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Abstract. The range and midrange are widely used, particularly in statistical quality control as an
estimator of the dispersion tendency. In fact, the range itself is a very simple measure of dispersion,
gives a quick and easy to estimate indication about the spread of data. The extremal quotient is used
in climatic study, industrial quality control, life testing, small-area variation analysis and the classical
heterogeneity of variance situation. In this paper, sufficient conditions for the weak convergence of the
record range, record midrange, record extremal quotient and record extremal product are obtained. The
classes of non-degenerate limit distribution functions of these statistics are characterized. Illustrative
examples are provided, which lend further support to our theoretical results.

1. Introduction

For several distributions, linear functions of order statistics provide good estimators of location and scale
parameters. The range may be considered as an important linear function of order statistics. It is widely
used, particularly in statistical quality control as an estimator of the dispersion tendency. In fact, the range
itself is a very simple measure of dispersion. So many short-cut tests have been based on this statistic. Also,
the functions such as midrange, product and quotient are important functions of order statistics. Consider a
sequence of independent and identically distributed random variables (rv’s) {Xn : n ≥ 1} with distribution
function (df) F . Let Mn = max{X1, . . . , Xn} and Ln = min{X1, . . . , Xn}. The range is the length of the
smallest interval, which contains all the data. It is defined by rn = Mn − Ln and provides an indication of
statistical dispersion. The limit laws for the range were fully characterized by de Haan (1974). The midrange
point, i.e., the point halfway between the two extremes Ln and Mn, namely defined by vn = 1

2 (Mn + Ln),
is an indicator of the central tendency of the data. The limit laws for the midrange can be obtained from
the work of de Haan (1974). Both range and midrange are not particularly robust for small samples. The
extremal quotient is defined by qn = Mn/Ln (see Galambos and Simoneli, 2004). This statistic is obviously
not affected by a change of scale. Therefore, its use may be of interest in cases where the scale plays no
role, e.g., in climatic study (see Canard, 1946). The extremal quotient has been used in several fields, most
notably in industrial quality control, life testing, small-area variation analysis and the classical heterogeneity
of variance situation. For example, a quality engineer might use this statistic as a basic measurement in
controlling the roundness of a circular component in a production process. Also, Wong and Wong (1979)
used the extremal quotient to test the hypothesis that the population of a sample has an exponential df.
Wong and Wong (1982) used this statistic for testing the shape parameter of the Weibull df. The limit laws
for the extremal quotient were fully characterized by Barakat (1998). The geometric mean is defined by
ρn =

√
|MnLn|. We henceforth call it the geometric range, while we call its square pn = ρ2

n the sample
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extremal product. The latter statistic is often found useful in ranking. When the sample size is large enough
the geometric range may be defined by

ρn =

{ √
MnLn, if 0 ≤ x0 < x0 ≤ ∞, or −∞ ≤ x0 < x0 ≤ 0,√
−MnLn, if −∞ ≤ x0 < 0 < x0 ≤ ∞,

where −∞ ≤ inf{x : F (x) > 0} = x0 < x0 = sup{x : F (x) < 1} ≤ ∞. The limit laws for the geometric
range were fully characterized by Barakat and Nigm (1996).

Record values are found in many situations of daily life as well as in many statistical applications. Often
we are interested in observing new records and in recording them, e.g. Olympic records or world records in
sports. Record values have been introduced by Chandler (1952) in order to model data of extreme weather
conditions. It may also be helpful as a model for successively largest insurance claims in non-life insurance,
for highest water-level or highest temperatures. Record values are also used in reliability theory. To be
precise, record values are defined by means of record times at which successively largest values appear.

