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Some characterization results based on conditional expectation of
dual generalized order statistics
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Abstract. In this paper, a general form of continuous probability distributions F (x) = a(h(x))−c

x ∈ (α, β) has been characterized through conditional expectation of p − th power of difference of two
dual generalized order statistics. Further, some deductions and related results are also discussed.

1. Introduction

Kamps (1995) introduced the concept of generalized order statistics (gos) to unify several models of
ascendingly ordered random variables, e.g. upper order statistics, k-record values, progressively Type-II
censored order statistics, Pfeifer records and sequential order statistics. These models can be effectively
applied in reliability theory and survival analysis. However, random variables that are decreasingly ordered
cannot be comprised into this framework. Further, this model is inappropriate to study, e.g. reversed ordered
order statistic and lower record values models. Based on the gos, Burkschat et al. (2003) introduced the
concept of the dual generalized order statistics (dgos) that enables a common approach to study descendingly
ordered random variables like reversed ordered order statistics and lower record values.
Let n ≥ 2 be a given integer and m̃ = (m1,m2, . . . ,mn−1) ∈ <n−1, k > 0 be the parameters such that

γi = k + n− i+

n−1∑
j=i

mj > 0 for 1 ≤ i ≤ n− 1.

The random variables Xd(1, n, m̃, k), Xd(2, n, m̃, k), . . . , Xd(n, n, m̃, k) are said to be dual generalized order
statistics from an absolutely continuous distribution function df F () with the probability density function
pdf f(), if their joint density function is of the form

fXd(1,n,m̃,k),...,Xd(n,n,m̃,k)(x1, x2, . . . , xn)

= k

n−1∏
j=1

γj

(n−1∏
i=1

[
F (xi)

]mi
f(xi)

)[
F (xn)

]k−1
f(xn) (1)
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for F−1(1) > x1 ≥ x2 ≥ . . . ≥ xn > F−1(0).

Here we may consider two cases:

Case I: γi 6= γj ; i 6= j = 1, 2, . . . , n− 1.

In view of (1) the pdf of r − th dual generalized order statistics Xd(r, n, m̃, k) is

fXd(r,n,m̃,k)(x) = Cr−1f(x)

r∑
i=1

ai(r)
[
F (x)

]γi−1
(2)

and the joint pdf of Xd(r, n, m̃, k) and Xd(s, n, m̃, k), 1 ≤ r < s ≤ n is

fXd(r,n,m̃,k),Xd(s,n,m̃,k)(x, y) = Cs−1

(
s∑

i=r+1

a
(r)
i (s)

[
F (y)

F (x)

]γi)

×

(
r∑
i=1

ai(r)
[
F (x)

]γi) f(x)

F (x)

f(y)

F (y)
, α ≤ y < x ≤ β. (3)

The conditional pdf of Xd(s, n, m̃, k) given Xd(r, n, m̃, k) = x, 1 ≤ r < s ≤ n in view of (2) and (3) is

fXd(s,n,m̃,k)|Xd(r,n,m̃,k)(y|x) =
Cs−1
Cr−1

s∑
i=r+1

a
(r)
i (s)

[F (y)]γi−1

[F (x)]γi
f(y), x > y. (4)

where,

Cr−1 =

r∏
i=1

γi, γi = k + n− i+

n−1∑
j=i

mj > 0,

ai(r) =

r∏
j=1

j 6=i

1

(γj − γi)
, γi 6= γj , 1 ≤ i ≤ r ≤ n

and

a
(r)
i (s) =

s∏
j=r+1

j 6=i

1

(γj − γi)
, γi 6= γj , r + 1 ≤ i ≤ s ≤ n.

Case II: mi = m (say); i = 1, 2, . . . , n− 1.

The pdf of r − th of Xd(r, n,m, k) is

fXd(r,n,m,k)(x) =
Cr−1

(r − 1)!

