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moments of progressive type-II right censored order statistics

from Frechet distribution
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Abstract. In this paper, we have obtained L-moments and TL-moments of Frechet distribution and
used them to find the L-moments and TL-moments estimators of the parameters θ and λ of the Frechet
distribution. Also we have obtained recurrence relations satisfied by the single and product moments
of progressive Type-II right censored order statistics from Frechet distribution. This will enable one to
evaluate the single and product moments in a recursive way.

1. Introduction

Maurice Fréchet (1927) was a French mathematician who had identified one possible limit distribution for
the largest order statistic which refers extreme value distribution. The Fréchet distribution is also known as
the Extreme Value Type II distribution or Fréchet model. Also, it is one of the probability distributions used
to model extreme events (see Kotz and Nadarajah (2000), Fisher and Tippett (1928) and Gumbel (1958)).
The extreme value distribution which has importance in risk management, finance, insurance, economics,
hydrology, material sciences, telecommunications, and many other industries dealing with extreme events
as a suitable model to represent phenomena with usually large maximum observations.

The probability density function (pdf) of Fréchet distribution is given by (see Fig. 1)

f(x) =
(x
λ

)−θ−1( θ
λ

)
exp

{
−
(x
λ

)−θ}
, x > 0, θ > 0, λ > 0, (1)

where θ is the shape parameter (θ > 0), and λ is the scale parameter (λ > 0). This distribution is bounded
on the lower side (x > 0) and has a heavy upper tail. The cumulative distribution function (cdf) is given by

F (x) = exp
{
−
(x
λ

)−θ}
, x > 0, θ > 0, λ > 0. (2)

The mean, variance, skewness and kurtosis of the 2-parameter Fréchet distribution, as defined in (1), are
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given by, respectively,
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(
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Figure 1: Pdf of Fréchet Distribution

.
From equations (1) and (2), one can observe that the characterizing differential equation for Fréchet

distribution is given by(λθ
θ

)
f(x) = x−θ−1[1− (1− F (x))]. (3)

In this paper we have derived L-moments and TL-moments of Fréchet distribution. We have also established
several recurrence relations satisfied by the single and product moments of progressive Type-II right censored
order statistics from Fréchet distribution defined in (1), which will enable one to compute the single and the
product moments in a recursive manner.

2. L-moments and TL-moments

It may be mentioned that Hosking (1990) introduced the L-moments as a linear combination of probabi-
lity weighted moments. Similar to ordinary moments, L-moments can also be used for parameter estimation,
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interval estimation and hypothesis testing. Hosking has shown that first four L-moments of a distribution
measure, respectively, the average, dispersion, symmetry and tail weight (or peakedness) of the distribution.
L-moments have turned out to be a popular tool in parametric estimation and distribution identification
problems in different scientific areas such as hydrology in the estimation of flood frequency, etc. (see e.g.
Hosking (1990), Stedinger et al. (1993), Hosking and Wallis (1997)). In comparison to the conventional
moments, L-moments have lower sample variances and are more robust against outliers. For example, L1

is the same as the population mean, is defined in terms of a conceptual sample of size r = 1, while L2

is an alternative to the population standard deviation , is defined in terms of a conceptual sample of size
r = 2. Similarly, the L-moments L3 and L4 are alternatives to the un-scaled measures of skewness and
kurtosis µ3 and µ4, respectively (see Sillitto (1969)). Elamir and Seheult (2003) introduced an extension
of L-moments and called them TL-moments (trimmed L-moments). TL-moments are more robust than
L-moments and exist even if the distribution does not have a mean, for example the TL-moments exist
for Cauchy distribution (see Abdul-Moniem and Selim (2009) and Shabri et al. (2011)). Abdul-Moniem
(2007) derived L-moments and TL-moments for the exponential distribution. Similar work has been done
by Shahzad and Asghar (2013) for Dagum distribution.

2.1. Methodology for L-moments for Fréchet Distribution

Let X1, X2, . . . , Xn be a random sample from Fréchet distribution defined in (1) and X1:n ≤ X2:n ≤
. . . ≤ Xn:n denote the corresponding order statistics. Then the rth L-moment defined by Hosking (1990) is
as follows:

Lr =
1

r

r−1∑
k=0

(−1)k
(
r − 1

k

)
E(Xr−k:r), (4)

where

E(Xi:r) =
r!