The upper record values (or simply a record) can be defined as an observation Xj , such that Xj >
max(X1, . . . , Xj−1). By convention X1 is a record value. The indices at which record values occur are given
by the rv’s Tn = min{j : j > Tn−1, Xj > Xj−1, n > 1} and T1 = 1. Thus, the record value sequence {Rn}
is then defined by Rn = XTn , n ≥ 1. The explicit form of the df of Rn is given by

P (Rn ≤ x) =

{
1− Γn(Q(x)), if n > 1,
F (x), if n = 1,

where Q(x) = − log(1 − F (x)) is the hazard function of the df F (see Arnold et al., 1998). Resnick
(1973) showed that the possible limiting record value distributions of the suitably normalized record R∗n =
c−1
n (Rn − dn), cn > 0, dn ∈ <, are

Hi,β(x) = N (− log(− logGi,β(x))) = N (− log(Vi,β(x))), i = 1, 2, 3,

where N (·) is the standard normal distribution and Gi,β(x) = exp(−(Vi,β(x)) is the well-known limit
distribution of the maximum order statistics, in which the functions Vi,β , i = 1, 2, 3, are defined as

Type I: V1, β(x) =

{
x−β , x > 0,
∞, x ≤ 0,

Type II: V2, β(x) =

{
(−x)β , x ≤ 0,
0, x > 0,

Type III: V3, 0(x) = e−x, ∀x.


.

In this case we say that F is in the domain of record attraction of Hi,β and write F ∈ DR(Hi,β) (i.e.,
F ∈ DR(Hi,β) means that there are suitable normalizing constants cn > 0 and dn for which P (R∗n ≤ x) =
P (c−1

n (Rn − dn) ≤ x) weakly converges to Hi,β).

Remark 1.1. Although, in order that F be attracted to Hi,β , i.e., F ∈ DR(Hi,β), the continuity of the df
F in a left neighborhood of the right extremity x0 is enough (c.f. Arnold et al., 1998), but the continuity
of the underlying df is needed to avoid ties in the records. Therefore, we assume that the underlying df is
continuous.

Throughout this paper, we will assume that F ∈ DR(Hi,β). The following theorem due to Resnick (1973)
(see Arnold et al., 1998) is a basic tool for our study.

Theorem 1.2 (Duality Theorem). If an associated df Fa is defined by Fa = 1 − exp(−
√
Q(x)) and

ΨF (n) = inf{y : F (y) > 1− e−n} = F−1(1− e−n) →n x0, then the following limit implications hold:
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(i) F ∈ DR(H1,β) if and only if Fa ∈ D(G1, β2
). In this case F−1(1) = x0 = ∞ and we may use as

normalizing constants cn = ΨF (n) and dn = 0;

(ii) F ∈ DR(H2,β) if and only if Fa ∈ D(G2, β2
). In this case F−1(1) = x0 is necessarily finite and we

may use as normalizing constants cn = x0 −ΨF (n) and dn = x0;

(iii) F ∈ DR(H3,0) if and only if Fa ∈ D(G3,0) and in this case we may use as normalizing constants
cn = ΨF (n+

√
n)−ΨF (n) and dn = ΨF (n).

Our aim in this paper is to study the asymptotic behavior of the record range rn = Rn−R1 = Rn−X1,
the midrange vn = Rn+R1

2 = Rn+X1

2 , the record extremal quotient qn = Rn
R1

= Rn
X1

and the record extremal
product pn = RnR1 = RnX1. Namely, we derive the possible non-trivial and trivial limit df’s of all suitably
normalized preceding statistics, the trivial limit is defined when the convergence takes place, such that one
of the statistics Rn and R1 = X1 outweighs the other (see de Haan, 1974). This problem is recently tackled
by Barakat et al. (2013) and Barakat et al. (2015), for m-generalized order statistics when m > −1, i.e., the
record values case was excluded from this study. In this paper we will fill this gap.

2. Weak convergence of the record functions

The following theorem fully characterizes the possible limit non-degenerate df’s (trivial and non-trivial)
of the statistics rn, vn, qn and pn.

Theorem 2.1. Let Cn:t > 0 and Dn:t ∈ <, t = r, v, q, p, be suitable normalizing constants. Furthermore,
let r∗n = C−1

n:r(rn −Dn:r), v
∗
n = C−1

n:v(vn −Dn:v), q
∗
n = C−1

n:q(qn −Dn:q) and p∗n = C−1
n:p(pn −Dn:p).

