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Abstract. In this paper, we consider the simultaneous estimation of unknown parameters of the m
generalized exponential distributions using the Type II censoring scheme. We obtain maximum likelihood
estimators of the unknown parameters with the help of Newton-Raphson method. Extensive simulation
study is done to demonstrate the procedure and to get to study of the performance. Further, likelihood
ratio test is discussed to test homogeneity of several scale parameters.

1. Introduction

The industrial revolution onwards man has become more and more dependent on machine or system.
The failure of the machine make the whole system of work related to the machine stop abruptly. Therefore,
a manufacturer of a product is always interesting in assessing the reliability of the product. The reliability
of product is usually evaluated based on some characteristics of lifetimes such as mean, median, quantile,
survival function and hazard function etc. But, the lifetime experiments are usually much time consuming
and expensive. There are several situations where it is neither desirable nor possible to obtain complete
sample. In such cases, Type II censoring is the most commonly used sampling plan. In statistics literature
we find that of research papers which use the plan for various lifetime models such as normal, exponential
and Weibull. For details one can refer: Gupta (1952); Cohen (1965); Mann et al. (1974); Lawless (1982);
Sinha (1986); Hossain et al. (2003). In manufacturing setting, the problem of comparing effectiveness of
products is important. In this situation after placing several independent samples of units manufactured
by the several processes, the reliability engineer would like to make early and efficient decision on the ef-
fectiveness of the products under the life test in terms of standard hazard rate function. Balakrishnan and
Ng (2006) extensively study the problem of comparing two populations in terms of stochastic ordering.
Sharafi et al. (2013) study distribution free test for comparison of hazard rates of two distributions under
Type II censoring. Recently, Gupta and Kundu (1999) propose generalized exponential (GE) distribution
which has common properties of both gamma and Weibull distributions. Further, it enhances its utility
for having closed form expression for its cumulative distribution function. There are many properties of
the distribution is discussed in Gupta and Kundu (1999). In this paper, we discuss the inferential problem
about the lifetime of homogeneity of several systems under the generalized exponential distribution based
on Type II censored sampling design and further, study the reliability characteristics of distributions. We

Keywords. Type II censoring scheme, generalized exponential distribution, Newton-Raphson method, ML estimation,
Monte-Carlo Simulation technique, likelihood ratio test

Received: 07 February 2014; Revised: 29 January 2015; Accepted: 31 January 2015
Email address: dp_raykundaliya@spuvvn.edu (Raykundaliya, D.P.)



Shanubhogue and Raykundaliya / ProbStat Forum, Volume 08, January 2015, Pages 24–33 25

now consider a design, where we put m types of systems simultaneously on test in which for each type
of systems we start with u units and continue the experiment till G∗ failures are observed i.e. the total
numbers of units put on test are mu and the total number of failures we observe at the end of experiment
are G = mG∗ . Assuming that the lifetime distribution of unit for each type of systems to be general-
ized exponential with shape parameter α and scale parameters βi; i = 1, 2, ,m. In the experiment after
each failure the failure time is observed, and denoted it by tgi; g = 1, 2, , G∗; i = 1, 2, ,m. At the end of
experiments, we have data (u,G, tgi; g = 1, 2, , G∗; i = 1, 2, ,m). The organization of whole paper is as below.

In Section 2 we give the probability density function, the survival function and the hazard rate of
the generalized exponential distribution and develop the likelihood for Type II censored sampling design
under generalized exponential distribution. In Section 3 we derive the expressions for maximum likelihood
estimators of parameters and their asymptotic variance-covariance matrix when shape parameter of the
distribution is known and when it is unknown. Section 4 discusses algorithm for generation of data from
Type II censored sampling design under generalized exponential distribution and provides iterative procedure
for estimation of the parameters through Newton-Raphson method. Further, the tables of ML estimates
and their asymptotic standard errors, estimate of reliability and hazard rates and their mean square error
at fixed time point are given which are simulated through Monte-Carlo simulation technique for both the
cases of shape parameter known and unknown. In Section 5, we discuss likelihood ratio test for simultaneous
testing of homogeneity of scale parameters when the shape parameter is known. The cut-off points for the
test statistics are obtained through Monte-Carlo simulation. Some concluding remarks are given in Section
6.

