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Abstract. Let (Xn)n≥1 be a sequence of independent and identically distributed random variables,
defined over a common probability space (Ω,F , P ) with a continuous distribution function F . Let Mr,n

denote the rth upper extreme among (X1, X2, . . . , Xn), n ≥ 1. For a large class of distributions, we obtain
Kiefer’s form of law of the iterated logarithm for (Mr,τk ), properly normalized, where (τk) is a sequence
of integer valued random variables.

1. Introduction

Let (Xn)n≥1 be a sequence of independent and identically distributed (i.i.d.) random variables (r.v.s.)
defined over a common probability space (Ω,F , P ) and let the common distribution function (d.f.) F be
continuous. Denote the right extremity of F by ω(F ) and note that ω(F ) =∞ if F (x) < 1, for all x real.

Let (τk) denote an increasing sequence of integer valued r.v.s. defined on the same probability space.
Assume that there exists a non-decreasing subsequence (nk) of positive integers (natural numbers) such that
τk
nk
→ 1 almost surely (a.s.) as k →∞.

For any n ≥ 1, let X1,n ≤ X2,n ≤ X3,n ≤ . . . ≤ Xn,n denote the order statistics of X1, X2, . . . , Xn. Then,
Xn−r+1,n stands for rth upper order statistic or the rth upper extreme. In this paper, we denote Xn−r+1,n

by Mr,n, so that M1,n stands for the partial maxima.

Under the setup of de Haan and Hordijk (1972), Hüsler (1985) obtained the law of iterated logarithm
(L.I.L.) for (M1,n) over subsequence (nk) of integers, which is either atmost geometrically increasing or
atleast geometrically increasing. He showed that if

lim inf
k→∞

nk−1
nk

> 0

(atmost geometrically increasing), then the limit superior of (M1,nk), properly normalized, is the same as
for (M1,n) and if

lim inf
k→∞

nk−1
nk

= 0
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(atleast geometrically increasing), then the limit superior of (M1,nk), properly normalized, will be a function
of γ′, where

γ′ = inf{y > 0 :
∑
k

(log nk)−y <∞}.

As noted by de Haan and Hordijk (1972), some distributions belonging to the domain of attraction of
Gumbel law satisfy the conditions imposed in their paper. However, Vasudeva and Savitha (1992) observed
that distribution functions (d.f.s) belonging to the domain of attraction of Fréchet law or Weibull law donot
come under the setup of de Haan and Hordijk (1972). Assuming that the common d.f. F belongs to the
domain of attraction of Fréchet law, they obtained the L.I.L. for (M1,τk) over random subsequences (τk)

such that
τk
nk
→ 1 a.s., with (nk) either atmost geometrically increasing or atleast geometrically increasing.

In the case of partial sums, Gut (1986) has established L.I.L. for subsequences, under a similar setup,
and the same has been extended to random subsequences by Torrang (1987).

When
lim
k→∞

nk+1

nk
=∞

(nk is rapidly increasing), Gut and Schwabe (1996) obtained the classical L.I.L. of Hartman and Wintner
(1941) over (nk) by replacing log log nk by log k.

Vasudeva and Divanji (2006), obtained a L.I.L. for (M1,nk) assuming that the common d.f. F belongs
to the domain of attraction of Fréchet law, and (nk) is rapidly increasing, with log k in the place of log log nk.

When the common d.f. is Uniform (0, 1), Kiefer (1971) has proved that

lim inf
n→∞

log(n(1−Mr,n))

log logn
=
−1

r
a.s. ,

which gives an a.s. lower bound for log(1−Mr,n).

The above law can be equivalently given as

lim inf
n→∞

(n(1−Mr,n))
1

log logn = e−
1
r a.s. . (1)

This form of the law of the iterated logarithm with (log log n)−1 in the power, was established by Chover
(1967) for partial sum Sn of symmetric stable random variables.

Hall (1979), has extended Kiefer’s law to a large class of d.f.s. His setup includes all d.f.s F with − logF
regularly varying where F = 1− F .

Vasudeva and Moridani (2011) have studied Kiefer’s L.I.L. for vector of upper order statistics and have
extended the results for distributions with − logF regularly varying; for those with F regularly varying and
for d.f.s with finite right extremity. They called the class of all d.f.s with − logF regularly varying as C1;
d.f.s with F regularly varying as class C2 and d.f.s with right extremity finite and belonging to the domain
of attraction of a Weibull law as class C3.

In this paper, we establish Kiefer’s L.I.L. for (Mr,τk), when the d.f. F belongs to the classes C1, C2 and C3.

In section 2 we give the statements of the results and make some interesting observations. In the next
section, some Lemmas are proved when the d.f. F is Uniform (0, 1). In the last section, all the results stated
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in section 2 are established by a transformation technique.

From Hüsler (1985), Vasudeva and Savitha (1992) and Vasudeva and Divanji (2006), we note that L.I.L.

results for (Mr,τk) with
τk
nk
→ 1 a.s. will be meaningful under further assumptions that (nk) is atmost

geometrically fast or (nk) is atleast geometrically fast/rapidly increasing.

Throughout the paper, we will be obtaining the L.I.L. results under the following setup (assumptions).

(A.) Given the sequence (τk) of integer valued r.v.s., there always exists a subsequence (nk) of natural

numbers such that
τk
nk
→ 1 a.s. as k →∞.

(B1.) The sequence (nk) in (A) satisfies
lim inf
k→∞

nk+1

nk
> 1.