(i) If F ∈ DR(H1,β), then

P (r∗n ≤ r)
w→n H1,β(r) (trivial limit law, since Rn outweighed R1 = X1),

P (v∗n ≤ v)
w→n H1,β(v) (trivial limit law, since Rn outweighed R1 = X1),

P (q∗n ≤ q)
w→n

{
F (0) +

∫∞
0
N (β log qx))dF (x), if q ≥ 0,∫ 0

−∞N (β log qx))dF (x), if q < 0

and

P (p∗n ≤ p)
w→n

{
F (0) +

∫∞
0
N (β log p

x ))dF (x), if p ≥ 0,∫ 0

−∞N (β log p
x ))dF (x), if p < 0,

where “∗”denotes the convolution operator and “ w−→n ”means converges weakly as n→∞. The normalizing

constants can be chosen such as 2Cn:v = Cn:r = Cn:q = Cn:p = cn = ΨF (n) and Dn:v = Dn:r = Dn:q =
Dn:p = dn = 0.
(ii) If (a) F ∈ DR(H2,β), x0 > 0, or (b) F ∈ DR(H3,0), 0 < x0 <∞, then

P (r∗n ≤ r)
w→n 1− F (−x0r), r ≥ 0, (trivial limit law, since R1 = X1 outweighed Rn),

P (v∗n ≤ v)
w→n F (x0v) (trivial limit law, since R1 = X1 outweighed Rn),

P (q∗n ≤ q)
w→n P (

1

X
≤ q + 1) (trivial limit law, since R1 = X1 outweighed Rn),

and

P (p∗n ≤ p)
w→n P (X1 ≤ p+ 1) = F (p+ 1) (trivial limit law, since R1 = X1 outweighed Rn),
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where 2Cn:v = Cn:r = Cn:q = Cn:p = dn and Dn:r = Dn:v = Dn:p = Dn:q = dn.
(iii) (a) If F ∈ DR(H3,0), x0 =∞ and c−1

n = (ΨF (n+
√
n)−ΨF (n))−1 →n K <∞, then

P (r∗n ≤ r)
w→n

{
H3,0(r), if K = 0 (trivial limit),
H3,0(r) ? (1− F (− r

K )), if K > 0,

P (v∗n ≤ v)
w→n

{
H3,0(v), if K = 0 (trivial limit),
H3,0(v) ? F ( vK )), if K > 0,

where 2Cn:v = Cn:r = cn = ΨF (n+
√
n)−ΨF (n) and Dn:r = Dn:v = dn = ΨF (n).

(b) If F ∈ DR(H3,0), x0 =∞ and ΨF (n+
√
n)

ΨF (n)
→n 1, then

P (q∗n ≤ q)
w→n P (

1

X
≤ q + 1) (trivial limit law),

and

P (p∗n ≤ p)
w→n P (X1 ≤ p+ 1) = F (p+ 1) (trivial limit law),

where Cn:q = Cn:p = dn = ΨF (n) and Dn:v = Dn:r = Dn:q = Dn:p = dn.

Proof. First, we notice that the condition x0 > 0, in Part (ii), implies that the scale normalizing constant
2Cn:v = Cn:r = Cn:q = Cn:p = dn will be positive (at least for large n, namely, dn = x0 > 0, in Part (a)
and 2Cn:v = Cn:r = Cn:q = Cn:p = dn = ΨF (n) →n x0 > 0, in Part (b)). Now, it is easy to check the
validity of the representations

r∗n
w
=n

{
R∗n − X1

cn
, if Cn:r = cn, Dn:r = dn,

cnd
−1
n R∗n − X1

dn
, if Cn:r = dn, Dn:r = dn,

(1)

v∗n
w
=n

{
R∗n + X1

cn
, if 2Cn:v = cn, Dn:v = dn,

cn d
−1
n R∗n + X1

dn
, if 2Cn:v = dn, Dn:v = dn,

(2)

q∗n
w
=n

{
R∗n
X1
, if Cn,q = cn, Dn,q = dn = 0,

cnd
−1
n R∗n−(X1−1)

X1
, if Cn,q = dn, Dn,q = dn,

(3)

p∗n
w
=n

{
R∗n X1, if Cn:p = cn, Dn:p = dn = 0,
cnd
−1
n R∗nX1 + (X1 − 1), if Cn:p = dn, Dn:p = dn,