[
F (x)

]γr−1
f(x) gr−1m

(
F (x)

)
(5)

and the joint pdf of Xd(r, n,m, k) and Xd(s, n,m, k), 1 ≤ r < s ≤ n is

fXd(r,n,m,k),Xd(s,n,m,k)(x, y) =
Cs−1

(r − 1)!(s− r − 1)!
[F (x)]mf(x) gr−1m

(
F (x)

)
×[hm

(
F (y)

)
− hm

(
F (x)

)
]s−r−1[F (y)]γs−1f(y), α ≤ y < x ≤ β. (6)
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The conditional pdf of Xd(s, n,m, k) given Xd(r, n,m, k) = x, 1 ≤ r < s ≤ n in view of (5) and (6) is

fXd(s,n,m,k)|Xd(r,n,m,k)(y|x) =
Cs−1

Cr−1(s− r − 1)!(m+ 1)s−r−1
[F (y)]γs−1

[F (x)]γr+1

×
[
[F (x)]m+1 − [F (y)]m+1

]s−r−1
f(y), x > y. (7)

where,

hm(x) =

−
1

m+ 1
xm+1 , m 6= −1

− log x , m = −1

and gm(x) = hm(x)− hm(1), x ∈ [0, 1).

If m = 0 and k = 1, then Xd(r, n,m, k) reduces to the (n − r + 1) − th lower order statistic, Xn−r+1:n

from the sample X1, X2, . . . , Xn [David and Nagaraja (2003)]. If m = −1 and k = 1, then Xd(r, n,m, k)
is the r − th lower record value from an infinite sequence of independent and identically distributed (iid)
random variables (rv) [Ahsanullah (1995)].

The characterization of probability distributions through conditional expectation of order statistics and
record values have been seen among others are Nagraja (1977, 1988), Wu and Ouyang (1996), Franco and
Ruiz (1995, 1996, 1997), López-Blázquez and Moreno-Rebello (1997), Wesolowski and Ahsanullah (1997),
Dembińska and Wesolowski (1998, 2000), Wu and Lee (2001), Raqab (2002), Lee (2003), Athar et al. (2003),
Khan and Athar (2004), Wu (2004), Noor and Athar (2014), Athar and Akhter (2015) and references therein.

Khan and Abu-Salih (1989) characterized some general forms of distributions through conditional expec-
tation of order statistics fixing adjacent order statistics. Khan and Abouammoh (2000) extended the result
of Khan and Abu-Salih (1989) and characterized the distributions when the conditioning is not adjacent.
Khan et al. (2006) established characterizing relationships for the distributions through gos and character-
ized several distributions through conditional expectation of function of gos. Further, Khan et al. (2010)
characterized several distributions through conditional expectation of function of dgos.

For various developments on characterization dealing with gos and dgos one may refer to Keseling
(1999), Bieniek and Szynal (2003), Ahsanullah (2004), Khan and Alzaid (2004), Mbah and Ahsanullah
(2007), Bieniek (2007, 2009), Samuel (2008), Khan et al. (2012), Noor et al. (2014, 2015) and references
therein.

2. Characterization theorems

Theorem 2.1: Let Xd(i, n, m̃, k), 1 ≤ i ≤ n, be dual generalized order statistics based on absolutely
continuous df F (x) and pdf f(x) over the support (α, β), where α and β may be finite or infinite, then for
1≤ r < s ≤n,

E [{h(Xd(s, n, m̃, k))− h(Xd(r, n, m̃, k))}p|Xd(r, n, m̃, k) = x] = ξr,s,p(x)

= a∗(h(x))p (8)

if and only if

F (x) = a(h(x))−c, a 6= 0, (9)

where

a∗ =

p∑
j=0

(−1)j+p
(
p

j

) s∏
i=r+1

(
cγi

cγi − j

)
, cγi 6= j
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and h(x) is a monotonic and differentiable function of x and p is a positive integer.

Proof: To prove the necessary part, we have

E [{h(Xd(s, n, m̃, k))− h(Xd(r, n, m̃, k))}p|Xd(r, n, m̃, k) = x]

=
Cs−1
Cr−1

∫ x

α

(h(y)− h(x))p
s∑

i=r+1

a
(r)
i (s)

[
F (y)

F (x)

]γi−1 f(y)

F (x)
dy. (10)

Let

t =

[
F (y)

F (x)

]
, which implies (h(y)− h(x))p = (−1)p(h(x))p

(
1− t−1/c

)p
.