(B2.) The sequence (nk) in (A) satisfies
lim sup
k→∞

nk+1

nk
<∞.

(B3.) The sequence (nk) in (A) satisfies
lim
k→∞

nk+1

nk
=∞.

By Gut (2009), page 172, one may note that the a.s. convergence condition in (A) is necessary in establishing
L.I.L. (a.s. results) for random number of r.v.s. .

In the sequel, i.o., a.s. and s.v. respectively mean infinitely often, almost surely and slowly varying.
c, ε, k and n, with or without a suffix, denote positive constants with k and n confined to be integers.

2. Main results

In this section, we present L.I.L. for (Mr,τk), properly normalized, for d.f.s F which belong to three
major classes in extreme value theory, denoted for convenience by C1, C2, and C3. The class C1 is that of
all d.f.s F with − logF (x) = xγL(x), as x→∞, where γ > 0 is some constant and L(x) is a slowly varying
function. This class contains distributions with Weibullian right tail (which include Exponential, Gumbel,
Normal etc.). By Pakes (2000) we note that distributions with Weibullian tail belong to the domain of
attraction of Gumbel law, when 0 < γ < 1 (F ∈ DA.(H3)). Also, we note that when F is Normal (γ = 2) or
Exponential (γ = 1), {M1,n} properly normalized converges to a Gumbel r.v. (see Galambus (1978)). The
class C2 is that of d.f.s F with F (x) = x−γL(x), as x→∞, where γ > 0 is a constant and L(x) is a slowly
varying function. It is well known that C2 is the class of all d.f.s which belong to the domain of attraction
of Fréchet law, denoted by F ∈ DA.(H1,γ) (see, Galambos (1978)). C3 is the class of all d.f.s F (with finite
right extremity) belonging to the domain of attraction of a Weibull law, denoted by F ∈ DA.(H2,γ).
Throughout this section, let Bn be a solution of the equation, n(1− F (x)) = 1.

2.1. Law of the iterated logarithm when F ∈ C1

. Define,

U(x) = − log(1− F (x)), x > 0

and denote its inverse function by V . When U(x) = xγL(x), by Hall (1979), note that for all functions a(.)
with 0 6= a(x)→ 0, as x→∞,

V (x(1 + a(x)))− V (x)

a(x)V (x)
→ γ−1 as x→∞ (2)

which implies that V is continuous for all large x, and regularly varying with exponent γ−1. We have, the
following theorem
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Theorem 2.1. 1. If (τk) and (nk) satisfy (A) and (B1) then,

lim sup
k→∞

log nk
(log log nk)

(
Mr,τk

V (log nk)
− 1

)
=

c

rγ
a.s. ,

where
c = inf{d :

∑
k

1

(log nk)d
<∞}.

2. If (τk) and (nk) satisfy (A) and (B2) then,

lim sup
k→∞

log nk
log log nk

(
Mr,τk

V (log nk)
− 1

)
=

1

rγ
a.s. .

3. If (τk) and (nk) satisfy (A) and (B3) then,

lim sup
k→∞

log nk
log k

(
Mr,τk

V (log nk)
− 1

)
=

1

rγ
a.s. .

Theorem 2.2. Whenever (τk), and (nk) satisfy (A) and nk →∞ as k →∞, then

lim inf
k→∞

log nk
log log nk

(
Mr,τk

V (log nk)
− 1

)
= 0 a.s. .

Now, we consider standard probability distributions and study the L.I.L., when nk = 2k, nk = 2k
2

and
nk = kk.

Example 2.3. Let {Xn} be a sequence of i.i.d. unit exponential r.v.s. . Then, one can see that V (x) = x
and γ = 1. By Theorem 2.1, we have

1. for nk = 2k
2

,

lim sup
k→∞

(
Mr,τk − k2 log 2

log k

)
=

1

r
a.s. .

2. for nk = 2k,

lim sup
k→∞

(
Mr,τk − k log 2

log k

)
=

1

r
a.s. .

3. for nk = kk,

lim sup
k→∞

(
Mr,τk − k log k

log k

)
=

1

r
a.s. .

Example 2.4. When {Xn} is i.i.d. with common d.f. F (x) = e−e
−x
,−∞ < x <∞, note that, 1− F (x) ∼

e−x, as x → ∞. Consequently, the L.I.L. coincides with that obtained in the case of unit exponential
distribution.

Example 2.5. Let {Xn} be i.i.d. standard normal. Then, one gets γ =
√

2 and V (x) =
√

2x− log x− 2 log
√

2π − log 2 '√
2x for large x. We have,

1. for nk = 2k
2

,
lim sup
k→∞

(
k (Mr,τk − V (log nk))

log k

)
=

1

r
√

log 2
a.s. .

2. for nk = 2k,

lim sup
k→∞

(√
k (Mr,τk − V (log nk))

log k

)
=

1

r
√

log 2
a.s. .

3. for nk = kk,

lim sup
k→∞

(√
k (Mr,τk − V (log nk))√

log k

)
=

1

r
a.s. .
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2.2. Law of the iterated logarithm when F ∈ C2

. Define, U∗(x) = 1− F (x), x > 0

and note that U∗(x) = x−γL(x), where γ > 0, is some constant and L is a slowly varying function. Let V ∗

be the inverse of U∗. Observe that,

V ∗(y) = y−
1
γ l

(
1

y

)
, 0 < y ≤ 1, (3)

where l is slowly varying. Note that U∗(.) and V ∗(.) are decreasing functions and that Bn is a solution of

the equation nU∗(x) = 1. By (3), one can see that Bn = n
1
γ l(n).

