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Abstract. Computational approach test (CAT) based on maximum likelihood estimator is feasable
approach to the statistical hypothesis test. It might be because it does not require the knowledge of any
sampling distribution. Further, it relies heavily on numerical computations and Monte-Carlo simulation.
This paper demonstrates that the CAT can be as good as, if not better than, the uniformly most powerful
test (UMP-test) to test the scale parameter in power law distribution where the shape parameter is known.
We employ the CAT in power law distribution when the shape parameter is unknown and compare it
with an exact method. We also apply the CAT for testing scale parameters in two power law populations
and give an example with simulated data. Simulation studies show that the actual sizes and powers of
the CAT are satisfactory.

1. Introduction

Advances in the technology of computational tools have significantly affected the statistical inference
and estimation. Complex theoretical results can now be better realized through numerical computations
and/or Monte-Carlo simulations well before that can be verified analytically. Recently, Pal et al. (2007)
developed a simple computational technique, called CAT, for hypothesis testing problems. This method uses
the maximum likelihood estimation (MLE) for the purpose of statistical inference on unknown parameters.
The CAT is a simple procedure based on a simple set of computational steps which can be implemented
easily by applied researchers. The computational mechanism is such that the CAT finds the critical region
automatically. Chang et al. (2010) showed that for the one-way ANOVA problem with the usual assump-
tions, the CAT provides power which is very close to that of the classical F test. Chang and Pal (2008a)
applied the CAT to the Behrens-Fisher problem and compared this approach with the five existing meth-
ods. Also Chang and Pal (2008b) applied the proposed CAT for testing the common mean of several normal
distributions. The CAT does not require the knowledge of any sampling distribution but depends heavily
on numerical computations and Monte-Carlo simulation. Hence, the conventional approach had been to use
either the asymptotic theory or some sort of approximations to the null distributions of the test statistics.

The power law has attracted particular attention over the years both for its mathematical properties,
which sometimes leads to surprising physical consequences, and for its appearance in a wide range of natural
and man-made phenomena. The word frequency, citations of scientific papers, web hits, copies of books
sold, telephone calls, magnitude of earthquakes, diameter of moon craters, intensity of solar flares, intensity
of wars, wealth of the richest people, frequencies of family names, and populations of cities, for example,
are all thought to have power-law distributions (Newman, 2005).
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The power law density function with parameters θ and β (pow(θ, β)) is given by

f(x; θ, β) =
βxβ−1

θβ
, 0 < x < θ, β > 0, (1)

where θ is the scale parameter and β is the shape parameter. The theoretical mean and variance are derived
as (Krishnamoorthy, 2006)

E(X) =
θβ

β + 1
, V ar(X) =

θ2β

(β + 2)(β + 1)2
.

In this paper, we consider testing the scale parameter θ in the power law distribution for two cases: i)
the shape parameter, β is known; ii) the shape parameter, β is unknown. In the first case, there is the UMP
test. In the second case, there is not UMP-test, however there is an exact F-test. In each case, we apply
the CAT for testing the hypothesis about θ, besides, we use simulation studies to show that the CAT can
be as good as, if not better than, the other method. In the main section of this paper, we consider testing
the equality of scale parameters of two power law distributions when the shape parameters are unknown.
In the latter case, as far as we know, there is no exact approach for testing the equality of scale parameters.
We proposed a CAT for testing the equality of scale parameters. Simulation studies show that the actual
sizes and powers of this approach are satisfactory.

This article is organized as follows: we provide, in Section 2, the general computational framework to
handle a scalar valued parameter based on the MLE estimator. In Section 3, we derive the CAT for testing
hypotheses on the scale parameter of the power law distribution for two cases and compare the size/power
of the CAT with the accepted tests. We also illustrate our approach using a real example. In Section 4, we
use the CAT for testing the equality of scale parameters in two power law populations and give an example
with simulated data. Also, we study the actual size and power of this approach based on simulation studies.