(i− 1)!(r − i)!

∫ ∞
0

x[F (x)]i−1[1− F (x)]r−if(x)dx.

For r = 1, 2, 3, 4 in (4), the first four L-moments can be derived as follows:

L1 = E(X1:1) (5)

L2 =
1

2
E(X2:2 −X1:2) (6)

L3 =
1

3
E(X3:3 − 2X2:3 +X1:3) (7)

L4 =
1

4
E(X4:4 − 3X3:4 + 3X2:4 −X1:4). (8)

The L-moments of the Fréchet distribution are obtained by utilizing (5) - (8) as given below:

L1 = λ Γ(1− 1

θ
) (9)

L2 = λ Γ(1− 1

θ
)
[ 2

(2)1−(1/θ)
− 1
]

(10)

L3 = λ Γ(1− 1

θ
)
[ 6

(3)1−(1/θ)
− 6

(2)1−(1/θ)
+ 1
]
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L4 = λ Γ(1− 1

θ
)
[ 20

(4)1−(1/θ)
− 30

(3)1−(1/θ)
+

12

(2)1−(1/θ)
− 1
]
.

In particular, L1, L2, L3 and L4 are population measures of the location, scale, skewness and kurtosis,
respectively.

The L-skewness τ3 and L-kurtosis τ4 of Fréchet distribution will be given by (cf. Shabri et al., 2011)

τ3 =
L3

L2
=

6
(3)1−(1/θ) − 6

(2)1−(1/θ) + 1

2
(2)1−(1/θ) − 1

and

τ4 =
L4

L2
=

20
(4)1−(1/θ) − 30

(3)1−(1/θ) + 12
(2)1−(1/θ) − 1

2
(2)1−(1/θ) − 1

.

2.2. Sample L-moments and L-Moment estimators

The L-moments can be estimated from the sample order statistics as follows (see Asquith, 2007):

lr =
1

r
(
n
r

) n∑
i=1

r−1∑
k=0

(−1)k
(
r − 1

k

)(
i− 1

r − 1− k

)(
n− i
k

)
Xi:n. (11)

From equations (9), (10) and (11) the L-moment estimators for parameters θ and λ of Fréchet distribution
will be given as

l1 =
1

n

n∑
i=1

Xi:n = X̄ = λ Γ(1− 1

θ
),

l2 =
2

n(n− 1)

n∑
i=1

(i− 1)Xi:n − X̄ = X̄
[ 2

(2)1−(1/θ)
− 1
]
.

By solving, we get

θ̂ =
log 2

log
[
l2
X̄

+ 1
] , X̄ 6= 0,

and

λ̂ =
X̄

Γ
(

1− 1
θ̂

) .
2.3. Methodology for TL-moments for Fréchet Distribution

Elamir and Seheult (2003) introduced some robust modification of Eq. (4) (and called it as TL-moments)
in which E(Xr−k:r) is replaced by E(Xr+t1−k:r+t1+t2) for each r where t1 smallest and t2 largest are trimmed
from the conceptual sample. The following formula gives the rth TL-moment (cf. Elamir and Seheult, 2003):

L(t1,t2)
r =

1

r

r−1∑
k=0

(−1)k
(
r − 1

k

)
E(Xr+t1−k:r+t1+t2). (12)

One can observe that TL-moments are more robust than L-moments and exist even if the distribution does
not have a mean, for example the TL-moments exist for Cauchy distribution (cf. Abdul-Moniem and Selim,
2009). TL-moments reduce to L-moments when t1 = 0 and t2 = 0.
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TL-moments equation (12) with t1 = 1 and t2 = 1 is defined as L
(1,1)
r = L

(1)
r :

L(1)
r =

1

r

r−1∑
k=0

(−1)k
(
r − 1

k

)
E(Xr+1−k:r+2). (13)

For r = 1, 2, 3, 4 in (13), the first four L-moments can be derived as follow:

L
(1)
1 = E(X2:3) (14)