Theorem 2.6. 1. If (τk) and (nk) satisfy (A) and (B1) then,

lim sup
k→∞

(
Mr,τk

Bnk

) 1
log lognk

= e
c
rγ a.s. ,

where
c = inf{d :

∑
k

1

(log nk)d
<∞}.

2. If (τk) and (nk) satisfy (A) and (B2) then,

lim sup
k→∞

(
Mr,τk

Bnk

) 1
log lognk

= e
1
rγ a.s.

3. If (τk) and (nk) satisfy (A) and (B3) then,

lim sup
k→∞

(
Mr,τk

Bnk

) 1
log k

= e
1
rγ a.s. .

Theorem 2.7. Whenever (τk), and (nk) satisfy (A) and nk →∞ as k →∞,

lim inf
k→∞

(
Mr,τk

Bnk

) 1
log lognk

= 1 a.s. .

Example 2.8. Let {Xn} be i.i.d. Pareto with F (x) = 1− 1
xγ if x > 0,= 0 otherwise, γ > 0. Observe that,

Bn ' n
1
γ . By Theorem 2.6, we have

1. for nk = 2k
2

,

lim sup
k→∞

(
Mr,τk

nk
1
γ

) 1
log k

= e
1
rγ a.s. .

2. for nk = 2k,

lim sup
k→∞

(
Mr,τk

nk
1
γ

) 1
log k

= e
1
rγ a.s. .

3. for nk = kk,

lim sup
k→∞

(
Mr,τk

nk
1
γ

) 1
log k

= e
1
rγ a.s. .

Remark 2.9. When F is Fréchet with parameter γ, the d.f. is given by F (x) = e−
1
xγ , x > 0. One can

see that Bn ' n
1
γ . Hence, the L.I.L. results of example 2.8 hold good, when (Xn) is i.i.d. with Fréchet

distribution (parameter γ).

Example 2.10. Let {Xn} be i.i.d. Burr with F (x) = 1− 1
(1+xp)γ , x > 0,= 0 otherwise, p > 0, γ > 0. Note

that, 1− F (x) ' 1
xpγ . Note that, Bn ' n

1
pγ
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1. for nk = 2k
2

,

lim sup
k→∞

(
Mr,τk

nk
1
γ

) 1
log k

= e
1
rγ a.s. .

2. for nk = 2k,

lim sup
k→∞

(
Mr,τk

nk
1
γ

) 1
log k

= e
1
rγ a.s. .

3. for nk = kk,

lim sup
k→∞

(
Mr,τk

nk
1
γ

) 1
log k

= e
1
rγ a.s. .

2.3. Law of the iterated logarithm when F ∈ C3

. Let {Xn} be i.i.d. with common d.f. F and let ω(F ) = sup{x : F (x) < 1} be finite. Suppose that F
belongs to the domain of attraction of the Weibull law ie., FεDA.(H2,γ), γ > 0. Let M

′

r,n be the rth maxima
of (Z1, Z2, . . . , Zn) where {Zn} are i.i.d. r.v.s. given by

Zn =
1

ω(F )−Xn
, n ≥ 1. (4)

Let F ∗ denote the d.f. of Zn, n ≥ 1. Note that F ∗εDA.(H1,γ) (for details, see Galambos (1978)). Define
U∗ = 1− F ∗. Let V ∗ denote the inverse. Then, we have the following theorem.

Theorem 2.11. 1. If (τk) and (nk) satisfy (A) and (B1) then,

lim inf
k→∞

(Bnk (ω(F )−Mr,τk))
1

log lognk = e
−c
rγ a.s. ,

where c = inf{d :
∑
k

1

(log nk)d
<∞}.

2. If (τk) and (nk) satisfy (A) and (B2) then,

lim inf
k→∞

(Bnk (ω(F )−Mr,τk))
1

log lognk = e
−1
rγ a.s. .

3. If (τk) and (nk) satisfy (A) and (B3) then,

lim inf
k→∞

(Bnk (ω(F )−Mr,τk))
1

log k = e
−1
rγ a.s. .

Theorem 2.12. Whenever (τk), and (nk) satisfy (A) and nk →∞ as k →∞,

lim sup
k→∞

(Bnk (ω(F )−Mr,τk))
1

log lognk = 1 a.s. .

Example 2.13. Let {Xn} be i.i.d. Weibull with d.f. F (x) = e−(−x
γ) if x < 0 , = 1 otherwise, γ > 0, we

have Bn ' n
1
γ . Then,

1. for nk = 2k
2

, lim inf
k→∞

(
nk

1
γ (−Mr,τk)

) 1
log k

= e
−1
rγ a.s. .

2. for nk = 2k, lim inf
k→∞

(
nk

1
γ (−Mr,τk)

) 1
log k

= e
−1
rγ a.s. .

3. for nk = kk, lim inf
k→∞

(
nk

1
γ (−Mr,τk)

) 1
log k

= e
−1
rγ a.s. .



Vasudeva and Srilakshminarayana / ProbStat Forum, Volume 08, January 2015, Pages 1–18 7

3. Results for Uniform population

In this section, we extend Kiefer’s law in (1) to random number of r.v.s. . Suppose that {Un} is a
sequence of i.i.d. Uniform (0, 1) r.v.s. defined over the same probability space (Ω,F , P ) on which {Xn}
is defined. Let M∗r,n stand for the rth upper extreme among (U1, U2, . . . , Un) , n ≥ 2, so that M∗r,τk is the

rth upper extreme among (U1, U2, . . . , Uτk). We first establish a Lemma giving necessary bounds that are
applied in the subsequent Lemmas.

