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Abstract. For characterization of one (left or right)-truncation parameter families of distributions
(which includes notably negative exponential distribution, Pareto distribution, power function distribu-
tion, uniform distribution and generalized uniform distribution as special case) one needs any arbitrary
non-constant function only in place of various approaches such as identical distributions, absolute con-
tinuity, constancy of regression of order statistics, continuity and linear regression of order statistics,
non-degeneracy available in the literature. Path breaking different approach for characterization of gen-
eral setup of one-truncation parameter family of distributions through expectation of any arbitrary non
constant differentiable function of random variable is obtained. Applications and examples are given for
illustrative purpose.

1. Introduction

One-truncation parameter family of distributions with probability density function (pdf)

fj(x; θ) =

 qj(θ)hj(x)

0, otherwise,
(1)

where −∞ ≤ a < b ≤ ∞ are known constant, a < θ < x < b for j = 1 , a < x < θ < b for j = 2,
hj ; (j = 1, 2) are positive absolutely continuous functions, qj ; (j = 1, 2) are everywhere differentiable func-
tions is characterized.

Since hj(.);(j = 1 or 2) is positive and the range is truncated by truncation parameter θ from left or
right respectively q−1

1 (b) = q−1
2 (a) = 0.

Using identity of distribution and equality of expectation of function of function, characterization for
general set up of one (left or right)-truncation parameter family of distributions defined in (1) through
expectation of any arbitrary non-constant differentiable function is given which includes characterization
of negative exponential distribution, Pareto distribution as special case of f1(x; θ) where as power function
distribution, uniform distribution, generalize uniform distribution as special case of f2(x; θ).
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Several characterizations of these distributions by various approaches are available in the literature. No-
tably for power function distribution independence of suitable function of order statistics and distributional
properties of transformation of exponential variable used by Fisz (1958), Basu (1965), Govindarajulu (1966)
and Dallas (1976), linear relation of conditional expectation used by Beg and Kirmani (1974), recurrence
relations between expectations of function of order statistics used by Ali and Khan (1998), record valves
used by Nagraja (1977), lower record statistics used by Faizan and Khan (2011), product of order statistics
used by Arslan (2011) and Lorenz curve used by Moothathu (1986) are available in the literature.

Other approaches such as coefficient of correlation of order statistics of sample of size two used by Bar-
toszynski (1980), Terrel (1983), Fernando and Rebollo (1997), maximal correlation coefficient between order
statistics of identically distributed spacings etc. [used by Stapleton (1963), Arnold and Meeden (1976),
Driscoll (1978), Shimizu and Huang (1983), Abdelhamid (1985)], moment conditions used by Lin (1988),
Too and Lin (1989), moments of n-fold convolution modulo one used by Chow and Huang (1999), inequali-
ties of chernoff-type used by Sumitra and Subir (1990) for characterization of uniform distribution.

Various approaches were used for characterization of negative exponential distribution. Amongst many
other Fisz (1958), Tanis (1964), Rogers (1963) and Ferguson (1967) used properties of identical distri-
butions, absolute continuity, constant regression of adjacent order statistics, Ferguson (1964, 1965) and
Crawford (1966), used linear regression of adjacent order statistics of random, independent and non degen-
erate random variables, Nagaraja (1977, 1988) used linear regression of two adjacent record values were as
Khan et al. (2009) used difference of two conditional expectations, conditioned on a non-adjacent order
statistics to characterized negative exponential distribution.

Economic variation in reported income and true income used by Krishnaji (1970), Nagesh et al. (1974),
independence of suitable function of order statistics used by Malik (1970), Ahsanullah and Kabir (1974),
Shah and Kabe (1981) and Dimaki and Xekalaki (1993), mean and the extreme observation of the sample
used by Srivastava (1965), linear relation of conditional expectation used by Beg and Kirmani (1974), Dal-
las (1976), recurrence relations between expectations of function of order statistics used by Ali and Khan
(1998), exponential and related distributions used by Tavangar and Asadi (2010), for characterization of
Pareto distribution.

Necessary and sufficient conditions for pdf f(x; θ) to be fj(x; θ), (j = 1 or 2), defined in (1) is established
in section 2. Section 3 is devoted for applications where as section 4 is devoted to examples for illustrative
purpose.