L
(1)
2 =

1

2
E(X3:4 −X2:4) (15)

L
(1)
3 =

1

3
E(X4:5 − 2X3:5 +X2:5) (16)

L
(1)
4 =

1

4
E(X5:6 − 3X4:6 + 3X3:6 −X2:6). (17)

The TL-moments of the Fréchet distribution are obtained by utilizing (14) - (17) and are given below:

L
(1)
1 = 6λ Γ(1− 1

θ
)
[ 1

(2)1−(1/θ)
− 1

(3)1−(1/θ)

]
(18)

L
(1)
2 = 6λ Γ(1− 1

θ
)
[
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(4)1−(1/θ)
+

3

(3)1−(1/θ)
− 1
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]
(19)

L
(1)
3 =
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θ
)
[
− 20
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− 12

(3)1−(1/θ)
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2
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]

L
(1)
4 =

30

4
λ Γ(1− 1

θ
)
[
− 14

(6)1−(1/θ)
+

35
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.

The TL-skewness τ
(1)
3 and TL-kurtosis τ

(1)
4 of the Fréchet distribution will be

τ
(1)
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L
(1)
3

L
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2

=
5

9

[
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(5)1−(1/θ) + 20
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]
[
− 2
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] ,

τ
(1)
4 =

L
(1)
4

L
(1)
2

=
5

4

[
− 14

(6)1−(1/θ) + 35
(5)1−(1/θ) − 30
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[
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] .

2.4. Sample TL-moments and TL-moment estimators

The TL-moments can be estimated from a sample as linear combination of order statistics. Elamir and
Seheult (2003) presented the following estimator for TL-moments:

l(t1,t2)
r =

1

r
(

n
r+t1+t2

) n−t2∑
i=t1+1

r−1∑
k=0

(−1)k
(
r − 1

k

)(
i− 1

r + t1 − k − 1

)(
n− i
k + t2

)
Xi:n. (20)
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If we take t1 = t2 = t in Eq. (20), we get l
(t,t)
r ≡ l(t)r :

l(t)r =
1

r
(

n
r+2t

) n−t∑
i=t+1

r−1∑
k=0

(−1)k
(
r − 1

k

)(
i− 1

r + t− k − 1

)(
n− i
k + t

)
Xi:n. (21)

From Eqs. (18), (19) and (21), for t = 1 and r = 1, 2, the TL-moment estimators for parameters λ and θ

can be obtained and are given by l
(1,1)
r ≡ l(1)

r , r = 1, 2 :

l
(1)
1 =

6

n(n− 1)(n− 2)

n−1∑
i=2

(i− 1)(n− i)Xi:n = 6λ Γ(1− 1

θ
)
[ 1

(2)1−(1/θ)
− 1

(3)1−(1/θ)

]
(22)

and

l
(1)
2 =

12

n(n− 1)(n− 2)(n− 3)

( n−1∑
i=3

(
i− 1

2

)(
n− i

1

)
Xi:n −

n−2∑
i=2

(
i− 1

1

)(
n− i

2

)
Xi:n

)
= 6λ Γ(1− 1

θ
)
[
− 2

(4)1−(1/θ)
+

3

(3)1−(1/θ)
− 1

(2)1−(1/θ)

]
. (23)

By solving (22) and (23) the TL-moment estimators for the parameters λ and θ of Fréchet distribution
can be obtained.

3. Progressive Type-II Right Censored Order Statistics

Progressive censoring sampling scheme is very useful in reliability and life time studies. Its allowance
for removal of live units from the test at various stages during the experiment will potentially save the
experimenter cost while still allowing for the observation of some extreme data. Numerous authors have
discussed inference problems for a wide range of distributions under this sampling scheme. See, for example,
Aggarwala and Balakrishnan (1996, 1998), Balakrishnan and Aggarwala (2000), Cohen (1963, 1976, 1991),
Mann (1969, 1971), Balakrishnan and Sandhu (1995), Balakrishnan, Gupta and Panchapakesan (1995) and
Saran and Pushkarna (2001).