Then the right hand side of (10) reduces to

E [{h(Xd(s, n, m̃, k))− h(Xd(r, n, m̃, k))}p|Xd(r, n, m̃, k) = x]

=
Cs−1
Cr−1

s∑
i=r+1

a
(r)
i (s)

∫ 1

0

(−1)p(h(x))p (1− t−1/c)p tγi−1dt

=
Cs−1
Cr−1

(h(x))p
s∑

i=r+1

a
(r)
i (s)

 p∑
j=0

(−1)j+p
(
p

j

)∫ 1

0

tγi−
j
c−1dt


= (h(x))p

p∑
j=0

(−1)j+p
(
p

j

)(
Cs−1
Cr−1

s∑
i=r+1

a
(r)
i (s)

(
c

cγi − j

))
.

This proves the necessary part.

To prove sufficiency part, let

E [{h(Xd(s, n, m̃, k))− h(Xd(r, n, m̃, k))}p|Xd(r, n, m̃, k) = x] = ξr,s,p(x).

Therefore,

Cs−1
Cr−1

∫ x

α

(h(y)− h(x))p
s∑

i=r+1

a
(r)
i (s)

[F (y)]γi−1

[F (x)]γi
f(y)dy = ξr,s,p(x).

Differentiating both sides w.r.t. x, we get

−ph′(x)
Cs−1
Cr−1

∫ x

α

(h(y)− h(x))p−1
s∑

i=r+1

a
(r)
i (s)

[F (y)]γi−1

[F (x)]γi
f(y)dy

−Cs−1
Cr−1

∫ x

α

(h(y)− h(x))p
s∑

i=r+1

γi a
(r)
i (s)

[F (y)]γi−1

[F (x)]γi
f(x)

F (x)
f(y)dy = ξ′r,s,p(x),

or,

−ph′(x)ξr,s,p−1(x)− Cs−1
Cr−1

∫ x

α

(h(y)− h(x))p
s∑

i=r+1

γi a
(r)
i (s)

[F (y)]γi−1

[F (x)]γi
f(x)

F (x)
f(y)dy = ξ′r,s,p(x).
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Since,

a
(r+1)
i (s) = (γr+1 − γi)a(r)i (s) and Cr = γr+1Cr−1.

Therefore, we have

−γr+1
Cs−1
Cr−1

f(x)

F (x)

∫ x

α

(h(y)− h(x))p
s∑

i=r+1

a
(r)
i (s)

[F (y)]γi−1

[F (x)]γi
f(y)dy

+γr+1
Cs−1
Cr

f(x)

F (x)

∫ x

α

(h(y)− h(x))p
s∑

i=r+2

a
(r+1)
i (s)

[F (y)]γi−1

[F (x)]γi
f(y)dy

= ξ′r,s,p(x) + ph′(x)ξr,s,p−1(x). (11)

Rearranging the terms of (11), we get

f(x)

F (x)
= − 1

γr+1

ξ′r,s,p(x) + ph′(x)ξr,s,p−1(x)

[ξr,s,p(x)− ξr+1,s,p(x)]
. (12)

Now consider

ξ′r,s,p(x) + p h′(x)ξr,s,p−1(x)

= p h′(x)(h(x))p−1
p∑
j=0

(−1)j+p
(
p

j

) s∏
i=r+1

(
cγi

cγi − j

)

+p h′(x)(h(x))p−1
p−1∑
j=0

(−1)j+p−1
(
p− 1

j

) s∏
i=r+1

(
cγi

cγi − j

)

= p h′(x)(h(x))p−1

 p∑
j=0

(−1)j+p
(
p

j

) s∏
i=r+1

(
cγi

cγi − j

)

−
p−1∑
j=0

(−1)j+p
(
p

j

)
(p− j)
p

s∏
i=r+1

(
cγi

cγi − j

)
= h′(x)(h(x))p−1

 p∑
j=0

(−1)j+p
(
p

j

)
j

s∏
i=r+1

(
cγi

cγi − j

) (13)

and

ξr,s,p(x)− ξr+1,s,p(x)

= (h(x))p

 p∑
j=0

(−1)j+p
(
p

j

) s∏
i=r+1

(
cγi

cγi − j

)
−

p∑
j=0

(−1)j+p
(
p

j

) s∏
i=r+2

(
cγi

cγi − j

)
= (h(x))p

 p∑
j=0

(−1)j+p
(
p

j

) s∏
i=r+2

(
cγi

cγi − j

)(
cγr+1

cγr+1 − j
− 1

)
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= (h(x))p

 1

cγr+1

p∑
j=0

(−1)j+p
(
p

j

)
j

s∏
i=r+1

(
cγi

cγi − j

) . (14)