2. Computational Approach Test (CAT)

Let X1, X2, ..., Xn be a random sample from distribution F (x; θ), θ ∈ Θ. We present the CAT for two
cases: when there is no nuisance parameter, and when there are nuisance parameters.

Case-1: Assume θ is scaler valued, and there is no nuisance parameter. The methodology of the CAT for
testing

H0 : θ = θ0, vs. HA : (θ < θ0 or θ > θ0 or θ 6= θ0)

at a desired level α, is given below in three simple steps:

Step 1. Obtain θ̂ the MLE of θ.

Step 2. Assume that H0 is true, i.e., set H0 : θ = θ0. Generate artificial sample Y1, Y2, ..., Yn i.i.d. from
density f(x, θ0) a large number of times (say, M times). For each of these replicated samples, recalculated

the MLE of θ (pretending that θ were unknown). Let these recalculated MLE values of θ be θ̂01, θ̂02, ..., θ̂0M .

Let θ̂0(1) ≤ θ̂0(2) ≤ ... ≤ θ̂0(M) be the ordered values of θ̂0l, 1 ≤ l ≤M .

Step 3. (i) For testing H0 : θ = θ0 vs. HA : θ < θ0 at level α, define θ̂L = θ̂0(αM). Reject H0 if θ̂ < θ̂L.
Alternatively, calculate the p-value as

p =
1

M

M∑
l=1

I(θ̂0(l)<θ̂).
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(ii) For testing H0 : θ = θ0 vs. HA : θ > θ0 at level α, define θ̂U = θ̂0((1−α)M). Reject H0 if θ̂ > θ̂U .
Alternatively, calculate the p-value as

p =
1

M

M∑
l=1

I(θ̂0(l)>θ̂).

(iii) For testing H0 : θ = θ0 vs. HA : θ 6= θ0 define θ̂L = θ̂0((α/2)M) and θ̂U = θ̂0((1−α/2)M). Reject H0 if

θ̂L < θ̂ or θ̂ > θ̂U . Alternatively, the p-value is computed as:

p = 2 min(p1, 1− p1),

where p1 = 1
M

M∑
l=1

I(θ̂0(l)<θ̂).

Case-2: Assume θ is scaler valued and there are nuisance parameters. Assume that θ = (θ(1), θ(2)) ∈ Θ,
where θ(2), is the nuisance parameter, and θ(1) is the parameter of interest. The methodology of the CAT
for testing

H0 : θ(1) = θ
(1)
0 vs. HA : (θ(1) < θ

(1)
0 or θ(1) > θ

(1)
0 or θ(1) 6= θ

(1)
0 ),

at a desired level α, is given through the following steps:

Step 1. Obtain θ̂ = (θ̂(1), θ̂(2)), the MLE of θ.

Step 2. (i) Assume that H0 is true, i.e., set H0 : θ(1) = θ
(1)
0 . Then find the MLE of θ(2) from the data

again. Call this as the ‘restricted MLE of θ(2)’ under H0, denoted by θ̂
(2)
R .

(ii) Generate artificial sample Y1, Y2, ..., Yn i.i.d. from density f(x, θ
(1)
0 , θ̂

(2)
R ) a large number of times (say,

M times). For each of these replicated samples, recalculated the MLE of θ = (θ(1), θ(2)) (pretending that θ

were unknown). Let these recalculated MLE values of θ(1) be θ̂
(1)
01 , θ̂

(1)
02 , ..., θ̂

(1)
0M .

(iii) Let θ̂
(1)
0(1) ≤ θ̂

(1)
0(2) ≤ ... ≤ θ̂

(1)
0(M) be the ordered values of θ̂

(1)
0l , 1 ≤ l ≤M .