Lemma 3.1. Given θ > 0, ε > 0, ε′ > 0 with ε < θ and ε′ < 1, one can find constants C1, C2 > 0 and
integer n0 > 0 such that for all n ≥ n0,

P

(
M∗r,[(1+ε′)n] > 1− 1

n(log n)
θ+ε
r

)
≤ C1

(log n)θ+ε
(5)

and

P

(
M∗r,[(1−ε′)n] > 1− 1

n(log n)
θ−ε
r

)
≥ C2

(log n)θ−ε
. (6)

Proof. To show (5), put [(1 + ε′)n] = n′. Then,

P

(
M∗r,n′ > 1− 1

n(log n)
θ+ε
r

)
= 1− P

(
M∗r,n′ ≤ 1− 1

n(log n)
θ+ε
r

)
.

Let βn =
1

n(log n)
θ+ε
r

. Then,

P
(
M∗r,n′ > 1− βn

)
=1−

r−1∑
k=0

(
n′

k

)
(1− F (1− βn))

k
(F (1− βn))

n′−k

=1−
r−1∑
k=0

(
n′

k

)
(βn)

k
(1− βn)

n′−k

Expanding (1− βn)n
′−k using Taylor’s theorem, one gets

P
(
M∗r,n′ > 1− βn

)
= 1−

r−1∑
k=0

r−k∑
l=0

(
n′

k

)(
n′ − k
l

)
(−1)lβk+ln

−
r−1∑
k=0

dk

(
n′

k

)(
n′ − k

r + 1− k

)
βr+1
n

= 1− T1,n − T2,n, say, (7)

where dk = (−1)r−k−1(1− d∗k)r−k−1 with d∗k ∈ (0, βn).
Consider,

T1,n =

r−1∑
k=0

r−k∑
l=0

(
n′

k

)(
n′ − k
l

)
(−1)lβk+ln .

Observe that the term of T1,n corresponding to k = l = 0 is 1.



Vasudeva and Srilakshminarayana / ProbStat Forum, Volume 08, January 2015, Pages 1–18 8

For k + l = r, since 0 ≤ k ≤ r − 1, (βn)r will have coefficients(
n′

0

)(
n′

r

)
(−1)r +

(
n′

1

)(
n′ − 1

r − 1

)
(−1)r−1..+

(
n′

r − 1

)(
n′ − r + 1

1

)
(−1)

=
n′!

r!(n′ − r)!

(
(−1)rr!

r!
+

(−1)r−1r!

(r − 1)!
+ . . .+

(−1)r!

(r − 1)!
+
r!

r!
− 1

)
= −

(
n′

r

)
.

On similar lines, one can see that the terms of T1,n with 1 ≤ j + i ≤ r − 1 will be 0. Consequently,

T1,n = 1−
(
n′

r

)
(βn)

r
. (8)

Consider,

T2,n =

r−1∑
j=0

dj

(
n′

j

)(
n′ − j

r + 1− j

)
βr+1
n .

Then, |T2,n| ≥ r(n′ − r − 1)r+1 (βn)
r+1

.

From (8), we have

P
(
M∗r,n′ > βn

)
=

(
n′

r

)
(βrn)− T2,n.

Note that,(
n′

r

)
(βn)

r ≤ (1 + ε)r

(log n)θ+ε
and T2,n = o

(
1

(log n)θ+ε

)
.

Consequently, one can find a c1 > 0 and n0 > 0 such that for all n ≥ n0,

P

(
M∗r,n > 1− 1

n(log n)
θ+ε
r

)
≤ c1

(log n)θ+ε
.

One can establish (6) on similar lines. The details are omitted.

Lemma 3.2. Let (τk) and (nk) satisfy (A) and (B1). Then for r ≥ 1,

lim inf
k→∞

(
nk
(
1−M∗r,τk

)) 1
log lognk = e−

c
r a.s. , (9)

where c = inf{d :
∑
k

1

(log nk)d
<∞}.

Proof. In order to prove (9), it is sufficient if one shows that for 0 < ε < c,

P
((
nk
(
1−M∗r,τk

)) 1
log lognk < e−

(c+ε)
r i.o.

)
= 0 (10)

and

P
((
nk
(
1−M∗r,τk

)) 1
log lognk < e−

(c−ε)
r i.o.

)
= 1. (11)

Note that,

P
((
nk
(
1−M∗r,τk

)) 1
log lognk < e

−(c+ε)
r i.o.

)
=P

(
M∗r,τk>1− 1

nk(log nk)
(c+ε)
r

i.o.

)
.

Let
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x
′

k = 1− 1

nk(log nk)
(c+ε)
r

and Ak =
(
M∗r,τk > x

′

k

)
.

For any ε′ > 0, one can write

P (Ak i.o.) =P

((
M∗r,τk > x

′

k

)
∩
(∣∣∣∣ τknk − 1

∣∣∣∣ < ε′ ∪
∣∣∣∣ τknk − 1

∣∣∣∣ ≥ ε′) i.o.

)

=P

((
M∗r,τk > x

′

k

)
∩
(∣∣∣∣ τknk − 1

∣∣∣∣ < ε′
)
i.o.

)

+ P

((
M∗r,τk > x

′

k

)
∩
(∣∣∣∣ τknk − 1

∣∣∣∣ ≥ ε′) i.o.