2. Generalized Exponential Distribution and Likelihood Function for Type II Censoring De-
sign

Consider an item whose life time is denoted by T . The random variable T is assumed to have generalized
exponential distribution (GE), as defined by Gupta and Kundu (1999), with distribution function

F (t;α, β) = (1− e−βt)α, (t > 0, α > 0, β > 0). (1)

The corresponding density function is given by

f(t;α, β) = αβ(1− e−βt)α−1e−βt, (t > 0, α > 0, β > 0). (2)

Here α is a shape parameter, β is a scale parameter. We denote the GE distribution with shape parameter
α and scale parameter β as GE(α, β). Then the reliability function is

F̄ (t) = P (T > t) = 1− (1− e−βt)α (3)

and the hazard function is

h(t) =
f(t)

F̄ (t)

h(t) = αβ[
e−βt

1− e−βt
][

(1− e−βt)α

1− (1− e−βt)α
]. (4)

If Y follows GE(α, 1), then the corresponding moment generating function, is given by

M(s) = α

∫ ∞
0

(1− e−y)α−1e(s−1)y dy (5)

= α

∫ 1

0

(1− z)α−1z−sdz =
Γ(α+ 1)Γ(1− s)

Γ(α− s+ 1)
s < 1.
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Differentiating lnM(s) and evaluating at s = 0, we get the mean and variance of GE(α, 1) as

E(Z) = ψ(α+ 1)− ψ(1) and var(Z) = ψ
′
(1)− ψ

′
(α+ 1). (6)

where ψ(·) is the digamma function and ψ
′
(·) is its derivative. If Z follows GE(α, 1) and T = 1

βZ then T

follows GE(α, β). Therefore, the mean and variance of T is given by

E(T ) =
ψ(α+ 1)− ψ(1)

β
and var(Z) =

ψ
′
(1)− ψ′(α+ 1)

β2
. (7)

The likelihood function for Type II censoring design for i-th type of systems observing G∗ failures from u
units given in literature as

Li =
u!

(u−G∗)!
∏G∗

g=1
fi(tg)[F̄i(tG∗)]

(u−G∗)
(8)

Therefore, the likelihood for whole experiments

L =
∏m

i=1
Li

=
∏m

i=1
{ u!

(u−G∗)!
∏G∗

g=1
fi(tg)[F̄i(tG∗)]

(u−G∗)}. (9)

Substitute the equations (2 and 3) in equations (9) we have, the likelihood function

L =
∏m

i=1
{ u!

(u−G∗)!
∏G∗

g=1
αβi(1− e−βitgi)

α−1
e−βitgi

× [1− (1− e−βitG∗i)α]
(u−G∗)

}. (10)

3. Maximum Likelihood Estimation

In this section we obtain maximum likelihood estimates of α, βi(i = 1, 2, ...,m), reliability function,
hazard rate and observed information matrix under the design. The log likelihood equation of (10) would
be

l = mln(
u!

(u−G∗)!
) +mG∗lnα+G∗

∑m

i=1
lnβi −

∑m

i=1

∑G∗

g=1
βitgi

+ (α− 1)
∑m

i=1

∑G∗

g=1
ln(1− e−βitgi) + (u−G∗)

∑m

i=1
ln[1− (1− e−βitG∗i)α]. (11)

Differentiate (11) with respect to α and βi(i = 1, 2, ...,m) we have

∂l

∂α
=
mG∗

α
+
∑m

i=1

∑G∗

g=1
ln(1− e−βitgi)

− (u−G∗)
∑m

i=1

(1− e−βitG∗i)α ln(1− e−βitG∗i)
1− (1− e−βitG∗i)α

. (12)

∂l

∂βi
=
G∗

βi
+ (α− 1)

∑G∗

g=1
[
tgie
−βitgi

1− e−βitgi
]

−
∑G∗

g=1
tgi − α(u−G∗)tG∗i

e−βitG∗i(1− e−βitG∗i)α−1

1− (1− e−βitG∗i)α
For i = 1, 2, ...,m. (13)

The estimates of parameters β are obtained in two cases when (i) shape parameter α is known and (ii) shape
parameter α is unknown.
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3.1. Maximum Likelihood Estimation When Shape Parameter is Known

The solution of equations (13) can be evaluated numerically by some suitable iterative procedure such
as Newton-Raphson method, for given values of (u,G, tgi; g = 1, 2, ..., G∗; i = 1, 2, ...,m). The MLE of