2. Characterization theorem

Let X be a random variable (r.v) with distribution function F . Assume that F is continuous on the
interval (a, b), where −∞ ≤ a < b ≤ ∞. Let g(X) be a non-constant differentiable function of X on the
interval (a, b), where −∞ ≤ a < b ≤ ∞ and more over g(X) be non constant. Then f(x; θ) is fj(x; θ), pdf
defined in (1) if and only if

E
[
g(X) +

d
dX g(X)

M(X)

]
= g(θ) (2)

where M(X) is finite function.

Proof. Given fj(x; θ) defined in (1), for necessity of (2) if φ(X) is such that g(θ) = E[φ(X)] where g(θ)
is differentiable function then
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g(θ) =


∫ b
θ
φ(x)f1(x; θ)dxforj = 1∫ θ

a
φ(x)f2(x; θ)dxforj = 2,

(3)

Differentiating with respect to θ on both sides of (3) and replacing X for θ, and denoting finite function

M(X) =
d

dX

[
log
(
q−1
j (X)

)]
, (4)

and simplifying one gets

φ(X) = g(X) +
d
dX g(X)

M(X)
, (5)

which establishes the necessity of (2). Conversely given (2) let kj(x; θ), j = 1, 2 be pdf of r.v X such that

g(θ) =


∫ b
θ
φ(x)k1(x; θ)dxforj = 1∫ θ

a
φ(x)k2(x; θ)dxforj = 2

(6)

Since q−1
1 (b) = q−1

2 (a) = 0 the following identity holds.

g(θ) =


−q1(θ)

∫ b
θ

[
d
dxg(x)q−1

1 (x)
]
dxforj = 1

q2(θ)
∫ b
θ

[
d
dxg(x)q−1

2 (x)
]
dxforj = 2

(7)

Differentiating the integrand of (7) g(x)q−1
j (x), (j = 1, 2) and taking d

dxq
−1
j (x) as one factor one gets

g(θ) =


∫ b
θ
φ(x)

[
− q1(θ) d

dxq
−1
1 (x)

]
dxforj = 1

∫ θ
a
φ(x)

[
q2(θ) d

dxq
−1
2 (x)

]
dxforj = 2,

(8)

where φ(X) is a function of X derived in (5) for j = 1, 2. From (6) and (8) by uniqueness theorem

kj(x; θ) =

 −q1(θ) d
dxq

−1
1 (x)forj = 1

q2(θ) d
dxq

−1
2 (x)forj = 2.

(9)

Since q1 is increasing function of θ with q−1
1 (b) = 0 and q2 is decreasing function of θ with q−1

2 (a) = 0
integrating (9) on both sides one gets

1 =


∫ b
θ
k1(x; θ)dxforj = 1∫ b

θ
k2(x; θ)dxforj = 2.

(10)



Milind Bhatt / ProbStat Forum, Volume 08, January 2015, Pages 34–44 37

and denoting

hj(x) = (−1)j
d

dx
q−1
j (x), (11)

one gets (10) as

kj(x; θ) =

 qj(θ)hj(x)

0, otherwise,
(12)

Hence kj(x; θ) reduces to fj(x; θ) defined in (1) which establishes sufficiency of (2).

Remark. Using φ(X) given in (5) one can determine fj(x; θ) by

M(X) =
d
dX g(X)

φ(X)− g(X)
, (13)

and pdf is given by

fj(x; θ) = (−1)j
d
dX q

−1
j (x)

q−1
j (θ)

, (14)

where q−1
j (x) is decreasing function for −∞ ≤ a < b ≤ ∞ with q−1

j (b) = 0 for j = 1 and q−1
j (x) is

increasing function for −∞ ≤ a < b ≤ ∞ with q−1
j (a) = 0 for j = 2 such that it satisfies (4) for j = 1, 2.

3. Special cases, characterizations of various distributions

As special cases of the characterization theorem following distributions are characterized.

