , as

∑b
v=0(−1)v

(
b
v

)
= 0 , so after applying L’ Hospital rule and (15), (26)

can be proved on the lines of (16).

Theorem 3.3. For the distribution as given in (5) and 1 ≤ r < s ≤ n, k = 1, 2, ..., m 6= 1,

MX∗(r,n,m,k),X∗(s,n,m,k)(t1, t2) =
Cs−1

(r − 1)!(s− r − 1)!(m+ 1)s−2

r−1∑
u=0

(−1)u
(
r − 1

u

)
×J(m+ u(m+ 1), s− r − 1, γs − 1) (27)

=
Cs−1

(r − 1)!(s− r − 1)!(m+ 1)s−2

∞∑
p=0

∞∑
q=0

r−1∑
u=0

s−r−1∑
v=0

(−1)u+v

×
(
r − 1

u

)(
s− r − 1

v

)
(t1)q(t2)p

p! q!(γs−v + p/α)[γr−u + (p+ q)/α]
. (28)

Proof. From (3), we have

MX∗(r,n,m,k),X∗(s,n,m,k)(t1, t2) =
Cs−1

(r − 1)! (s− r − 1)!

∫ ∞
0

∫ x

0

et1x+t2y[F (x)]mf(x)

×gr−1m (F (x))[hm(F (y))− hm(F (x))]s−r−1[F (y)]γs−1f(y)dydx. (29)

On expanding gr−1m (F (x)) binomially in (29), we get the relation given in (27).

Making use of the Lemma 3.2 in (27), we derive the relation in (28).

Remark 3.4. Putting m = 0, k = 1 in (28), the explicit formula for joint moment generating functions
of order statistics for generalized exponential distribution can be obtained as

MXn−r+1,n−s+1:n
(t1, t2) = Cr,s:n

∞∑
p=0

∞∑
q=0

r−1∑
u=0

s−r−1∑
v=0

(−1)u+v
(
r − 1

u

)(
s− r − 1

v

)

× (t1)q(t2)p
p!q! (n− s+ 1 + v + p/α)[n− r + 1 + u+ (p+ q)/α]

.
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That is

MXr,s:n(t1, t2) = Cr,s:n

∞∑
p=0

∞∑
q=0

n−s∑
u=0

s−r−1∑
v=0

(−1)u+v
(
n− s
u

)(
s− r − 1

v

)

× (t1)q(t2)p
p!q! (r + v + p/α)[s+ u+ (p+ q)/α]

,

where

Cr,s:n =
n!

(r − 1)!(s− r − 1)!(n− s)!
.

Remark 3.5. Setting m = −1 in (28), we deduce the explicit expression for joint moment generating
function of lower k record values for generalized exponential distribution in view of (27) and (26) in the form

M
(Z

(k)
r ,Z

(k)
s )

(t1, t2) = ks
∞∑
p=0

∞∑
q=0

(t1)q(t2)p
p!q! (k + p/α)s−r[k + (p+ q)/α]r

and hence for lower records

MXL(r),XL(s)(t1, t2) =

∞∑
p=0

∞∑
q=0

(t1)q(t2)p
p!q! (1 + p/α)s−r[1 + (p+ q)/α]r

.

Differentiating MX∗(r,n,m,k),X∗(s,n,m,k)(t1, t2) and evaluating at t1 = t2 = 0 , we get the product moments
of lgos when m 6= −1

E[X∗(r, n,m, k)X∗(s, n,m, k)] =
Cs−1

(r − 1)!(s− r − 1)!(m+ 1)s−2

∞∑
p=1

∞∑
q=1

r−1∑
u=0

s−r−1∑
v=0

× (−1)u+v
(
r − 1

u

)(
s− r − 1

v

)
1

p q (γs−v + p/α)[γr−u + (p+ q)/α]

and when m = −1 that

E(Z(k)
r Z(k)

s ) = ks
∞∑
p=1

∞∑
q=1

1

p q (k + p/α)s−r[k + (p+ q)/α]r
.

Making use of (6), we can derive the recurrence relations for joint moment generating function of lgos from
(5).