β = (β1, β2, ..., βm) are obtained as β̂ from equations (13). The MLEs of reliability (Ri(ti); i = 1, 2, ...,m)
and hazard rate (hi(ti); i = 1, 2, ...,m) can be evaluated using invariance property of MLEs as

R̂i(ti) = 1− (1− e−β̂iti)
α
. (14)

ĥi(ti) = αβ̂i[
e−β̂iti

1− e−β̂iti
][

(1− e−β̂iti)α

1− (1− e−β̂iti)α
].For i = 1, 2, ...,m (15)

3.1.1. Observed Fisher Information Matrix Under Design
To obtain Fisher information matrix we take derivatives of equations (13) with respect to βi; i =

1, 2, ....,m. Therefore, we have,

∂2l

∂β2
i

=
−G∗

β2
i

+ (α− 1)
∑G∗

g=1
[

t2gie
−βitgi

(1− e−βitgi)2
]

− α(u−G∗)t2G∗ie−βitG∗i(1− e−βitG∗i)
α−2

[1− (1− e−βitG∗i)α]
2 {αe−βitG∗i − 1 + (1− e−βitG∗i)α}. (16)

As rate of failures of systems are independent of each type of systems, derivatives of equations (13) with
respect to βj ; j 6= i = 1, 2, ...,m are

∂2l

∂βi∂βj
= 0. ∀j 6= i = 1, 2, ...,m. (17)

For α > 2, the Generalized Exponential family satisfies all the regularity conditions (See Bain, 1978, pp.86-
87) in a similar way to the gamma family and the Weibull family, and therefore, we have the following
results.

Theorem 3.1: For α > 2 and G∗

u kept constant the maximum likelihood estimators, β̂ of β are consistent

estimators, and
√
u(β̂ − β) is asymptotically m-variate normal with mean 0 and variance covariance matrix

V−1, where V is expected value of negative of second derivative matrix of log likelihood with respect to β.

Note: Since evaluation of expected value is cumbersome we will use sample information matrix V̂which,
under usual regularity conditions, converges asymptotically to Fisher information matrix.

3.2. Maximum Likelihood Estimation When Shape Parameter is Unknown

The solution of equations (12 and 13) can be evaluated numerically by some suitable iterative procedure
such as Newton-Raphson method, for given values of (u,G, tgi; g = 1, 2, .., G∗; i = 1, 2, ...,m). The MLE of

(α, β) are obtained as (α̂, β̂) from equations (12 and 13). The MLEs of reliability (Ri(ti); i = 1, 2, ...,m) and
hazard rate (hi(ti); i = 1, 2, ...,m) can be evaluated using invariance property of MLEs as

R̂i(ti) = 1− (1− e−β̂iti)
α̂
. (18)

ĥi(ti) = α̂β̂i[
e−β̂iti

1− e−β̂iti
][

(1− e−β̂iti)α̂

1− (1− e−β̂iti)α̂
]. For i = 1, 2, ...,m (19)
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3.2.1. Observed Fisher Information Matrix Under Design
To obtain Fisher information matrix we take derivatives of equations (12) and (13) with respect to

α, βi; i = 1, 2, ....,m. Therefore, we have,

∂2l

∂α2
=
−mG∗

α2
− (u−G∗) [ln(1− e−βitG∗i)]2(1− e−βitG∗i)α

[1− (1− e−βitG∗i)α]
2 . (20)

∂2l

∂α∂βi
=

∑G∗

g=1
[
tgie
−βitgi

1− e−βitgi
]− (u−G∗)

[1− (1− e−βitG∗i)α]
2

× {1− (1− e−βitG∗i)α

α
+ ln(1− e−βitG∗i)} (21)

Derivatives of equation (13) with respect to βi; i = 1, 2, ...,m and βj ; j 6= i = 1, 2, ...,m are given in equations
(16) and (17) respectively. Therefore, we have the following result:

Theorem 3.2: For α > 2 and G∗

u kept constant the maximum likelihood estimators,(α, β̂) of (α, β) are

consistent estimators, and
√
u(α̂− α, β̂ − β) is asymptotically (m+ 1)-variate normal with mean (0, 0) and

variance covariance matrix W−1, where W is expected value of negative of second derivative matrix of log
likelihood with respect to (α, β).

Note: Since evaluation of expected value is cumbersome we will use sample information matrix Ŵ
which, under usual regularity conditions, converges asymptotically to Fisher information matrix.