)
=P (Bk i.o.) + P (C∗k i.o.), say.

Note that,

(C∗k i.o.) ⊆
(∣∣∣∣ τknk − 1

∣∣∣∣ ≥ ε′ i.o.) and P

(∣∣∣∣ τknk − 1

∣∣∣∣ ≥ ε′ i.o.) = 0.

Hence, P (Ak i.o.) = P (Bk i.o.). Also,

(Bk i.o.) =
(
M∗r,τk > x

′

k, [nk(1− ε′)] < τk < [nk(1 + ε′)] i.o.
)

⊆
(
M∗r,[nk(1+ε′)] > x

′

k, [nk(1− ε′)] < τk < [nk(1 + ε′)] i.o.
)

The fact that
τk
nk
→ 1 a.s. implies that [nk(1− ε′)] < τk < [nk(1 + ε′)] a.s. .

As such,

P
(
M∗r,[nk(1+ε′)] > x

′

k, [nk(1− ε′)] < τk < [nk(1 + ε′)] i.o
)

=P
(
M∗r,[nk(1+ε′)] > x′k i.o.

)
= P (Dk i.o.) , say.

Consequently, one gets from the above discussion

P (Ak i.o.) = P (Bk i.o.) ≤ P (Dk i.o.).

To show P (Dk i.o.) = 0, define n′k = [(1 + ε′)nk]. Then,

P (Dk) = P
(
M∗r,n′k

> x
′

k

)
= P

(
M∗r,n′k

> 1− 1

nk(log nk)
c+ε
r

)
. (12)

From Lemma 3.1 one can find c2 > 0 and k1 > 0 such that for all k ≥ k1,

P

(
M∗r,n′k

> 1− 1

nk(log nk)
(c+ε)
r

)
≤ c2

(log nk)c+ε
.

Since
∑
k

1
(lognk)c+ε

<∞, from Borel-Cantelli lemma, one gets P (Dk i.o.) = 0

which in turn implies that P (Ak i.o.) = 0.

In order to show (11), Consider

P
((
nk
(
1−M∗r,τk

)) 1
log lognk < e−

(c−ε)
r i.o.

)
=P

(
M∗r,τk > 1− 1

(log nk)
(c−ε)
r

i.o.

)
.
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Let x
′′

k = 1− 1

(log nk)
(c−ε)
r

and define A′k =
(
M∗r,τk > x′′k

)
.

By proceeding as above one can show that

P (A′k i.o.) =P
(
M∗r,τk > x′′k , [nk(1− ε′)] < τk < [nk(1 + ε′)] i.o.

)
≥P

(
M∗r,[nk(1−ε′)] > x′′k , [nk(1− ε′)] < τk < [nk(1 + ε′)] i.o.

)
From the fact that

τk
nk
→ 1 a.s., note that [nk(1− ε′)] < τk < [nk(1 + ε′)] a.s. . Consequently,

P (A′k i.o.) ≥ P
(
M∗r,[nk(1−ε′)] > x′′k i.o.

)
(13)

Let n′′k = [nk(1− ε′)], k ≥ 1, and let M
′

r,n′′k
denote the rth largest observation

among Xj , n
′′
k−1 < j ≤ n′′k , k ≥ 1. Note that,

M∗r,[nk(1−ε′)] = M∗r,n′′k
> M

′

r,n′′k

and that
(
M
′

r,n′′k

)
forms a sequence of mutually independent r.v.s.. Now, in view of (13), the relation (11)

will be established, once we show that

P
(
Mr,n′′k

> x′′k i.o.
)

= 1. (14)

Note that,

lim inf
k→∞

nk+1

nk
> 1

implies that there exists ρ > 1, such that nk+1

nk
≥ ρ for all k large. Using this fact and proceeding as in

lemma 3.1, one can find a c3 > 0 and k2 > 0 such that for all k ≥ k2

P

(
M
′

r,n′′k
> 1− 1

nk(log nk)
c−ε
r

)
≥ c3

(log nk)
(c−ε) .

Since
∑
k

1
(lognk)(c−ε)

=∞ and (M
′

r,n′′k
) are mutually independent, by Borel-Cantelli lemma one gets

P

(
M
′

r,n′′k
> 1− 1

nk(log nk)
c−ε
r

i.o.

)
= 1.

From the relation M
′

r,n′′k
≤M∗r,n′′k , we have

P

(
M∗r,n′′k

> 1− 1

nk(log nk)
c−ε
r

i.o.

)
= 1.

In turn, P (A′k i.o.) = 1. Hence the proof is complete.

Lemma 3.3.
lim inf
n→∞

(
n(1−M∗r,n)

) 1
log logn = e−

1
r a.s. .

Proof. The theorem is proved once we show that for any ε ∈ (0, 1)

P
((
n(1−M∗r,n)

) 1
log logn < e−

(1+ε)
r i.o.

)
= 0 (15)
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and

P
((
n(1−M∗r,n)

) 1
log logn < e−

(1−ε)
r i.o.

)
= 1. (16)

or equivalently

P

(
log(n(1−M∗r,n)) <

−(1 + ε)

r
log log n i.o.

)
= 0 (17)

and

P

(
log(n(1−M∗r,n)) <

−(1− ε)
r

log log n i.o.