Theorem 3.6. For the distribution given in (5) and for 1 ≤ r < s ≤ n , n ≥ 2 and k = 1, 2, . . . ,(
1− t2

αγs

)
M

(i,j)
X∗(r,n,m,k),X∗(s,n,m,k)(t1, t2) = M

(i,j)
X∗(r,n,m,k),X∗(s−1,n,m,k)(t1, t2)

− 1

αγs
{t2M (i,j)

X∗(r,n,m,k),X∗(s,n,m,k)(t1, t2 + 1) + jM
(i,j−1)
X∗(r,n,m,k),X∗(s,n,m,k)(t1, t2 + 1)}

+
j

αγs
M

(i,j−1)
X∗(r,n,m,k),X∗(s,n,m,k)(t1, t2). (30)

Proof. Using (3), the joint moment generating function of X∗(r, n,m, k) and X∗(s, n,m, k) is given by
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MX∗(r,n,m,k),X∗(s,n,m,k)(t1, t2) =
Cs−1

(r − 1)! (s− r − 1)!

∫ ∞
0

[F (x)]mf(x)

× gr−1m (F (x))J(x)dx, (31)

where

J(x) =

∫ x

0

et1x+t2y[hm(F (y))− hm(F (x))]s−r−1[F (y)]γs−1f(y)dy.

Solving the integral in J(x) by parts and substituting the resulting expression in (31), we get

MX∗(r,n,m,k),X∗(s,n,m,k)(t1, t2) = MX∗(r,n,m,k),X∗(s−1,n,m,k)(t1, t2)

− t2 Cs−1
(r − 1)!(s− r − 1)!γs

∫ ∞
0

∫ x

0

et1x+t2y[F (x)]mf(x)gr−1m (F (x))

×[hm(F (y))− hm(F (x))]s−r−1[F (y)]γsdydx,

the constant of integration vanishes since the integral in J(x) is a definite integral. On using the relation
(6), we obtain

MX∗(r,n,m,k),X∗(s,n,m,k)(t1, t2) = MX∗(r,n,m,k),X∗(s−1,n,m,k)(t1, t2)
− t2
αγs

MX∗(r,n,m,k),X∗(s,n,m,k)(t1, t2 + 1) +
t2
αγs

MX∗(r,n,m,k),X∗(s,n,m,k)(t1, t2). (32)

Differentiating both sides of (32) i times with respect to t1 and then j times with respect to t2, we get

M
(i,j)
X∗(r,n,m,k),X∗(s,n,m,k)(t1, t2) = M

(i,j)
X∗(r,n,m,k),X∗(s−1,n,m,k)(t1, t2)

− t2
αγs

M
(i,j)
X∗(r,n,m,k),X∗(s,n,m,k)(t1, t2 + 1)− j

αγs
M

(i,j−1)
X∗(r,n,m,k),X∗(s,n,m,k)(t1, t2 + 1)

+
t2
αγs

M
(i,j)
X∗(r,n,m,k),X∗(s,n,m,k)(t1, t2) +

j

αγs
M

(i,j−1)
X∗(r,n,m,k),X∗(s,n,m,k)(t1, t2),

which, when rewritten gives the recurrence relation given in (30).
One can also note that Theorem 2.1 can be deduced from Theorem 3.6 by letting t1 tends to zero.

Remark 3.7. Putting m = 0, k = 1 in (30), we obtain the recurrence relations for joint moment
generating function of order statistics for generalized exponential distribution in the form(

1− t2
α(n− s+ 1)

)
M

(i,j)
Xn−r+1,n−s+1:n

(t1, t2) = M
(i,j)
Xn−r+1,n−s+2:n

(t1, t2)

+
j

α(n− s+ 1)
M

(i,j−1)
Xn−r+1,n−s+1:n

(t1, t2)

− 1

α(n− s+ 1)
{t2 M (i,j)

Xn−r+1,n−s+1:n
(t1, t2 + 1) + j M

(i,j−1)
Xn−r+1,n−s+1:n

(t1, t2 + 1)}.

That is

M
(i,j)
Xr,s:n

(t1, t2) =
(

1− t1
α(r − 1)

)
M

(i,j)
Xr−1,s:n

(t1, t2)− i

α(r − 1)
M

(i−1,j)
Xr−1,s:n

(t1, t2)

+
1

α(r − 1)
{t1 M (i,j)

Xr−1,s:n
(t1 + 1, t2) + i M

(i−1,j)
Xr−1,s:n

(t1 + 1, t2)}

as obtained by Raqab (2004) for r = r + 1.