Suppose n independent items are put on test with continuous identically distributed failure times
X1, X2, . . . , Xn. Suppose further that a censoring scheme (R1, R2, . . . , Rm) is fixed such that immediately
following the first failure, R1 surviving items are removed from the experiment at random; immediately
following the first failure after that point; i.e., after second observed failure, R2 surviving items are removed
from the experiment at random; this process continues until, at the mth observed failure, Rm items are
removed from the test at random. Thus, in this type of sampling, we observe in all m failures and

∑m
i=1Ri

items are progressively censored so that n = m+
∑m
i=1Ri.

Let X
(R1,R2,...,Rm)
1:m:n < X

(R1,R2,...,Rm)
2:m:n < . . . < X

(R1,R2,...,Rm)
m:m:n be the m ordered observed failure times in

a sample of size n from the Fréchet distribution defined in (1) under progressive Type-II right censoring

scheme (R1, R2, . . . , Rm). Then the joint pdf of X
(R1,R2,...,Rm)
1:m:n , X

(R1,R2,...,Rm)
2:m:n , . . . , X

(R1,R2,...,Rm)
m:m:n is given

by (Balakrishnan and Sandhu, 1995)

f1,2,...,m:m:n(x1, x2, . . . , xm) = A(n,m− 1)

m∏
i=1

f(xi)[1− F (xi)]
Ri , 0 ≤ x1 < x2 < · · · < xm <∞, (24)

where A(n,m−1) =
∏m−1
i=0 (n−Si−i) with S0 = 0 and Si = R1 +R2 + · · ·+Ri =

∑i
k=1Rk for 1 ≤ i ≤ m−1.

Here all the factors in A(n,m− 1) are positive integers. Similarly, for convenience in notation, let us define
for q = 0, 1, . . . , p− 1 ,

A(p, q) = p(p−R1 − 1)(p−R1 −R2 − 2) . . . (p−R1 −R2 − · · · −Rq − q)
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with all the factors being positive integers. Thus, for 1 ≤ r ≤ m, we have

µ(R1,R2,...,Rm)(k)

r:m:n = E
[
X(R1,R2,...,Rm)
r:m:n

]k
= A(n,m−1)

∫
0<x1<

∫
· · ·
∫

x2<...<xm<∞

xkr

m∏
i=1

f(xi)[1−F (xi)]
Ridxi. (25)

In Subsections 3.1 and 3.2, utilizing the characterizing differential equation (3), we will derive recurrence
relations for the single and the product moments of progressive Type-II right censored order statistics from
Fréchet distribution.

3.1. Single Moments

Theorem 3.1. For 2 ≤ m ≤ n− 1 and k > θ > 0,

(k − θ)λ
θ

θ
µ

(R1,R2,...,Rm)(k)

1:m:n = a1µ
(R1+R2,R3,...,Rm)(k−θ)

2:m−1:n−1 + a2R1µ
(R1−1,R2,...,Rm)(k−θ)

1:m:n−1

−a3µ
(R1+R2+1,R3,...,Rm)(k−θ)

2:m−1:n − (R1 + 1)µ
(R1,R2,...,Rm)(k−θ)

1:m:n , (26)

where a1 = c
(n−1)

∏m−1
i=2 [n−Si−i]

, a2 = c
(n−1)

∏m−1
i=1 [n−Si−i]

, a3 = (n− S1 − 1)

and c = n(n− S1 − 1)(n− S2 − 2) . . . (n− Sm−1 − (m− 1)).

And, for m = 1, n = 1, 2, . . . and k > θ > 0,

(k − θ)λ
θ

θ
µ

(n−1)(k)

1:1:n = (n− 1)µ
(n−2)(k−θ)

1:1:n−1 − nµ
(n−1)(k−θ)

1:1:n . (27)

Proof. Relations in (26) and (27) may be proved by following exactly the same steps as those in proving
Theorem 3.2, which is presented below.