Step 3. (i) For testing H0 : θ(1) = θ
(1)
0 vs. HA : θ(1) < θ

(1)
0 at level α, define θ̂

(1)
L = θ̂

(1)
0(αM). Reject H0 if

θ̂(1) < θ̂
(1)
L . Alternatively, calculate the p-value as

p =
1

M

M∑
l=1

I
(θ̂

(1)

0(l)
<θ̂(1))

.

(ii) For testing H0 : θ(1) = θ
(1)
0 against HA : θ(1) > θ

(1)
0 at level α, define θ̂

(1)
U = θ̂

(1)
0((1−α)M). Reject H0 if

θ̂(1) > θ̂
(1)
U . Alternatively, calculate the p-value as

p =
1

M

M∑
l=1

I
(θ̂

(1)

0(l)
>θ̂(1))

.

(iii) For testing H0 : θ(1) = θ
(1)
0 against HA : θ(1) 6= θ

(1)
0 define the cut-off points as θ̂

(1)
L = θ̂

(1)
0((α/2)M) and

θ̂
(1)
U = θ̂

(1)
0((1−α/2)M). Reject H0 if θ̂(1) < θ̂

(1)
L or θ̂(1) > θ̂

(1)
U . Alternatively, the p-value is computed as:

p = 2 min(p1, 1− p1),

where p1 = 1
M

M∑
l=1

I
(θ̂

(1)

0(l)
>θ̂(1))

.
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3. The CAT Results for Power Law Distribution

Let X1, X2, ..., Xn be a random sample from the power law distribution with density function (1). The
MLE of the parameters θ and β are (Krishnamoorthy, 2006)

θ̂ = max{Xi}, i = 1, 2, .., n, β̂ =
1

log(θ̂)− 1
n

∑n
i=1 log (Xi)

,

with

2nβ

β̂
∼ χ2

(2n−2), −2nβ
[
log(θ̂)− log(θ)

]
∼ χ2

(2),

where χ2
(m) denotes a central chi-square distribution with m degrees of freedom (df).

In this Section, our interest is to test the hypothesis

H0 : θ = θ0, vs. H1 : θ 6= θ0, (2)

in two cases: β is known and β is unknown. In what follows, we will first present the exiting method and
then propose the CAT, in each case.

3.1. β is known

In the power law distribution when the shape parameter β is known, there is the UMP-test for testing the
hypothesis (2). Therefore, we compare our approach with UMP-test method. Recall that the 100(1− α)%

shortest confidence interval for θ is (max{Xi}, max{Xi}
nβ
√
α

), and the critical regions of UMP-test for classical

hypotheses on the scale parameter, θ are derived using the left and right limits of this shortest confidence
interval (Casella and Berger, 1990).

In the following, we present the CAT for testing the scale parameter θ and compare the actual sizes and
powers of this approach with UMP-test method. The CAT is performed using the following steps for testing
the hypotheses in (2):

a. In Step 1, we derive θ̂ = max{Xi}, i = 1, ..., n, the MLE of θ.

b. In Step 2, set H0 : θ = θ0, and generate

(1st replication) Y
(1)
1 , ..., Y

(1)
n i.i.d pow(θ0, β); get θ̂01 = max{Y (1)

i }

...

(M th replication) Y
(M)
1 , ..., Y

(M)
n i.i.d pow(θ0, β); get θ̂0M = max{Y (M)

i }.

The values θ̂01, θ̂02, ..., θ̂0M are ordered as θ̂0(1) ≤ θ̂0(2) ≤ ... ≤ θ̂0(M).

c. In Step 3, for testing two-sided hypothesis, (when M = 10000) define the cut-off points as θ̂L =

θ̂0((α/2)M) = θ̂0(250) and θ̂U = θ̂0((1−α/2)M) = θ̂0(9750). Reject H0 if θ̂ < θ̂L or θ̂ > θ̂U .
A simulation study, with 10000 repetition, is performed to compare the sizes and powers test of the two

approaches; i) the CAT, ii) the UMP-test, for testing H0 : θ = 3 vs. H1 : θ 6= 3. The actual sizes and
powers of the tests for different values of n and θ with β = 2 are given in Table 1. As shown in Table 1, we
conclude that the actual sizes and powers for different sample sizes in CAT are as good as the UMP-test.
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3.2. β is unknown