Remark 3.8. Substituting m = −1 and k ≥ 1 in Theorem 3.6, we get recurrence relation for joint
moment generating function of lower k record values for generalized exponential distribution.
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4. Characterization

Let X∗(r, n,m, k), r = 1, 2, . . . , n be lgos from a continuous population with df F (x) and pdf f(x),
then the conditional pdf of X∗(s, n,m, k) given X∗(r, n,m, k) = x, 1 ≤ r < s ≤ n, in view of (2) and (3), is

fX∗(s,n,m,k)|X∗(r,n,m,k)(y|x) =
Cs−1

(s− r − 1)!Cr−1
[F (x)]m−γr+1

×[hm(F (y))− hm(F (x))]s−r−1[F (y)]γs−1f(y). (33)

Theorem 4.1. Let X be a non negative random variable having an absolutely continuous distribution
function F (x) with F (0) = 0 and 0 < F (x) < 1 for all x > 0, then

E[etX
∗(s,n,m,k)|X∗(l, n,m, k) = x] =

∞∑
p=0

(t)p(1− e−x)p

p!

s−l∏
j=1

( γl+j
γl+j + p/α

)
,

l = r, r + 1 (34)

if and only if

F (x) = (1− e−x)α, x > 0, α > 0.

Proof. From (33), we have

E[etX
∗(s,n,m,k)|X∗(r, n,m, k) = x] =

Cs−1
(s− r − 1)!Cr−1(m+ 1)s−r−1

×
∫ x

0

ety
[
1−

(F (y)

F (x)

)(m+1)]s−r−1 (F (y)

F (x)

)γs−1 f(y)

F (x)
dy. (35)

By setting u = F (y)
F (x) =

(
1−e−y
1−e−x

)α
from (5) in (35), we obtain

E[etX
∗(s,n,m,k)|X∗(r, n,m, k) = x] = B

∫ 1

0

[1− (1− e−x)u1/α]−tuγs−1(1− um+1)s−r−1du

= B

∞∑
p=0

(t)p(1− e−x)p

p !

∫ 1

0

uγs−1+p/α(1− um+1)s−r−1du, (36)

where

B =
Cs−1

(s− r − 1)!Cr−1(m+ 1)s−r−1
.

Again by setting v = um+1 in (36), we get

E[etX
∗(s,n,m,k)|X∗(r, n,m, k) = x] =

B

m+ 1

×
∞∑
p=0

(t)p(1− e−x)p

p!

∫ 1

0

v
k+p/α
m+1 +n−s−1(1− v)s−r−1dv

=
B

m+ 1

∞∑
p=0

(t)p(1− e−x)p Γ
(
k+p/α
m+1 + n− s

)
Γ(s− r)

p! Γ
(
k+p/α
m+1 + n− r

)
=
Cs−1
Cr−1

∞∑
p=0

(t)p(1− e−x)p

p!
∏s−r
j=1(γr+j + p/α)
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and hence the relation given in (34).

To prove sufficient part, we have from (33) and (34)

Cs−1
(s− r − 1)!Cr−1(m+ 1)s−r−1

∫ x

0

ety[(F (x))m+1 − (F (y))m+1]s−r−1

× [F (y)]γs−1f(y)dy = [F (x)]γr+1Hr(x), (37)

where

Hr(x) =

∞∑
p=0

(t)p(1− e−x)p

p!

s−r∏
j=1

( γr+j
γr+j + p/α

)
.

Differentiating (37) both the sides with respect to x , we get

Cs−1[F (x)]mf(x)

(s− r − 2)!Cr−1(m+ 1)s−r−2

∫ x

0

ety[(F (x))m+1 − (F (y))m+1]s−r−2

×[F (y)]γs−1f(y)dy = H ′r(x)[F (x)]γr+1 + γr+1Hr(x)[F (x)]γr+1−1f(x)

or

γr+1Hr+1(x)[F (x)]γr+2+mf(x) = H ′r(x)[F (x)]γr+1 + γr+1Hr(x)[F (x)]γr+1−1f(x),

where

H ′r(x) =

∞∑
p=0

(t)p(1− e−x)p−1e−x

p!

s−r∏
j=1

( γr+j
γr+j + p/α

)
and

Hr+1(x)−Hr(x) =

∞∑
p=0

(t)p(1− e−x)p (p/α)

p! γr+1

s−r∏
j=1

( γr+j
γr+j + p/α

)
.

Therefore,

f(x)

F (x)
=

H ′r(x)

γr+1[Hr+1(x)−Hr(x)]
=

αe−x

1− e−x

which proves that

F (x) = (1− e−x)α, x > 0, α > 0.
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