Therefore in view of (12), we get

f(x)

F (x)
= − 1

γr+1

h′(x)(h(x))p−1

(h(x))p

[∑p
j=0(−1)j+p

(
p
j

)
j
∏s
i=r+1

(
cγi
cγi−j

)]
[

1
cγr+1

∑p
j=0(−1)j+p

(
p
j

)
j
∏s
i=r+1

(
cγi
cγi−j

)]
= −c h

′(x)

h(x)
.

Implying that

F (x) = a(h(x))−c.

Similarly, the characterization result for case II may be obtained on the lines of Theorem 2.1.
Corollary 2.1: Under the condition as stated in Theorem 2.1,

E [h(Xd(s, n, m̃, k))|Xd(r, n, m̃, k) = x] = h(x)
s∏

i=r+1

(
cγi

cγi − 1

)
, cγi 6= 1, (15)

and consequently

E [h(Xd(r + 1, n, m̃, k))|Xd(r, n, m̃, k) = x] = h(x)

(
cγr+1

cγr+1 − 1

)
, cγr+1 6= 1 (16)

if and only if

F (x) = a(h(x))−c, a 6= 0,

where h(x) is a monotonic and differentiable function of x.
Proof: Expression (15) can be proved in view of Theorem 2.1 at p = 1 and (16) can be obtained at

s = r + 1 in (15).
Remark 2.1: Let mi = m = 0, i = 1, 2, . . . , n − 1 and k = 1, then, characterization result for lower

order statistics is given as

E[{h(Xn−s+1:n)− h(Xn−r+1:n)}p|Xn−r+1:n = x] = b∗(h(x))p

if and only if

F (x) = a(h(x))−c, a 6= 0,

where

b∗ =

p∑
j=0

(−1)j+p
(
p

j

) s∏
i=r+1

(
c (n− i+ 1)

c (n− i+ 1)− j

)
, c (n− i+ 1) 6= j.

Remark 2.2: At m = −1 and k = 1, the characterization result for lower record will be

E[{h(XL(s))− h(XL(r))}p|XL(r) = x] = c∗(h(x))p

if and only if

F (x) = a(h(x))−c, a 6= 0,

where

c∗ =

p∑
i=0

(−1)i+p
(
p

i

)(
c

c− i

)s−r
, c 6= i.
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3. Examples

(i) Power function distribution

F (x) = xν , 0 < x ≤ 1, ν > 0.

Then F (x) is given by (9) with a = 1, c = −ν and h(x) = x,

(ii) Inverse Power distribution

F (x) =

(
x− α
β − α

)θ
, α < x < β, θ > 0, α, β ∈ R, α < β.

Then F (x) is given by (9) with a = 1, c = −θ and h(x) =
(x− α
β − α

)
.

(iii) Reflected exponential distribution

F (x) = eλ(x−µ), −∞ < x < µ, λ > 0.

Then F (x) is given by (9) with a = 1, c = −1 and h(x) = eλ(x−µ).

(iv) Inverse Weibull distribution

F (x) = e−θx
−ν
, 0 < x <∞, θ, ν > 0.

Then F (x) is given by (9) with a = 1, c = θ and h(x) = ex
−ν
.

(v) Inverse exponential distribution

F (x) = e−
θ
x , x > 0, θ > 0.

Then F (x) is given by (9) with a = 1, c = θ and h(x) = e
1
x .

(vi) Gumbel distribution

F (x) = e−e
−x
, −∞ < x <∞.

Then F (x) is given by (9) with a = 1, c = 1 and h(x) = ee
−x
.

(vii) Burr type X distribution

F (x) =
(
1− e−x

2)k
, 0 < x <∞, k > 0.

Then F (x) is given by (9) with a = 1, c = −k
q

and h(x) =
(
1− e−x

2)q
, q 6= 0.

Similarly, characterization results for other distributions may be obtained with proper choice of a and
h(x). One may refer to Khan et al. (2007).
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[10] Dembińska, A. and Wesolowski, J. (1998): Linearity of regression for non-adjacent order statistics. Metrika, 48, 215-222.
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