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Abstract. In this paper, three prediction intervals of future generalized order statistics (gos) based on
generalized extreme value distribution (GEVD) are constructed. For this purpose, three predictive pivotal
quantities are considered, and their exact distributions are established. A Monte Carlo simulation study
is carried out to explore the efficiency of the proposed method. The obtained results are then applied to
real data for illustrative purposes.

1. Introduction

The prediction of future events without any doubt is one of the most important problems in statistics.
This problem has been extensively studied by many authors, including Lingappaiah (25), Aitchison and
Dunsmore (3), Lawless (26; 27), Kaminsky and Rhodin (20), Kaminsky and Nelson (21), Patel (28), Raqab
et al. (30), Barakat et al. (7), El-Adll (14), El-Adll et al. (16), Barakat et al. (8) and AL-Hussaini et al.
(4), among others.

It is well known that the ordered random variables play an important role in prediction methods. Since
Kamps (23) had introduced the concept of gos as a unification of several models of ascendingly ordered
random variables, the use of such concept has been steadily growing through the years. This is due to
the fact that such concept includes important well-known models of ordered random variables that have
been treated separately in statistical literature. Kamps (23) defined gos first by defining uniform gos and
then using the quantile transformation to obtain the joint probability density function (jpdf) of the random
variables Y (1, n, m̃, k), · · · , Y (n, n, m̃, k) based on cumulative distribution function (cdf) F with pdf f . The
jpdf of Y (1, n, m̃, k), · · · , Y (n, n, m̃, k) is given by

fY (1,n,m̃,k),...,Y (n,n,m̃,k)(y1, . . . , yn) = k

n−1∏
j=1

γj

(n−1∏
i=1

(1− F (yi))
mif(yi)

)
(1− f(yn))

k−1
f(yn),

on the cone F−1(0) 6 y1 6 · · · 6 yn 6 F−1(1−) of Rn. The model parameters are, n ∈ N, n ≥ 2,

k > 0, m̃ = (m1, . . . ,mn−1) ∈ Rn−1, Mr =
∑n−1
j=r mj , such that γr = k + n − r + Mr > 0 for all

r ∈ {1, . . . , n−1} and γn = k. Particular choices of the parameters γ1, · · · , γn lead to different models, e.g.,
m−gos (γn = k, γr = k+ (n− r)(m+ 1), r = 1, · · · , n− 1), oos (γn = 1, γr = n− r+ 1, r = 1, · · · , n− 1,
i.e., k = 1, mi = 0, i = 1, · · · , n − 1), sos (γn = αn, γr = (n − r + 1)αr, αr > 0, r = 1, · · · , n − 1),

pos with censoring scheme (R1, · · · , RM ) (γn = RM + 1, γr = n − r + 1 +
∑M
j=r Rj , if r ≤ M − 1 and
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γr = n−r+1+RM , if r ≥M) and upper records (γr = 1, 1 ≤ r ≤ n, i.e., k = 1, mi = −1, i = 1, · · · , n−1).
Therefore, all the results obtained for the gos model can be applied to the particular models choosing the
respective parameters. For more details in the theory and applications of gos see Kamps (23), Ahsanullah
(2), Kamps and Cramer (22), Cramer (13), Barakat et al (7), El-Adll (15), Barakat (6; 9), and Ahmad et al
(1).

Extreme value data usually is explored from heavy right tailed or excess kurtosis. Particularly in envi-
ronmental data, e.g., spatial and temporal variability of turbulence (Sanford, (32)), daily maximum ozone
measurement (Gilleland, (18)), maximum wind speed (Castillo et al. (11)), largest lichen measurements
(Cooley et al., (12)), and maximum water level (Bruxer et al., (10)). GEVD was originally defined for the
first time by (Jenkinson (19)), and the three possible limiting distributions of the maximum/minimum of
random variables are embedded within it. This distribution is also known as the von Mises extreme value,
von Mises-Jenkinson, and Fisher-Tippet distribution. A historical review of extreme value theory is provided
in Kotz and Nadajarah (24). Recently, a comparative review of GEVD is reported in Pinheiro et al. (29).