(4)

where Xn
w
=n Yn means that the rv’s Xn and Yn have the same limit df. The implication (i) follows from

the first part of (1)–(4), Theorem 1.2 and from the independency between Rr and Rs, if s − r →n ∞
(see Barakat, 2007). The implication (ii) follows from the second part of (1)–(4) and Theorem 1.2 (note
that Theorem 1.2 implies cnd

−1
n
→n 0, in Parts (a) and (b). On the other hand, the implication (iii), Part

(a), follows from the second part of (3)–(4) and Theorem 1.2, where the condition ΨF (n+
√
n)

ΨF (n)
→n 1 implies

cnd
−1
n
→n 0. Finally, the implication (iii), Part (b), follows from the first part of (1)–(2) and Theorem 1.2,

where the condition c−1
n = (ΨF (n +

√
n) − ΨF (n))−1 →n 0 implies the trivial limit (where R∗n outweighes

X1

cn
), while when the condition c−1

n = (ΨF (n +
√
n) − ΨF (n))−1 →n K implies the given non-trivial limit

law.
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3. Illustrative examples and concluding remarks

Illustrative examples are provided in this section, which lend further support to our theoretical results.

Example 3.1. For the logistic distribution, F (x) = P (X ≤ x) = ex

1+ex , ∀x, we can easily show that

ΨF2
(u) = log(eu − 1). Therefore ΨF (n+

√
n)

ΨF (n) = log(en+
√
n−1)

log(en−1)
→n 1. Moreover, ΨF (n +

√
n) − ΨF (n) =

log en+
√
n−1

en−1
→n ∞. Then, from Theorem 1.2 and Theorem 2.1, we get P (r∗n ≤ r)

w→n H3,0(r), P (v∗n ≤
v)

w→n H3,0(r), P (q∗n ≤ q)
w→n P ( 1

X ≤ q + 1) and P (p∗n ≤ p)
w→n P (X1 ≤ p+ 1)

w→n
ep+1

1+ep+1 , ∀p.

Example 3.2. For the Weibull distribution, F (x) = P (X ≤ x) = 1−e−xc , x, c > 0, we can easily show that

ΨF1
(u) = u

1
c . Therefore ΨF (n+

√
n)

ΨF (n) = (1 + 1√
n

)
1
c →n 1. Moreover, ΨF (n+

√
n)−ΨF (n) = (n+

√
n)

1
c −n 1

c =

n
1
c

1
c
√
n

(1 + ◦(1)) = 1
cn

1
c−

1
2 . Thus ΨF (n+

√
n)−ΨF (n) →n 1

c , if c = 2 and ΨF (n+
√
n)−ΨF (n) →n ∞, if

c > 2. Then, from Theorem 1.2 and Theorem 2.1, we get

P (r∗n ≤ r)
w→n

{
H3,0(r), if c > 2,

H3,0(r) ? (e−
r2

4 I(−∞,0)(r)), if c = 2,

where IA(x) is the usual indicator function,

P (v∗n ≤ v)
w→n

{
H3,0(v), if c > 2,

H3,0(v) ? (1− e− v
2

4 )I(0,∞)(v)), if c = 2,

P (q∗n ≤ q)
w→n P (

1

X
≤ q + 1) = e−(q+1)−c ,

and

P (p∗n ≤ p)
w→n P (X1 ≤ p+ 1)

w→n 1− e−(p+1)c .

Concluding remarks

Record values arise naturally in many practical problems and there are several situations pertaining
to meteorology, hydrology, sporting and athletic events wherein only record values may be recorded. In
this paper we study the asymptotic behavior of some functions of record values, which have important
applications. Theorem 2.1, as well as Examples 3.1 and 3.2, show that in most cases of the convergence to
a non-degenerate limit, each of the statistics rn, vn, qn and pn is asymptotically equivalent to the statistic
aRn + bX1, as n → ∞, where −∞ < a, b < ∞ and max(| a |, | b |) > 0. Moreover, in all cases, both of
the statistics qn and pn (as well as rn and vn) converge weakly together to a non-trivial (or trivial) type.
Moreover in some cases, some of the four statistics, converge to the same limit df. This fact has considerable
practical importance.
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