4. Algorithm, Numerical Exploration and Conclusions

In this Section, a Monte-Carlo simulation study is conducted to compare the performance of the estimates
developed in the previous sections. Maximum likelihood estimates are obtained for observations generated
through the Type II censoring design when numbers of systems to be compared 2 and 3 for known as well
as unknown shape parameter having failure distribution is the GED(α, βi); i = 1, 2, ...,m. All calculations
are performed on the R-language version R.2.12.0. The simulation study is conducted for both known as
well as unknown shape parameter.

4.1. Known Shape Parameter

In this section, we carry out simulation study for two sets of parameter values m = 2, α = 2.5, β1 =
1.5, β2 = 1.3 and for m = 3, α = 2.5, β1 = 1.5, β2 = 1.3, β3 = 1.4. The simulation is carried out for different
values of u and G∗. Here we kept total number of failures in whole experiment G = uG∗ fixed. We simulate
1000 samples for each case. The simulation results are summarized in Table 1 and Table 2. The value of α
are taken larger than 2 as per the suggestions given in Gupta and Kundu (1999). To carry out our objective
we proceed through the following algorithm.

step 1 Taking m = 2, α = 2.5, β1 = 1.5, β2 = 1.3 we generate u random numbers from GE(α, β1, β2, ..., βm)
for each type of systems. The same is repeated for the parameters m = 3, α = 2.5, β1 = 1.5, β2 =
1.3, β3 = 1.4.

step 2 Generate G∗ Type II censored observations for each type of systems. The generated G∗ failure times
are (t1i, t2i, ..., tG∗i); i = 1, 2, ...,m for each type of systems.

step 3 Obtain initial estimate of parameter βi; i = 1, 2, ...,m by substituting α = 1 in equation (13). There-
fore, we have,

β̂i0 =
G∗∑G∗

g=1tgi + (u−G∗)tG∗i
. For i = 1, 2, ...,m

step 4 Obtain initial value of sample information matrix V̂ using the value obtained in Step 3 and also obtain
the score vector S′ = ( ∂l

∂β1
, ∂l
∂β2

, ..., ∂l
∂βm

)
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step 5 Use Newton-Raphson iterative method

β̂
New

= β̂
Old

+ V̂−1(β̂
Old

) ∗ S

step 6 Repeat Step 5 until the
∑m
i=1|β̂iNew − β̂iOld| < ε where ε is very small predefined quantity.

step 7 Repeat the procedures in Step 1 to Step 6 for N = 1000 times and obtain following quantities.

(a) EV i =
∑N
j=1β̂ij

N

(b) Mean Squared Error, MSEi =
∑N
j=1(β̂ij−βi)

2

N where βi; i = 1, 2, ..,m the values of parameters
given in Step 1.

(c) Average Variance-Covariance Matrix V̂−1.

(d) Reliability functions R̂ij(ti) and hazard rate ĥij(ti); i = 1, 2, ..,m;
j = 1, 2, ..., N evaluate using equations (3.4-3.5) and corresponding

MSEs are
∑N
j=1(R̂ij(ti)−Ri(ti))

2

N and
∑N
j=1(ĥij(ti)−hi(ti))

2

N

Step 8 Obtain Standard Error (SE) of estimates by taking square root of diagonal elements of V̂−1.

Table 1: Maximum Likelihood Estimate of Parameters, Reliability and Hazard Rates and their Efficiency Measures m = 2, α =
2.5, β1 = 1.5, β2 = 1.3, t = (0.8536, 0.9849), R(t) = (0.5570, 0.5570), h(t) = (0.8291, 0.7185)

u G∗ β̂1 β̂2 R̂1(t1) R̂2(t2) ĥ1(t1) ĥ2(t2)
12 06 EV 1.5866 1.3562 0.5382 0.5450 0.9459 0.7982

MSE 0.1831 0.1312 0.0181 0.0167 0.2294 0.1624
SE 0.3982 0.3404 - - - -

24 12 EV 1.5486 1.3484 0.5443 0.5420 0.8945 0.7804
MSE 0.0736 0.0578 0.0085 0.0088 0.0895 0.0702
SE 0.2692 0.2345 - - - -

36 16 EV 1.5262 1.3238 0.5560 0.5504 0.8648 0.7511
MSE 0.0469 0.0378 0.0057 0.0061 0.0556 0.0450
SE 0.2154 0.1870 - - - -