Also we apply the CAT for testing the hypothesis (2) when β is unknown. In this case, there is not
UMP-test for θ but there is an exact test with test statistic

F = −(n− 1)β̂
[
log(θ̂)− log(θ0)

]
,

and H0 is rejected in (2) if F > F(α/2,2,2n−2) or F < F(1−α/2,2,2n−2). We compare the CAT with this exact
test. The CAT is given based on the following steps:

a. In Step 1, we derive θ̂ = max{Xi} the MLE of θ.

b. In Step 2, (i) assume that H0 : θ = θ0 is true, then Xi ∼ pow(θ0, β). The MLE of the parameter β which

are called the ‘restricted MLE’ is β̂R = (log(θ0)− 1
n

∑n
i=1 log(Xi))

−1.

(ii) Generate artificial sample Y1, ..., Yn i.i.d. from pow(θ0, β̂R) a large number of times (say, M times). For
each of these replicated samples, recalculated the MLE of θ. Let these recalculated MLE values of θ be
θ̂01, θ̂02, ..., θ̂0M (M = 10000).

(iii) Let θ̂0(1) ≤ θ̂0(2) ≤ ... ≤ θ̂0(10000) be the ordered values of θ̂0l, 1 ≤ l ≤M .

c. In Step 3, for testing H0 : θ = θ0 against HA : θ 6= θ0 define the cut-off points as θ̂L = θ̂0((α/2)M) and θ̂U =

θ̂0((1−α/2)M). Reject H0 if θ̂ < θ̂L or θ̂ > θ̂U . Alternatively, the p-value is computed as: p =2min(p1, 1− p1),

where p1 = 1
M

M∑
l=1

I(θ̂0(l)>θ̂).

A simulation study, with 10000 repetition, is performed to compare the sizes and powers of the two
approaches; i) The CAT ii) the exact F-test, for testing H0 : θ = 3 vs. H1 : θ 6= 3. For fixed n, θ and β = 2,
generate iid observations of size n from pow(θ, β). The actual sizes and powers of the tests for different
values are given in Table 1. We see that the actual sizes of the CAT are always less than the nominal level,
however, this can not happen in the other method. Also, according to this Table we see that the power of
the test in our method is as good as, the F-test.

3.3. Real example

We consider a set of the given data by Majumdar (1993) on the failure times of a vertical boring machine.
The observations are 376 808 1596 1700 1701 1781 1976 2076 2136 2172 2296 2380 2655
2672 2806 2816 2848 2937 3158 3575 3632 3686 3705 3802 3811 4020

We obtain the MLE’s as θ̂ = 4020 and β̂ = 1.8478. Based on Kolmogorov-Smirnov test, we observe that
these data follow a power law distribution. Consider that our interest is to test the hypotheses

H0 : θ = 4050 vs. H1 : θ 6= 4050.

We performed the F-test and the CAT using the proposed steps with M = 100000 and obtained the p-values
for the CAT and the F-test as 0.5781 and 0.5886, respectively. Therefore, these two approaches do not reject
the null hypothesis.

4. Testing the equality of two scale parameters

Let Xi1, ..., Xini , i = 1, 2, be two independent random samples from the power law distribution, i.e.
Xij ∼pow(θi, βi), i = 1, 2, j = 1, ..., ni, where the parameters (θ1, θ2, β1, β2) are unknown. We consider
problem of testing the hypothesis

H0 : θ1 = θ2 vs. H1 : θ1 6= (< or >) θ2,

which is equivalent to the following test hypothesis

H∗0 : δ = 0 vs. H∗1 : δ 6= (< or >) 0,
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Table 1: The actual sizes and powers of the tests when the nominal level is 0.05.