(A) Characterization of negative exponential distribution with pdf

f3(x; θ) =

 exp−(x− θ); a < θ < x < b,

0, otherwise.
(15)

The sufficient condition in characterization theorem being

E
[
g(X)− d

dX
g(X)

]
= g(θ) (16)

where g(θ) is non-constant function. From (13) M(X) turns out as -1 and hence using (4)

M(X) =
d

dX

[
log
(
q−1
j (X)

)]
= −1⇒ q−1

j (X) = exp(−X), (17)

which is decreasing function on −∞ ≤ a < b ≤ ∞ with q−1
j (b) = 0 therefore −∞ ≤ a < θ < x < b ≤ ∞

and by using (11)

hj(x) = exp(−X). (18)
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Substituting these values in (1) for j=1, f1(x; θ) reduces to f3(x; θ) defined in (15). Thus negative expo-
nential distribution is characterized.

(B) Characterization of Pareto distribution with pdf

f4(x; θ) =


cθc

xc+1 ; a < θ < x < b.

0, otherwise,
(19)

The sufficient condition in characterization theorem being

E
[
g(X)− X

c

d

dX
g(X)

]
= g(θ) (20)

where g(θ) is non-constant function. From (13) M(X) turns out as −c/X and hence using (4)

M(X) =
d

dX

[
log
(
q−1
j (X)

)]
= −X

c
⇒ q−1

j (X) =
1

cXc
, (21)

which is decreasing function on −∞ ≤ a < b ≤ ∞ with q−1
j (b) = 0 therefore −∞ ≤ a < θ < x < b ≤ ∞

and by using (11)

hj(X) =
1

Xc+1
. (22)

Substituting these values in (1) for j=1, f1(x; θ) reduces to f4(x; θ) defined in (19). Thus Pareto distri-
bution is characterized.

(C) Characterization of power function distribution with pdf

f5(x; θ) =

 cθ−cxc−1; a < x < θ < b,

0, otherwise.
(23)

The sufficient condition in characterization theorem being

E
[
g(X) +

X

c

d

dX
g(X)

]
= g(θ) (24)

where g(θ) is non-constant function. From (13) M(X) turns out as c/X and hence using (4)

M(X) =
d

dX

[
log
(
q−1
j (X)

)]
=
X

c
⇒ q−1

j (X) =
Xc

c
, (25)

which is increasing function on −∞ ≤ a < b ≤ ∞ with q−1
j (a) = 0 therefore −∞ ≤ a < x < θ < b ≤ ∞

and by using (11)

hj(X) = Xc+1. (26)

Substituting these values in (1) for j = 2, f2(x; θ) reduces to f5(x; θ) defined in (23). Thus power func-
tion distribution is characterized.
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(D) Characterization of uniform distribution with pdf

f6(x; θ) =


1
θ a < x < θ < b,

0, otherwise.
(27)

The sufficient condition in characterization theorem being

E
[
g(X) +X

d

dX
g(X)

]
= g(θ) (28)

where g(θ) is non-constant function. From (13) M(X) turns out as 1/X and hence using (4)

M(X) =
d

dX

[
log
(
q−1
j (X)

)]
=
X

c
⇒ q−1

j (X) = X, (29)

which is increasing function on −∞ ≤ a < b ≤ ∞ with q−1
j (a) = 0 therefore −∞ ≤ a < x < θ < b ≤ ∞

and by using (11)

hj(x) = 1. (30)

Substituting these values in (1) for j = 2, f2(x; θ) reduces to f6(x; θ) defined in (27). Thus uniform
distribution is characterized.

(E) Characterization of generalized uniform distribution with pdf

f6(x; θ) =


α+1
θα+1x

α a < x < θ < b,

0, otherwise.
(31)

The sufficient condition in characterization theorem being

E
[
g(X) +

X

α+ 1

d

dX
g(X)

]
= g(θ) (32)

where g(θ) is non-constant function. From (13) M(X) turns out as α+1
X and hence using (4)

M(X) =
d

dX

[
log
(
q−1
j (X)

)]
=
X

c
⇒ q−1

j (X) =
Xα+1

α+ 1
, (33)

which is increasing function on −∞ ≤ a < b ≤ ∞ with q−1
j (a) = 0 therefore −∞ ≤ a < x < θ < b ≤ ∞

and by using (11)

hj(x) = Xα. (34)

.