Theorem 3.2. For 2 ≤ r ≤ m− 1, m ≤ n− 1 and k > θ > 0,

(k − θ)λ
θ

θ
µ(R1,R2,...,Rm)(k)

r:m:n = b1µ
(R1,R2,...,Rr+Rr+1,...,Rm)(k−θ)

r:m−1:n−1 − b2µ(R1,...,Rr−1+Rr,...,Rm)(k−θ)

r−1:m−1:n−1

+b3Rrµ
(R1,R2,...,Rr−1...,Rm)(k−θ)

r:m:n−1 − b4µ(R1,...,Rr+Rr+1+1,...,Rm)(k−θ)

r:m−1:n

+b5µ
(R1,...,Rr−1+Rr+1,...,Rm)(k−θ)

r−1:m−1:n − (Rr + 1)µ(R1,...,...,Rm)(k−θ)

r:m:n (28)

where b1 = c∏r−1
i=0 [(n−1)−Si−i]

∏m−1
t=r+1[n−St−t]

, b2 = c∏r−2
i=0 [(n−1)−Si−i]

∏m−1
t=r [n−St−t]

,

b3 = c∏r−1
i=0 [(n−1)−Si−i]

∏m
t=r[n−St−t]

, b4 = (n− Sr − r) and b5 = (n− Sr−1 − (r − 1)).

Proof. From equation (25), we have

λθ

θ
µ(R1,R2,...,Rm)(k)

r:m:n = A(n,m− 1)
λθ

θ

∫
0<x1<

∫
· · ·
∫

x2<...<xm<∞

xkr

m∏
t=1

f(xt)[1− F (xt)]
Rtdxt

= A(n,m− 1)

∫
0<x1<x2<···<xr−1

∫
· · ·
∫

<xr+1<...<xm<∞

I(xr−1, xr+1)

m∏
t=1,t6=r

f(xt)[1− F (xt)]
Rtdxt, (29)

where

I(xr−1, xr+1) =
λθ

θ

xr+1∫
xr−1

xkrf(xr)[1− F (xr)]
Rrdxr.
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Using equation (3), we get

I(xr−1, xr+1) =

xr+1∫
xr−1

xk−θ−1
r [1− F (xr)]

Rrdxr −
xr+1∫
xr−1

xk−θ−1
r [1− F (xr)]

Rr+1dxr

= E0(xr−1, xr+1)− E1(xr−1, xr+1), (30)

where

Ea(xr−1, xr+1) =

xr+1∫
xr−1

xk−θ−1
r [1− F (xr)]

Rr+adxr, a = 0, 1.

Integrating by parts yields,

Ea(xr−1, xr+1) =
1

k − θ

[
xk−θr+1 [1− F (xr+1)]Rr+a − xk−θr−1 [1− F (xr−1)]Rr+a

+(Rr + a)

xr+1∫
xr−1

xk−θr−1 [1− F (xr−1)]Rr+a−1f(xr)dxr

]
. (31)

Upon substituting for Ea(xr−1, xr+1) for a = 0, 1 from (31) into (30) and then substituting the resultant
expression for I(xr−1, xr+1) in equation (29) and simplifying, it leads to (28).

Proceeding on similar lines, one can derive the following recurrence relation:

Theorem 3.3. For 2 ≤ m ≤ n− 1 and k > θ > 0, m > 1,

(k − θ)λ
θ

θ
µ(R1,R2,...,Rm)(k)

m:m:n = −c1µ(R1,R2,...,Rm−1+Rm)(k−θ)

m−1:m−1:n−1 + c2Rmµ
(R1,...,Rm−1)(k−θ)

m:m:n−1

+c3µ
(R1,...,Rm−1+Rm+1)(k−θ)

m−1:m−1:n + (Rm + 1)µ(R1,...,Rm)(k−θ)

m:m:n , (32)

where
c1 = c∏m−2

i=0 [(n−1)−Si−i][n−Sm−m]
, c2 = c∏m−1

i=0 [(n−1)−Si−i][n−Sm]

and c3 = [n− Sm−1 − (m− 1)].