β is known

θ

n Test 2.8 2.9 3.0 3.1 3.2

5 CAT 0.0678 0.0532 0.0511 0.3127 0.5062
UMP 0.0677 0.0526 0.0511 0.3125 0.5065

10 CAT 0.0956 0.0553 0.0480 0.5056 0.7336
UMP 0.0950 0.0552 0.0479 0.5062 0.7334

15 CAT 0.2008 0.0694 0.0495 0.6436 0.8718
UMP 0.1985 0.0691 0.0493 0.6437 0.8715

20 CAT 0.3949 0.0962 0.0512 0.7442 0.9316
UMP 0.3943 0.0962 0.0510 0.7441 0.9313

25 CAT 0.7906 0.1334 0.0494 0.8199 0.9643
UMP 0.7885 0.1330 0.0493 0.8198 0.9640

30 CAT 1 0.1934 0.0496 0.8668 0.9804
UMP 1 0.1932 0.0485 0.8666 0.9804

35 CAT - 0.2731 0.0495 0.9059 0.9893
UMP - 0.2704 0.0527 0.9053 0.9891

40 CAT - 0.3770 0.0503 0.9289 0.9937
UMP - 0.3768 0.0508 0.9289 0.9932

45 CAT - 0.5211 0.0509 0.9490 0.9972
UMP - 0.5205 0.0510 0.9488 0.9970

50 CAT - 0.7409 0.0474 0.9613 0.9981
UMP - 0.7401 0.0477 0.9611 0.9979

β is unknown

5 CAT 0.0595 0.0570 0.0256 0.3004 0.4952
F-Test 0.0596 0.0576 0.0519 0.3198 0.5076

10 CAT 0.0657 0.0597 0.0378 0.4951 0.7384
F-Test 0.0658 0.0596 0.0499 0.5006 0.7405

15 CAT 0.1505 0.0695 0.0418 0.6382 0.8716
F-Test 0.1504 0.0691 0.0483 0.6410 0.8724

20 CAT 0.3157 0.0981 0.0437 0.7366 0.9250
F-Test 0.3156 0.0978 0.0501 0.7384 0.9254

25 CAT 0.5635 0.1390 0.0450 0.8123 0.9609
F-Test 0.5630 0.1372 0.0491 0.8129 0.9611

30 CAT 0.8235 0.1998 0.0473 0.8670 0.9825
F-Test 0.8229 0.1901 0.0506 0.8675 0.9825

35 CAT 0.9638 0.2668 0.0401 0.9060 0.9894
F-Test 0.9555 0.2640 0.0437 0.9064 0.9895

40 CAT 0.9971 0.3769 0.0482 0.9331 0.9942
F-Test 0.9883 0.3745 0.0518 0.9330 0.9942

45 CAT 1 0.5144 0.0478 0.9489 0.9979
F-Test 1 0.5072 0.0507 0.9486 0.9978

50 CAT - 0.6779 0.0478 0.9651 0.9987
F-Test - 0.6715 0.0503 0.9649 0.9981
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where δ = θ1 − θ2.
There is no approach to test these hypotheses. In fact, when the shape parameters βi are not unequal,

testing the equality of scale parameters of the two power law distribution is similar to the Behrens-Fisher
problem (Chang et al., 2008a).

4.1. CAT for testing the equality of scales

In what follows, we present the specific version of the CAT as applicable for the given power law problem.
Note that δ = θ1 − θ2 is the parameter of interest.

Step 1. Obtain the MLE of the parameters as θ̂i = max{Xi1, ..., Xini}, i = 1, 2, and then δ̂ = θ̂1 − θ̂2.