)
= 1. (18)

Given U1,n ≤ U2,n ≤ . . . . . . . . . ≤ Un,n as the order statistics of random observations U1, U2, U3, . . . , Un
from Uniform (0, 1), from Kiefer (1971) note that

lim inf
n→∞

log nUr,n
log log n

= 1 a.s. (19)

Define Yj = 1− Uj and note that Yj is U(0, 1), j = 1, 2, . . . n. As such Y1, Y2, . . . . . . , Yn becomes a random
sample from U(0, 1). Let the order statistics be Y1,n ≤ Y2,n . . . ≤ Yn−k+1,n ≤ . . . Yn,n. Then Yn−r+1,n =
1− Ur,n which is same as M∗r,n in our notation. From (19), one gets

lim inf
n→∞

log n(1−M∗r,n)

log log n
= 1 a.s.

which proves the lemma.

Lemma 3.4. If (τk) and (nk) satisfy (A) and (B2), then

lim inf
k→∞

(
nk(1−M∗r,τk)

) 1
log lognk = e−

1
r a.s. . (20)

Proof. Equivalently we show that for any ε ∈ (0, 1)

P

((
nk(1−M∗r,τk)

) 1
log lognk < e−

(1 + ε)

r
i.o.

)
= 0 (21)

and

P

((
nk(1−M∗r,τk)

) 1
log lognk < e−

(1− ε)
r

i.o.

)
= 1. (22)

Proceeding as in Lemma 3.2, one can show that for ε′ > 0

P
((
nk(1−M∗r,τk)

) 1
log lognk < e−

(1+ε)
r i.o.

)
≤P

((
nk(1−M∗r,n′k)

) 1
log lognk < e−

(1+ε)
r i.o.

)

=P

(
log(nk(1−M∗r,n′k)) < − (1 + ε)

r
log log nk

)
.

Applying lemma 3.3 and observing log log n′k ∼ log log nk one gets,

P

(
log(nk(1−M∗r,n′k)) < − (1 + ε)

r
log log nk i.o.

)
= 0.
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Now, we need to show that

P
(
nk(1−Mr,τk) < e−

(1−ε)
r log lognk i.o.

)
= 1.

Again arguing as in lemma 3.2, it is sufficient if one shows that

P
(
nk(1−Mr,n′′k

) < e−
(1−ε)
r log lognk i.o.

)
= 1

or

P
(
nk

(
1−Mr,n′′k

)
< (log nk)−

(1−ε)
r i.o.

)
= 1.

Define mk = min{j : nj > kk}. By condition (B2), one can find a λ > 1 such that for all j large, say,
j ≥ j0, nj+1 < λnj . Consequently, whenever mk − 1 ≥ j0, one gets nmk < λnmk−1

. By the definition of mk,
we hence have for mk ≥ j0 + 1,

kk < nmk < λkk. (23)

In turn, for mk ≥ j0 + 1,

(k + 1)k+1

λkk
<
nmk+1

nmk
<
λ(k + 1)k+1

kk
.

Consequently,

lim
k→∞

nmk+1

nmk
=∞.

In other words, the subsequence (nmk) satisfies (B1). By Lemma 3.2,

lim inf
k→∞

(
nmk

(
1−M∗r,τmk

)) 1
log lognmk = e

−c
r a.s.

where

c = inf{d :
∑
k

1

(log nmk)d
<∞}.

From (23) note that c = 1. Consequently,

P
(
nj
(
1−Mr,τj

)
< (log nj)

−(1−ε)
r i.o.

)
≥P

(
nmk

(
1−Mr,n′′mk

)
< (log nmk)

−(1−ε)
r i.o.

)
= 1.

which completes the proof.

Remark 3.5. Note that nk = 2k
2

, k ≥ 1, gives c = 1
2 and nk = 22

k

, k ≥ 1 gives c = 0 in lemma 3.2. Hence,
when (nk) is atleast geometrically fast,

lim inf
k→∞

(nk(1−Mr,nk))
1

log lognk

becomes a function of (nk), unlike in the case of atmost geometrically increasing subsequences. As such,
when (nk) is rapidly increasing i.e., nk+1

nk
→∞ as k →∞, as in Gut and Schwabe (1996), we obtain L.I.L.

by replacing log log nk by log k.

Lemma 3.6. If (τk) and (nk) satisfy (A) and (B3).

lim inf
k→∞

(
nk(1−M∗r,τk)

) 1
log k = e−

1
r a.s. .
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Proof. Equivalently we show that for any ε ∈ (0, 1)

P
((
nk(1−M∗r,τk)

) 1
log k < e−

(1+ε)
r i.o.

)
= 0 (24)

and

P
((
nk(1−M∗r,τk)

) 1
log k < e−

(1−ε)
r i.o.

)
= 1. (25)

As in lemma 3.2, in order to establish (24) it is sufficient if one can show for ε′ > 0, that

P

(
M∗r,n′k

> 1− 1

nkk
1+ε
r

i.o.

)
= 0

Proceeding as in lemma 3.1, one can find c4 > 0 and k3 > 0 such that for all k ≥ k3

P

(
M∗r,n′k

> 1− 1

nkk
1+ε
r

)
≤ c4
k1+ε

.

Since
∑
k

1
k1+ε <∞, from Borel-Cantelli lemma, we get

P

(
M∗r,n′k

>1− 1

nkk
1+ε
r

i.o.

)
= 0 or P

((
nk(1−M∗r,nk)

) 1
log k<e−

(1+ε)
r i.o.

)
= 0.