3.2. Product Moments

To obtain the recurrence relations for the product moments of progressive Type-II right censored order
statistics from Fréchet distribution, we have from equation (24), for 1 ≤ r < s ≤ m,

µ(R1,R2,...,Rm)(i,j)

r,s:m:n = E
[{
X(R1,R2,...,Rm)
r:m:n

}i{
X(R1,R2,...,Rm)
s:m:n

}j]
= A(n,m− 1)

∫
0<x1<

∫
· · ·
∫

x2<...<xm<∞

xirx
j
s

m∏
t=1

f(xt)[1− F (xt)]
Rtdxt. (33)

Theorem 3.4. For m ≤ n− 1,

(j − θ)λ
θ

θ
µ

(R1,R2,...,Rm)(j,k)

1,2:m:n = d1µ
(R1+R2,R3,...,Rm)(j−θ,k)

2:m−1:n−1 + d2µ
(R1−1,R2,...,Rm)(j−θ,k)

1,2:m:n−1

−d3µ
(R1+R2+1,R3,...,Rm)(j−θ,k)

2:m−1:n − (R1 + 1)µ
(R1,...,Rm)(j−θ,k)

1,2:m−1:n , (34)
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where d1 = c
(n−1)

∏m−1
i=2 [n−Si−i]

, d2 = c
(n−1)

∏m−1
i=1 [n−Si−i]

and d3 = (n− S1 − 1).

Proof. Relation (34) may be proved by following exactly the same steps as those in proving Theorem 3.5,
which is presented next.

Theorem 3.5. For 1 ≤ r < s < m and m ≤ n− 1,

(j − θ)λ
θ

θ
µ(R1,R2,...,Rm)(j,k)

r,s:m:n = e1µ
(R1,R2,...,Rr+Rr+1,...,Rm)(j−θ,k)

r,s:m−1:n−1 − e2µ
(R1,R2,...,Rr−1+Rr,...,Rm)(j−θ,k)

r−1,s:m−1:n−1

+e3Rrµ
(R1,R2,...,Rr−1,Rr−1,...,Rm)(j−θ,k)

r,s:m:n−1 − e4µ
(R1,R2,...,Rr+Rr+1+1,...,Rm)(j−θ,k)

r,s:m−1:n

+e5µ
(R1,R2,...,Rr−1+Rr+1,...,Rm)(j−θ,k)

r−1,s:m−1:n − (Rr + 1)µ(R1,R2,...,Rm)(j−θ,k)

r,s:m:n

(35)

where e1 = c∏r−1
i=0 [(n−1)−Si−i]

∏m−1
t=r+1[n−St−t]

, e2 = c∏r−2
i=0 [(n−1)−Si−i]

∏m−1
t=r [n−St−t]

,

e3 = c∏r−1
i=0 [(n−1)−Si−i]

∏m
t=r[n−St−t]

, e4 = (n− Sr − r) and e5 = (n− Sr−1 − (r − 1)).

Proof. From equation (33), we have

λθ

θ
µ(R1,R2,...,Rm)(j,k)

r,s:m:n = A(n,m− 1)
λθ

θ

∫
0<x1<

∫
· · ·
∫

x2<...<xm<∞

xjrx
k
s

m∏
t=1,t6=r

f(xt)[1− F (xt)]
Rtdxt

= A(n,m− 1)

∫
0<x1<x2<···<xr−1

∫
· · ·
∫

<xr+1<...<xm<∞

xksI(xr−1, xr+1)

m∏
t=1,t6=r

f(xt)[1− F (xt)]
Rtdxt, (36)

where

I(xr−1, xr+1) =
λθ

θ

xr+1∫
xr−1

xjr[1− F (xr)]
Rrf(xr)dxr.

Using equation (3), we get

I(xr−1, xr+1) =

xr+1∫
xr−1

xj−θ−1
r [1− F (xr)]

Rrdxr −
xr+1∫
xr−1

xj−θ−1
r [1− F (xr)]

Rr+1dxr. (37)

Consider,

Ea(xr−1, xr+1) =

xr+1∫
xr−1

xj−θ−1
r [1− F (xr)]

Rr+adxr, a = 0, 1.

Integrating by parts yields,

Ea(xr−1, xr+1) =
1

j − θ

[
xj−θr+1[1− F (xr+1)]Rr+a − xj−θr−1[1− F (xr−1)]Rr+a

+(Rr + a)

xr+1∫
xr−1

xj−θr−1[1− F (xr−1)]Rr+a−1f(xr)dxr

]
(38)

Upon substituting for Ea(xr−1, xr+1) for a = 0, 1 from (38) into (37) and then substituting the resultant
expression for I(xr−1, xr+1) in equation (36) and simplifying, it leads to (35).
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Proceeding on similar lines, one can derive the recurrence relations given in the following two theorems.