Step 2. Assume that H∗0 is true, i.e. δ = 0 (θ1 = θ2 = θ). Under this restricted model, we have
Xij ∼ pow(θ, βi), i = 1, 2, j = 1, ..., ni. Get the MLE’s of the three parameters (θ, β1, β2) which are called
the restricted MLEs as given

θ̂R =
max{X11, ..., X1n1}+ max{X21, ..., X2n2}

2
,

and

β̂i(R) =
1

log(θ̂R)− 1
ni

∑ni
j=1 log (Xij)

, i = 1, 2.

Step 3. Generate artificial data Xij , i = 1, 2, j = 1, ..., ni from pow(θ̂R, β̂i(R)) a large number of times (say,

M times). For each of these replicated samples, recalculate the MLE of δ. Thus we will have δ̂01, δ̂02, ..., δ̂0M .

Step 4. Let δ̂0(1) ≤ δ̂0(2) ≤ ... ≤ δ̂0(M) be the ordered values of δ̂0l, l = 1, ...,M .

Step 5. (i) For testing H∗0 : δ = 0 against H∗1 : δ < 0, define the critical value δ̂L as δ̂L = δ̂0(αM). If δ̂ < δ̂L,
then H∗0 is rejected. Alternatively the p-value can be defined as

p =
1

M

M∑
l=1

I(δ̂0(l) < δ̂).

(ii) For testing H∗0 : δ = 0 against H∗1 : δ > 0, define δ̂U = δ̂0((1−α)M). If δ̂ > δ̂U , then H∗0 is rejected.
Alternatively the p-value can be defined as

p =
1

M

M∑
l=1

I(δ̂0(l) > δ̂).

(iii) For testing H∗0 : δ = 0 against H∗1 : δ 6= 0, define δ̂L = δ̂0((α/2)M) and δ̂U = δ̂0((1−α/2)M). If δ̂, is either

greater than δ̂U or less than δ̂L, then H∗0 is rejected. Alternatively the p-value can be defined as

p = 2 min(p1, 1− p1),

where p1 =
1

M

∑M
l=1 I(δ̂0(l) < δ̂).

A simulation study is performed to evaluate the sizes and powers of the CAT in order to compare the
scale parameters of two power law distributions. Two data sets are generated; the first data set with size
n1, is generated from the power law distribution with parameters θ1 = 3 and β1 = 1 and second data set
with size n2, is generated from the power law distribution with different parameters θ2 and β2. The p-value
for CAT with M = 10000 simulations is computed for testing H0 : θ1 = θ2 vs. H1 : θ1 6= θ2. For N = 10000
replication, the p-values are computed. The size/power of the CAT is the number of cases that the p-values
are smaller than nominal level α = 0.05. The results for different value are given in Table 2. We can find
that the actual sizes of the CAT are close to the nominal level and the powers of the CAT are satisfactory.
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4.2. Example

To illustrate the CAT, we simulated data on X ∼ pow(2, 1) and on Y ∼ pow(3, 5) with n1 = n2 = 10.
Therefore, two data sets are generated from the power law distribution with different scale parameters. The
two set data are

Data 1 0.6436 1.0204 1.7635 1.7734 1.1493
1.3233 0.0103 1.7982 1.5776 0.1547

Data 2 2.3280 2.8040 1.6894 2.4329 2.6147
2.9358 2.6694 2.9960 2.6147 2.8855

The MLEs are θ̂1 = 1.7982, β̂1 = 0.9874, θ̂2 = 2.9960, β̂2 = 6.4718. Using given steps in this Section, with
M = 100000, we computed the p-value for testing H∗0 : δ = 0 vs. H∗1 : δ 6= 0 as 0.0106, which suggests that
the data provide evidence against H0.