48 24 EV 1.5265 1.3182 0.5498 0.5515 0.8635 0.7426
MSE 0.0364 0.0240 0.0045 0.0040 0.0430 0.0283
SE 0.1816 0.1606 - - - -

60 30 EV 1.5173 1.3150 0.5526 0.5525 0.8524 0.7386
MSE 0.0288 0.0206 0.0036 0.0034 0.0338 0.0242
SE 0.1652 0.1431 - - - -

72 36 EV 1.5131 1.3157 0.5536 0.5519 0.8466 0.7387
MSE 0.0208 0.0171 0.0027 0.0029 0.0242 0.0201
SE 0.1501 0.1306 - - - -

84 42 EV 1.5123 1.3138 0.5538 0.5524 0.8456 0.7359
MSE 0.0194 0.0135 0.0025 0.0023 0.0224 0.0157
SE 0.1389 0.1206 - - - -

96 48 EV 1.5088 1.3082 0.5548 0.5547 0.8413 0.7300
MSE 0.0162 0.0135 0.0021 0.0023 0.0187 0.0156
SE 0.1295 0.1123 - - - -

From Table 1 and Table 2 we observe that for the known shape parameter α, the means of MLEs for
scale parameters βi; i = 1, 2, ...,m, the reliability characteristics and hazard rates are very close to their
true values. At average mean square errors are relatively small. Further, we observe that the estimates and
standard/mean square error are decreasing functions of number u of each systems put on test.

4.2. Unknown Shape Parameter

Similar study, with not much change in the algorithm, one can make simulation study for the case
of unknown shape parameter. We make simulation studies for the set of parameters values m = 2, α =
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Table 2: Maximum Likelihood Estimate of Parameters, Reliability and Hazard Rates and their Efficiency Measures
m = 2, α = 2.5, β1 = 1.5, β2 = 1.3, β3 = 1.4,
t = (0.8536, 0.9849, 0.9146), R(t) = (0.5570, 0.5570, 0.5570), h(t) = (0.8291, 0.7185, 0.7738)

u G∗ β̂1 β̂2 β̂3 R̂1(t1) R̂2(t2) R̂3(t3) ĥ1(t1) ĥ2(t2) ĥ3(t3)
24 08 EV 1.5751 1.3520 1.4595 0.5373 0.5428 0.5417 0.9251 0.7875 0.8528

MSE 0.1103 0.0823 0.1004 0.0118 0.0117 0.0123 0.1368 0.1022 0.1239
SE 0.3185 0.2735 0.2956 - - - - - -

36 12 EV 1.5460 1.3430 1.4358 0.5449 0.5436 0.5475 0.8889 0.7735 0.8216
MSE 0.0679 0.0510 0.0568 0.0079 0.0078 0.0076 0.0816 0.0620 0.0684
SE 0.2532 0.2199 0.2351 - - - - - -

48 16 EV 1.5152 1.3327 1.4300 0.5544 0.5465 0.5487 0.8530 0.7603 0.8136
MSE 0.0451 0.0363 0.0446 0.0056 0.0058 0.0061 0.0527 0.0432 0.0532
SE 0.2139 0.1882 0.2021 - - - - - -

60 20 EV 1.5171 1.3184 1.4153 0.5531 0.5560 0.5534 0.8533 0.7531 0.7957
MSE 0.0351 0.0287 0.0309 0.0044 0.0048 0.0044 0.0409 0.0335 0.0363
SE 0.1911 0.1649 0.1783 - - - - - -

72 24 EV 1.5126 1.3171 1.4176 0.5545 0.5519 0.5522 0.8480 0.7415 0.7975
MSE 0.0323 0.0236 0.0271 0.0040 0.0040 0.0039 0.0378 0.0275 0.0318
SE 0.1738 0.1513 0.1628 - - - - - -

84 28 EV 1.5174 1.3143 1.4188 0.5524 0.5527 0.5513 0.8521 0.7365 0.7980
MSE 0.0267 0.0194 0.0224 0.0033 0.0032 0.0032 0.0314 0.0228 0.0263
SE 0.1612 0.1396 0.1507 - - - - - -

96 32 EV 1.5175 1.3136 1.4061 0.5522 0.5585 0.5560 0.8520 0.7365 0.7840
MSE 0.0245 0.0179 0.0195 0.0030 0.0029 0.0028 0.0286 0.0211 0.0226
SE 0.1507 0.1305 0.1396 - - - - - -

2.5, β1 = 1.5, β2 = 1.3, t = (0.8536, 0.9849) and for m = 3, α = 2.5, β1 = 1.5, β2 = 1.3, β3 = 1.4, t =
(0.8536, 0.9849, 0.9146) by taking N = 1000.