Substituting these values in (1) for j = 2, f2(x; θ) reduces to f6(x; θ) defined in (31). Thus uniform
distribution is characterized.
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4. Examples

Let φi(X) = X and E[X] = gi(θ) , i = 1, 2, 3, 4, 5 where

gi(θ) =



c
c+1θ; for i = 1,

θ
2 ; for i = 2,

α+1
α+2 ; for i = 3,

θ + 1; for i = 4,

c
c−1θ; for i = 5,

(35)

be means and let

φi(X) =



c+1
c Xp−

1
c ; for i = 6,

2Xp; for i = 7,

α+2
α+1Xp

1
α+1 ; for i = 8,

− log(1− p) +X − 1; for i = 9,

c−1
c X(1− p)− 1

c ; for i = 10,

−

(
c
t

)(
t
X

)2c[(
t
X

)c
−1

]2 ; for i = 11,

− t
(t−X)2 ; for i = 12,

(α+1)t

(
t
X

)2α[
X−t

(
t
X

)α]2 ; for i = 13,

(36)

be such that E[φi(X)] = gi(θ) where
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gi(θ) =



θp
1
c ; for i = 6,

θp; for i = 7,

θp
1

α+1 ; for i = 8,

− log(1− p) + θ; for i = 9,

θ(1− p)− 1
c ; for i = 10,

−

(
c
t

)
(
θ
t

)c
−1

; for i = 11,

1
(θ−t) ; for i = 12,

(α+1
θ )

(
t
θ

)α
1−
(
t
θ

)α+1 ; for i = 13,

(37)

is pth quantile for i = 6, 7, 8, 9, 10 and is hazard function for i = 11, 12, 13.

Using (13) we get

M(X) =
d
dX g(X)

φ(X)− g(X)
=



c
X ; for i = 1, 6, 11 ,

1
X ; for i = 2, 7, 12,

α+1
X ; for i = 3, 8, 13,

−1; for i = 4, 9,

− c
X ; for i = 5, 10.

(38)

Since q−1
j (X) is decreasing function for −∞ ≤ a < b ≤ ∞ with q−1

j (b) = 0 for j = 1 and q−1
j (X) is

increasing function for −∞ ≤ a < b ≤ ∞ with q−1
j (a) = 0 for j = 2, using (4) in (38) it follows that

q−1
j (X) =



Xc

x ; for i = 1, 6, 11 and j = 2,

X; for i = 2, 7, 12, and j = 2,

Xα+1

α+1 ; for i = 3, 8, 13, and j = 2,

exp(−X); for i = 4, 9, and j = 1,

−X
−c

c ; for i = 5, 10 and j = 1,

(39)
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and by using (11) one gets

hj(x) = (−1)j
d

dX
q−1
j (x) =



xc−1; for i = 1, 6, 11 and j = 2,

1; for i = 2, 7, 12, and j = 2,

xα; for i = 3, 8, 13, and j = 2,

exp(−x); for i = 4, 9, and j = 1,

x−c−1; for i = 5, 10 and j = 1.

(40)

Using method described in the remark the pdf fj(x, θ) defined in (1) can be characterized through ex-
pectation of a function of random variable; E[φi(X)] = gi(θ); i = 1, 2, ..., 13 non constant functions by
substituting M(X) defined in (13) and using q−1

j (X) as appear in (4) and using (11) for (14) as follows :

M(X) = hj(X) = q−1
j (X) fj(x, θ) =

j i
d
dX g(X)

φ(X)−g(X) (−1)j 3M(X) = qj(θ)hj(x) =

. ddX g(X) 3 d
dX log

(
q−1
j (X)

)
(−1)j

d
dx q

−1
j (X)

q−1
j (θ)

1 4, 9 - 1 exp(−x) exp(−x) f3(x, θ) =

 exp−(x− θ);
a < θ < x < b,

0, otherwise.
pdf of negative exponential

distribution

1 5, 10 − c
x

x−c

c x−c−1 f4(x, θ) =


cθc

xc+1 ;
a < θ < x < b,

0, otherwise.
pdf of Pareto distribution

2 1, 6, 11 - 1 c
x

xc

c f5(x, θ) =

 cθ−cxc−1;
a < x < θ < b,

0, otherwise.
pdf of power function

distribution

2 2, 7, 12 1
x x 1 f6(x, θ) =


1
θ ;

a < x < θ < b,
0, otherwise.

pdf of uniform
distribution

2 3, 8, 13 α+1
x

xα+1

xα+1 xα+1 f7(x, θ) =


α+1
θα+1x

α;
a < x < θ < b,

0, otherwise.
pdf of generalize uniform

distribution
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