5. Conclusions and remarks

In this paper, we consider the problem of testing hypothesis for the scale parameter of power law distri-
bution. In addition, we consider to test of the scale parameters of two power law populations when the shape
parameters are unknown. We have in fact developed an approach based on the concept of the computational
approach test (CAT) which is relatively easy to implement and does not require the explicit knowledge of
the sampling distribution. The CAT is presented for testing the scale parameter of power law distribution
and is compared with the other methods. Numerical results show that the CAT gives equivalent results to
(if not better than) the UMP-test method and is much more satisfactory than F-test method in terms of
the actual size and power of the test. In the main section of this paper, we considered testing the equality
of scale parameters of two power law distributions when the shape parameters are unknown. In the latter
case, as far as we know, there is no exact approach for testing the equality of scale parameters. Simulation
studies indicate that the actual sizes and powers of our approach are satisfactory. A numerical example is
given for illustrating the application of the proposed CAT. We believe that our proposed approach would
be useful to researchers using the power law distribution in their analysis of the data.
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Table 2: The actual sizes and powers of the test at 5% significant level when θ1 = 3 and β1 = 1.

θ2
β2 (n1, n2) 3.0 3.5 4.0 4.2 4.5 5.0

0.5 (10, 10) 0.0717 0.2385 0.5006 0.5943 0.7131 0.8303
(20, 10) 0.0706 0.4154 0.6986 0.7535 0.8306 0.8961
(10, 20) 0.0695 0.2413 0.5886 0.7149 0.8416 0.9370
(20, 20) 0.0657 0.5039 0.8636 0.9161 0.9572 0.9845
(30, 35) 0.0639 0.7982 0.9803 0.9913 0.9977 0.9993
(50, 50) 0.0598 0.9487 0.9980 0.9991 1.0000 1.0000
(100, 50) 0.0599 0.9743 0.9994 0.9999 0.9999 1.0000
(50, 100) 0.0573 0.9948 1.0000 1.0000 1.0000 1.0000

1.0 (10, 10) 0.0698 0.2323 0.5672 0.6953 0.8265 0.9364
(20, 10) 0.0682 0.4882 0.8665 0.9178 0.9589 0.9855
(10, 20) 0.0679 0.2413 0.6311 0.7750 0.9007 0.9797
(20, 20) 0.0669 0.5805 0.9623 0.9843 0.9971 0.9998
(30, 35) 0.0615 0.9155 0.9993 0.9999 1.0000 1.0000
(50, 50) 0.0591 0.9952 1.0000 1.0000 1.0000 1.0000
(100, 50) 0.0565 0.9988 1.0000 1.0000 1.0000 1.0000
(50, 100) 0.0553 1.0000 1.0000 1.0000 1.0000 1.0000

1.5 (10, 10) 0.0667 0.2293 0.5901 0.7330 0.8677 0.9662
(20, 10) 0.0655 0.5326 0.9305 0.9695 0.9874 0.9968
(10, 20) 0.0631 0.2400 0.6422 0.7853 0.9145 0.9863
(20, 20) 0.0613 0.6079 0.9872 0.9961 0.9999 1.0000
(30, 35) 0.0607 0.9518 0.9999 1.0000 1.0000 1.0000
(50, 50) 0.0570 0.9998 1.0000 1.0000 1.0000 1.0000
(100, 50) 0.0552 0.9999 1.0000 1.0000 1.0000 1.0000
(50, 100) 0.0547 1.0000 1.0000 1.0000 1.0000 1.0000

2.0 (10, 10) 0.0656 0.2303 0.6023 0.7515 0.8880 0.9776
(20, 10) 0.0669 0.5553 0.9603 0.9870 0.9960 0.9997
(10, 20) 0.0621 0.2410 0.6449 0.7890 0.9195 0.9888
(20, 20) 0.0609 0.6181 0.9945 0.9991 1.0000 1.0000
(30, 35) 0.0578 0.9665 1.0000 1.0000 1.0000 1.0000
(50, 50) 0.0550 0.9999 1.0000 1.0000 1.0000 1.0000
(100, 50) 0.0555 1.0000 1.0000 1.0000 1.0000 1.0000
(50, 100) 0.0543 1.0000 1.0000 1.0000 1.0000 1.0000
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