In the presence of unknown shape parameter α, from Table 3 and Table 4 it is seen that the MLEs of
scale parameters βi; i = 1, 2, ...,m, the reliability characteristics and hazard rates are reaching close to their
true values. However the convergence rate is slow compared to the convergence rate when shape parameter
is known. Perhaps, it may be the effect of estimate of unknown shape parameter α. Further, we can say,
somewhat large sample size is required than what we consider for the estimates to reach their true values.

5. Testing of Hypotheses

The proposed design will have significance only when we are able to ascertain that the m type of systems
are not all have identical life time. This can be done by developing ANOVA approach for the proposed
design. However, we will utilize likelihood approach to develop a test. The testing hypothesis problem is to
test

H0 : β1 = β2 = ... = βm = β against H1 : βi 6= βj for at least one pair (i, j), i 6= j (22)

As we are considering maximum likelihood estimation, the use of likelihood ratio test is much convenient.
The test statistic is

λLR =
maxα,βL(t, β, α)

maxα,βL(t, β, α)

The test based on −2ln(λLR) rejects H0 in support of H1 if it is larger than upper α-th cut-off point of
chi-square distribution (m− 1) degrees of freedom.



Shanubhogue and Raykundaliya / ProbStat Forum, Volume 08, January 2015, Pages 24–33 31

Table 3: Maximum Likelihood Estimate of Parameters, Reliability and Hazard Rates and their Efficiency Measures m = 2, α =
2.5, β1 = 1.5, β2 = 1.3, t = (0.8536, 0.9849), R(t) = (0.5570, 0.5570), h(t) = (0.8291, 0.7185)

u G∗ α̂ β̂1 β̂2 R̂1(t1) R̂2(t2) ĥ1(t1) ĥ2(t2)
12 06 EV 3.6307 1.8729 1.6556 0.5331 0.5230 1.1589 1.0473

MSE 6.0714 0.6009 0.5327 0.0199 0.0232 0.5369 0.5088
SE 2.1642 0.6795 0.6023 - - - -

24 12 EV 3.0577 1.7022 1.4842 0.5442 0.5419 1.0048 0.8848
MSE 1.7537 0.2595 0.2296 0.0099 0.0110 0.2191 0.2026
SE 1.0701 0.4482 0.3917 - - - -

36 18 EV 2.8157 1.6382 1.4158 0.5438 0.5457 0.9533 0.8231
MSE 0.6793 0.1448 0.1179 0.0066 0.0065 0.1206 0.0999
SE 0.7395 0.3570 0.3088 - - - -

48 24 EV 2.7277 1.5942 1.3898 0.5496 0.5465 0.9123 0.8009
MSE 0.4482 0.0997 0.0860 0.0047 0.0049 0.0807 0.0718
SE 0.6076 0.3029 0.2645 - - - -

60 30 EV 2.6567 1.5687 1.3574 0.5506 0.5517 0.8914 0.7716
MSE 0.3026 0.0745 0.0642 0.0040 0.0039 0.0618 0.0532
SE 0.5196 0.2683 0.2323 - - - -

72 36 EV 2.6308 1.5572 1.3516 0.5515 0.5510 0.8801 0.7665
MSE 0.2484 0.0621 0.0518 0.0029 0.0033 0.0487 0.0422
SE 0.4669 0.2435 0.2116 - - - -

84 42 EV 2.5873 1.5339 1.3306 0.5544 0.5542 0.8602 0.7477
MSE 0.1878 0.0461 0.0405 0.0024 0.0037 0.0358 0.0323
SE 0.4211 0.2229 0.1936 - - - -

96 48 EV 2.5830 1.5353 1.3320 0.5539 0.5533 0.8620 0.7486
MSE 0.1608 0.0458 0.0343 0.0023 0.0024 0.0307 0.0277
SE 0.3915 0.2086 0.1811 - - - -

5.1. Computation of Likelihood Under H0

The log likelihood lnL under null hypothesis from equation (11) we have,

l = mln(
u!