Theorem 3.6. For 1 ≤ r < s < m and m ≤ n− 1,

(k − θ)λ
θ

θ
µ(R1,R2,...,Rm)(j,k)

r,s:m:n = f1µ
(R1,R2,...,Rs+Rs+1,...,Rm)(j,k−θ)

r,s+1:m−1:n−1 − f2µ
(R1,R2,...,Rr−1+Rr,...,Rm)(j,k−θ)

r,s−1:m−1:n−1

+f3Rsµ
(R1,R2,...,Rs−1,Rs−1,...,Rm)(j,k−θ)

r,s:m:n−1 − f4µ
(R1,R2,...,Rs+Rs+1+1,...,Rm)(j,k−θ)

r,s+1:m−1:n

+f5µ
(R1,R2,...,Rs−1+Rs+1,...,Rm)(j,k−θ)

r,s−1:m−1:n − (Rs + 1)µ(R1,R2,...,Rm)(j,k−θ)

r,s:m:n ,

where
f1 = c∏s−1

i=0 [(n−1)−Si−i]
∏m−1
t=s+1[n−St−t]

, f2 = c∏s−2
i=0 [(n−1)−Si−i]

∏m−1
t=s [n−St−t]

,

f3 = c∏s−1
i=0 [(n−1)−Si−i]

∏m
t=s[n−St−t]

, f4 = (n− Ss − s) and f5 = (n− Ss−1 − (s− 1)).

Theorem 3.7. For m ≤ n− 1,

(k − θ)λ
θ

θ
µ(R1,R2,...,Rm)(j,k)

r,m:m:n = −g1µ
(R1,R2,...,Rm−1+Rm)(j,k−θ)

r,m−1:m−1:n−1 + g2µ
(R1,R2,...,Rm−1,Rm−1)(j,k−θ)

r,m:m:n−1

+g3µ
(R1,R2,...,Rm−1+Rm+1)(j,k−θ)

r,m−1:m−1:n − (Rm + 1)µ(R1,R2,...,Rm)(j,k−θ)

r,m:m:n ,

where
g1 = c∏m−2

i=0 [(n−1)−Si−i][n−Sm−m]
, g2 = c∏m−1

i=0 [(n−1)−Si−i][n−Sm]
, g3 = [n− Sm−1 − (m− 1)].

4. Recursive Algorithm

Utilizing the knowledge of recurrence relations obtained in Sections 3.1 and 3.2, one can calculate single
and product moments of progressive Type-II right censored order statistics from Fréchet distribution, for
the case when the domain of θ is the set of natural numbers. We are giving the algorithm for the case θ = 1
as follows:

Eq. (27) gives the value of µ
(n−1)
1:1:n

(k)
= µ

(k)
1:n ∀ k, n by the knowledge of µ

(n−1)
1:1:n

(1)
∀ n. Now, for m = 2,

we require µ
(n−2)
1:2:n

(1)
∀ n to evaluate µ

(R1,R2)
1:2:n

(k)
for all R1, R2, k and n from eq. (26) in a simple recursive

manner. Similarly, eq. (32) can be used to determine µ
(R1,R2)
2:2:n

(k)
for m = 2, we require the knowledge of

µ
(R1,R2)
2:2:n

(1)
∀ R1, R2 and n ≥ 2. Eq. (28) can now be used to determine µ

(R1,R2,R3)
1:3:n

(k)
by the knowledge of

µ
(R1,R2,R3)
1:3:n

(1)
∀ R1, R2, R3 and n ≥ 3. Similarly, in the same manner we can calculate µ

(R1,R2)
2:3:n

(k)
by the

required knowledge of µ
(R1,R2)
2:3:n

(1)
in an iterative way. A similar algorithm can be written for higher values

of θ.
By utilizing the results of Section 3.2, one can obtain in a recursive manner, all the product moments

for all sample sizes and all censoring schemes from the Fréchet distribution.
Acknowledgements: Authors are grateful to the referee for giving valuable comments which led to an
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