We now establish (25). For ε′ > 0 but small, letM ′r,[(1−ε′)nk] denote the rth highest among
(
Xn′′k−1+1, . . . , Xn′′k

)
,

where n′′k = [(1 − ε′)nk]. Note that M
′

r,n′′k
≤ M∗r,n′′k

and that (M
′

r,n′′k
) are mutually independent. From the

fact that X ′ns are i.i.d., we have

P

(
M
′

r,n′′k
> 1− 1

nkk
1−ε
r

)
= P

(
M∗
r,(n′′k−n

′′
k−1)

> 1− 1

nkk
1−ε
r

)
.

Proceeding as in lemma 3.1 one can find c5 > 0 and k4 such that for all k ≥ k4

P

(
M
′

r,n′′k
> 1− 1

nkk
1−ε
r

)
≥ c5
k1−ε

.

Since
∑
k

1
k1−ε =∞ and (M

′

r,nk
) are mutually independent, by Borel-Cantelli lemma we get

P

(
M
′

r,n′′k
> 1− 1

nkk
1−ε
r

i.o

)
= 1.

Consequently,

P

(
M∗r,n′′k

>1− 1

nkk
1−ε
r

i.o

)
= 1 or P

((
nk(1−M∗r,nk)

) 1
log k<e−

(1−ε)
r i.o.

)
= 1.

Hence the proof is complete.

Lemma 3.7. For any sequence (nk) with nk →∞ as k →∞,

lim sup
k→∞

(
nk(1−M∗r,τk)

) 1
log lognk = 1 a.s. .
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Proof. We show that for any ε > 0

P
((
nk(1−M∗r,τk)

) 1
log lognk > e−ε i.o

)
= 1 (26)

and

P
((
nk(1−M∗r,τk)

) 1
log lognk > eε i.o

)
= 0, (27)

which in turn establishes the theorem. Recall that n′k = [(1 + ε′)nk] and n′′k = [(1− ε′)nk], 0 < ε′ < 1. As
in lemma 3.2, the result is proved once it is shown that

P

((
nk(1−Mr,n′k

)
) 1

log lognk > e−ε i.o

)
= 1

and

P

((
nk(1−Mr,n′′k

)
) 1

log lognk > eε i.o

)
= 0.

From lemma 2.1, one can find c6 > 0 and k5 > 0 such that for all k ≥ k5,

P

(
Mr,n′k

< 1− 1

nk(log nk)ε

)
≥ 1− c6

(log nk)rε
.

Consequently,

lim
k→∞

P

(
Mr,n′k

< 1− 1

nk(log nk)ε

)
= 1.

Define

Ar,k =

(
Mr,n′k

< 1− 1

nk(log nk)ε

)
.

Note that

P (Ar,k i.o.) ≥ lim
k→∞

P (Ar,k) = 1.

Hence,

P

((
nk(1−Mr,n′k

)
) 1

log lognk > e−ε i.o.

)
= 1

In turn, (26) follows.
The proof is complete if one shows that

P
(

(nk(1−Mr,τk))
1

log lognk > eε i.o
)

= 0.

Again arguing as in lemma 3.2, it is sufficient if one shows that

P

((
nk(1−Mr,n′′k

)
) 1

log lognk > eε i.o.

)
= 0. (28)

From Theorem 2 of Kiefer (1971), one can note that

P
(

(n (1−Mr,n))
1

log logn > eε i.o.
)

= 0

which implies (27). Hence the result is proved.
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4. Proofs of the theorems presented in section 2

Given that (Xn) is a sequence of i.i.d. r.v.s. with a common continuous d.f. F define Un = F (Xn), n ≥ 1,
and observe that {Un} is a sequence of i.i.d. Uniform (0, 1) r.v.s.. Recall that Mr,n is the rth upper extreme of
X1, X2, . . . , Xn and that M∗r,n the rth upper extreme of U1, U2, . . . , Un. Note the relation, M∗r,n = F (Mr,n).

4.1. Proof of (1) of Theorem 2.1

We need to show that for ε ∈ (0, c)

P

(
(log nk)

(log log nk)

(
Mr,τk

V (log nk)
− 1

)
>
c+ ε

rγ
i.o.

)
= 0. (29)

and

P

(
(log nk)

(log log nk)

(
Mr,τk

V (log nk)
− 1

)
>
c− ε
rγ

i.o.

)
= 1. (30)

In order to show (29), one can proceed on lines similar to lemma 3.2. Recall that for ε′ ∈ (0, 1), n′k = [(1+ε)nk]
and n′′k = [(1− ε)nk]. Then,

P

(
(log nk)

(log log nk)

(
Mr,τk

V (log nk)
− 1

)
>
c+ ε

rγ
i.o.

)

≤ P
(

(log nk)

(log log nk)

(
Mr,n′k

V (log nk)
− 1

)
>
c+ ε

rγ
i.o.

)
.

By (12) we have

P

((
1−M∗r,n′k

)
<

1

nk(log nk)
c+ε
r

i.o

)
= 0. (31)

From the relation M∗r,n′k
= F (Mr,n′k

), note that

1−M∗r,n′k <
1

nk(log nk)
c+ε
r

⇔ 1− F (Mr,n′k
) <

1

nk(log nk)
c+ε
r

⇔ − log(1− F (Mr,n′k
)) > log(nk(log nk)

c+ε
r )

⇔ U(Mr,n′k
) > log nk +

c+ ε

r
log lognk

⇔Mr,n′k
> V

(
log nk +

c+ ε

r
log log nk

)

⇔Mr,n′k
− V (log nk) > V

(
log nk +

c+ ε

r
log log nk

)
− V (log nk). (32)

From condition (2), we have as k →∞,

V

(
log nk

(
1 +

c+ ε

r

log log nk
log nk

))
− V (log nk) ∼ (c+ ε) log log nk

γ(r log nk)
V (log nk).