(u−G∗)!
) +mG∗lnα+mG∗lnβ − β

∑m

i=1

∑G∗

g=1
tgi

+ (α− 1)
∑m

i=1

∑G∗

g=1
ln(1− eβtgi) + (u−G∗)

∑m

i=1
ln[1− (1− e−βtG∗i)α]. (23)

Differentiate (23) with respect to α and β we have

∂l

∂α
=
mG∗

α
+
∑m

i=1

∑G∗

g=1
ln(1− e−βtgi)

− (u−G∗)
∑m

i=1

(1− e−βtG∗i)αln[1− e−βtG∗i ]
1− (1− e−βtG∗i)α

(24)

∂l

∂β
=
mG∗

β
+ (α− 1)

∑m

i=1

∑G∗

g=1
[
tgie
−βtgi

1− e−βtgi
]−

∑m

i=1

∑G∗

g=1
tgi

− α(u−G∗)
∑m

i=1
tG∗i

e−βtG∗i(1− e−βtG∗i)α−1

1− (1− e−βtG∗i)α
(25)
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Table 4: Maximum Likelihood Estimate of Parameters, Reliability and Hazard Rates and their Efficiency Measures m = 2, α =
2.5, β1 = 1.5, β2 = 1.3, β3 = 1.4, t = (0.8536, 0.9849, 0.9146), R(t) = (0.5570, 0.5570, 0.5570), h(t) = (0.8291, 0.7185, 0.7738)

u G∗ α̂ β̂1 β̂2 β̂3 R̂1(t1) R̂2(t2) R̂3(t3) ĥ1(t1) ĥ2(t2) ĥ3(t3)
24 08 EV 3.0431 1.7862 1.5512 1.6477 0.5222 0.5224 0.5297 1.1030 0.9636 1.0092

MSE 1.2550 0.3499 0.2997 0.3148 0.0146 0.0160 0.0143 0.3414 0.3499 0.3100
SE 0.9760 0.5281 0.4596 0.4814 - - - - - -

36 12 EV 2.8822 1.6976 1.4792 1.5871 0.5339 0.5320 0.5338 1.0140 0.8906 0.9511
MSE 0.7321 0.2090 0.1787 0.1971 0.0011 0.0105 0.0101 0.1922 0.1696 0.1881
SE 0.7309 0.4153 0.3628 0.3891 - - - - - -

48 16 EV 2.7466 1.6383 1.4097 1.5222 0.5391 0.5436 0.5414 0.9621 0.8240 0.8907
MSE 0.4266 0.1409 0.1165 0.1264 0.0073 0.0075 0.0068 0.1365 0.1079 0.1137
SE 0.5862 0.3524 0.3034 0.3272 - - - - - -

60 20 EV 2.7173 1.6185 1.4000 1.5179 0.5422 0.5437 0.5396 0.9408 0.8137 0.8871
MSE 0.3482 0.1132 0.0939 0.1083 0.0057 0.0058 0.0058 0.1007 0.0847 0.0976
SE 0.5147 0.3119 0.2699 0.2925 - - - - - -

72 24 EV 2.6625 1.5744 1.3762 1.4915 0.5514 0.5466 0.5427 0.8976 0.7909 0.8611
MSE 0.2335 0.0848 0.0665 0.0730 0.0044 0.0045 0.0043 0.0740 0.0584 0.0646
SE 0.4542 0.2787 0.2437 0.2638 - - - - - -

84 28 EV 2.6475 1.5768 1.3736 1.4772 0.5483 0.5456 0.5466 0.9002 0.7887 0.8474
MSE 0.2008 0.0699 0.0582 0.0702 0.0037 0.0037 0.0040 0.0604 0.0500 0.0622
SE 0.4164 0.2586 0.2253 0.2424 - - - - - -

96 32 EV 2.6076 1.5589 1.3467 1.4554 0.5495 0.5514 0.5493 0.8856 0.7637 0.8272
MSE 0.1668 0.0608 0.0497 0.0533 0.0032 0.0034 0.0032 0.0517 0.0425 0.0455
SE 0.3812 0.2402 0.2076 0.2243 - - - - - -

Differentiate (24) and (25) with respect to (α, β) and β respectively, we have

∂2l

∂α2
=
−mG∗

α2
− (u−G∗)

∑m

i=1
{ [ln(1− e−βtG∗i)]2(1− e−βtG∗i)α

[1− (1− e−βtG∗i)α]
2 } (26)

∂2l

∂α∂β
=

∑m

i=1

∑G∗

g=1
[
tgie
−βtgi

1− e−βtgi
]

− (u−G∗)
∑m

i=1
{

1−(1−e−βtG∗i )α

α + ln(1− e−βtG∗i)
[1− (1− e−βtG∗i)α]

2 } (27)

∂2l

∂β2
=
−mG∗

β2
− (α− 1)

∑m

i=1

∑G∗

g=1
[

t2gie
−βtgi

(1− e−βtgi)2
]

− α(u−G∗)
∑G∗

g=1

t2G∗ie
−βtG∗i(1− e−βtG∗i)α−2

[1− (1− e−βtG∗i)α]
2

× {αe−βtG∗i − 1 + (1− e−βtG∗i)α}. (28)

The likelihood equation (25) is not mathematically tractable for known as well as unknown shape parameter
we use the Newton-Rapshon method to obtain the estimate of parameter β. Here we deal with only known
shape parameter. We demonstrate the test procedure for m = 2 and m = 3. We generate data under our
design for the parameter values under H1 : α = 2.5, β1 = 1.5, β2 = 1.3 and H1 : α = 2.5, β1 = 1.9, β2 =
1.5, β3 = 1 respectively. Then carry out the test procedure as suggested above. The procedure is repeated
for the different choices of u and G∗. The results are produced in the Table 5 and Table 6 respectively.

From the Table 5, we infer that the power the test is poor for small sizes. However as the sample size
becomes 48(total number failures observed irrespective type of systems) it exhibits its power in identifying
the alternative. It requires more sample size to detect small departure from homogeneity. From Table 6, it
can reveal that for comparing homogeneity of three systems, as sample size becomes 36 it exhibits its power
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Table 5: Likelihood Ratio Test for Testing H0 : β1 = β2 = β vs H1 : β1 6= β2 when α = 2.5, β1 = 1.5, β2 = 1.3

u G∗ β̂ β̂1 β̂2 LLH0
LLH1

χ2 p− value
12 06 1.3296 1.8135 1.2086 13.84 14.15 0.6096 0.4349
24 12 1.2681 1.5701 1.1866 31.22 31.56 0.6765 0.4108
36 18 1.2457 1.5548 1.2282 70.75 71.68 1.8739 0.1710
48 24 1.1657 1.3578 1.1889 105.91 106.83 1.8307 0.1760
60 30 1.1580 1.4717 1.1160 145.15 146.34 2.3923 0.1219
72 36 1.2923 1.6252 1.2725 194.85 196.60 3.5058 0.0612
84 42 1.1948 1.5914 1.1563 235.97 238.30 4.6467 0.0311
96 48 1.2138 1.6765 1.1844 281.69 285.32 7.2498 0.0071

Table 6: Likelihood Ratio Test for Testing H0 : β1 = β2 = β2 = β vs H1 : βi 6= βj(i 6= j = 1, 2, 3) when α = 2.5, β1 = 1.9, β2 =
1.5, β2 = 1

u G∗ β̂ β̂1 β̂2 β̂3 LLH0
LLH1

χ2 p− value
24 08 1.3736 2.2309 1.9322 1.1655 41.01 43.89 5.6399 0.0596
36 12 1.2177 1.8818 1.7630 1.0006 70.12 73.77 7.2916 0.0261
48 16 1.2274 1.9504 1.6411 1.0563 104.12 108.22 8.1909 0.0166
60 20 1.2253 2.0577 1.5246 1.0721 140.79 145.01 8.5668 0.0137
72 24 1.2419 1.8800 1.4837 1.1245 184.35 189.18 9.7386 0.0076
84 28 1.2376 1.9139 1.5230 1.1044 226.71 232.17 10.92 0.0042
96 32 1.2303 1.8886 1.5768 1.0726 276.41 283.00 13.1624 0.0014

to identify magnitude of departure from homogeneity. The consistency of the test is also inferred as sample
size tends to 96 the p -value becomes almost zero up to two digits in both Table 5 and Table 6.

6. Concluding Remarks

In this article, we have studied fitting of generalized exponential distribution model for several systems
when sample observations are drawn based on Type II censoring scheme. Further, we carried out simulation
study to demonstrate the performance of the estimators in terms of their MSE and SE. Finally, we provided
likelihood ratio test for homogeneity of lifetimes of several of systems.
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