Consequently, from (32), for k large, we have
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1−M∗r,n′k <
1

nk(log nk)
c+ε
r

⇔ Mr,n′k
− V (log nk) >

(c+ ε) log log nk
γ(r log nk)

V (log nk)

⇔ log nk
log log nk

(
Mr,n′k

V (log nk)
− 1

)
>
c+ ε

rγ
.

Hence from (31), (29) follows
Again from lemma 3.2, recalling that

P

((
1−M∗r,n′′k

)
<

1

nk(log nk)
c−ε
r

i.o

)
= 1

and proceeding on the above lines, (30) can be established. The details are omitted.
Proofs of (2) and (3) of Theorem 2.1 and Theorem 2.2 can be obtained using lemmas 3.4, 3.6 and 3.7
respectively and proceeding on the above lines. Hence the details are omitted.

4.2. Proof of (1) Theorem 2.6.

The theorem is proved once it is shown that for 0 < ε < c

P
(
Mr,τk > Bnk (log nk)

c+ε
rγ i.o.

)
= 0

and

P
(
Mr,τk > Bnk (log nk)

c−ε
rγ i.o.

)
= 1.

Arguing as in lemma 3.2, it is sufficient if one shows that for ε′ > 0

P
(
Mr,n′k

> Bnk (log nk)
c+ε
rγ i.o.

)
= 0

and

P
(
Mr,n′′k

> Bnk (log nk)
c−ε
rγ i.o.

)
= 1.

By lemma 3.2, we have for ε ∈ (0, c),

P

(
1−M∗r,n′k <

1

nk(log nk)
c+ε
r

i.o.

)
= 0 (33)

and

P

(
1−M∗r,n′′k <

1

nk(log nk)
c−ε
r

i.o.

)
= 1. (34)

Using the relations

M∗r,n′k
= F (Mr,n′k

) and U∗(x) = 1− F (x) ∼ x−γL(x),

from (12) one gets,

P

(
U∗(Mr,n′k

) <
1

nk(log nk)
c+ε
r

i.o.

)
= 0. (35)
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By (3) note that

U∗(Mr,n′k
) <

1

nk(log nk)
c+ε
r

⇔ V ∗(U∗(Mr,n′k
)) > V ∗

(
1

nk(log nk)
c+ε
r

)

⇔Mr,n′k
> n

1
γ

k (log nk)
c+ε
rγ l

(
nk(log nk)

c+ε
r

)
. (36)

From the properties of a s.v. function, by Seneta (1976) we have for any δ > 0,

lim
k→∞

(log nk)δ
l
(
nk(log nk)

c+ε
r

)
l(nk)

=∞.

Choosing δ = ε
2rγ , one can find a k6 such that for all k ≥ k6,

l
(
nk(log nk)

c+ε
r

)
≥ l(nk)

(log nk)
ε

2rγ
. (37)

Also, n(1 − F (Bn)) ' 1 implies that Bn = n
1
γ l(n), since 1 − F (x) is regularly varying with index −γ.

Consequently, using (37) in (36), we note that for k ≥ k6,(
U∗(M∗r,n′k

) <
1

nk(log nk)
c+ε
r

)
⊇
(
Mr,n′k

> Bnk(log nk)
c+ ε

2
rγ

)
.

Now, (35) implies that

P

(
Mr,n′k

> Bnk(log nk)
c+ ε

2
rγ i.o.

)
= 0. (38)

By proceeding on similar lines and using the fact that for δ > 0

lim(log nk)−δ
l
(
nk(log nk)

c−ε
r

)
l(nk)

= 0,

(see, Seneta (1976)), choosing δ = ε
2rγ , one can show that (34) implies

P

(
Mr,n′′k

> Bnk(log nk)
c− ε

2
rγ i.o.

)
= 1. (39)

Now (38) and (39) together establish the theorem.
Proofs of (2) and (3) of Theorem 2.6 and Theorem 2.7 can be obtained on similar lines by applying lemmas
3.4, 3.6 and 3.7 respectively. The details are omitted.

4.3. Proof of (1) Theorem 2.11

For F with ω(F ) <∞, from section 2, recall the relation,

Zn =
1

ω(F )−Xn
, n ≥ 1,

where Zn has d.f. F ∗ ∈ DA.(H1,γ). Consequently, for any y > 0,

F ∗(y) = P (Zn ≤ y) = P

(
Xn ≤ ω(F )− 1

y

)
= F

(
ω(F )− 1

y

)
.
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Note that, F ∈ DA.(H2,γ) iff F ∗ ∈ DA.(H1,γ). Also, recall that Mr,n is the rth upper extreme of

(X1, X2, . . . , Xn). Define M
′′

r,n as the rth upper extreme of (Z1, Z2, . . . , Zn) , n ≥ 1. Observe that,

M
′′

r,nk
=

1

ω(F )−Mr,nk

.

Since F ∗εDA.(H1,γ), from Theorem 2.6 we have,

lim sup
k→∞

(
M
′′

r,nk

Bnk

) 1
log lognk

= e
c
rγ a.s.

Substituting,
M
′′

r,nk
=

1

ω(F )−Mr,nk

,

one gets the required result.
The proofs of (2) and (3) of Theorem 2.11 and Theorem 2.12 follow on the above lines. The details are
omitted.
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