The GEVD distribution is one of the most widely applied models for univariate extreme values. Its pdf
and cdf are, respectively, given by

f(y;µ, σ, ξ) =
1

σ

[
1 + ξ

(
y − µ
σ

)](−1/ξ)−1
exp

{
−
[
1 + ξ

(
y − µ
σ

)]−1/ξ}
, 1 + ξ(y − µ)/σ > 0 (1)

and

F (y;µ, σ, ξ) = exp

{
−
[
1 + ξ

(
y − µ
σ

)]−1/ξ}
, 1 + ξ(y − µ)/σ > 0, (2)

where µ ∈ R is the location parameter, σ > 0 is the scale parameter and ξ ∈ R is the shape parameter. The
shape parameter ξ governs the tail behavior of the distribution. The Weibull, Gumbel, Frechet sub-families
are corresponding, respectively, to ξ < 0, ξ → 0, and ξ > 0.

The rest of this paper is organized as follows. In Section 2, the predictive pivotal quantities and their
exact distributions are obtained. Section 3, include simulation studies. Some applications to real data are
presented in Section 4.

2. Pivotal Quantities and Their Distributions

This section concerns with the proposed pivotal quantities and their exact distributions as well as the
construction of the predictive confidence intervals PCI’s of future observations from GEVD based on gos.
Suppose that Y (1, n, m̃, k), · · · , Y (n, n, m̃, k) are gos based on GEVD with cdf given by (2). Define the
following three pivotal quantities

V1 := V1(r, s, n, m̃, k) =
X(s, n, m̃, k)−X(r, n, m̃, k)

X(r, n, m̃, k)−X(1, n, m̃, k)
, (3)

V2 := V2(r, s, n, m̃, k) =
X(s, n, m̃, k)−X(r, n, m̃, k)

Tr,n
, (4)

V3 := V3(r, s, n, m̃, k) =
X(s, n, m̃, k)−X(r, n, m̃, k)

X(r, n, m̃, k)
, (5)

where

Tr,n =

r∑
i=1

γi(X(i, n, m̃, k)−X(i− 1, n, m̃, k)), (6)

X(i, n, m̃, k) = H(Y (i, n, m̃, k)), i = 1, 2, . . . , n, (7)
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and H(t) = − log(1− F (t)) is the cumulative hazard function.
Remark 2.1 In view of (7), it is not difficult to show that the random variables X(i, n, m̃, k), i = 1, 2, ..., n
can be expressed as gos based on the standard exponential distribution (Exp(1)) and therefore, the distri-
butions of V1, V2, and V3 are free of the GEVD parameters, µ, σ, and ξ.
The main aim of this section is to derive the exact distributions of V1, V2, and V3 and the results are
formulated in the following three theorems.

Theorem 2.1. Assume that Y (1, n, m̃, k), · · · , Y (r, n, m̃, k) are the first observed gos based on GEVD with
pdf (1). Then the exact cdf of the pivotal quantity V1, FV

1
(v1), is given by

F
V
1
(v

1
) = 1− Cs−1

γ1

s∑
i=r+1

r∑
j=2

a
(r)
i (s) a

(1)
j (r) [γi (γj + γi v1

)]
−1
, v

1
≥ 0, (8)

where,

Cs−1 =

s∏
j=1

γj , ai(r) =

r∏
j=1
j 6=i

1

γj − γi
, 1 ≤ i ≤ r ≤ n, and a

(r)
i (s) =

s∏
j=r+1
j 6=i

1

γj − γi
, r + 1 ≤ i ≤ s ≤ n.

Furthermore, an observed 100(1−δ)% predictive confidence interval (PCI) for Y (s, n, m̃, k), s > r is (`, u
1
),

where ` = yr, and u
1

can be computed numerically from the relation

u
1

= H−1
(

log

((
1− F (y1)

1− F (yr)

)v
1,δ

(1− F (yr))
−1
))

, (9)

yr is an observed value of Y (r, n, m̃, k) and v
1,δ

satisfies the nonlinear equation F
V
1
(v

1,δ
) = 1− δ.

Proof. The joint pdf of Y (r, n, m̃, k) and Y (s, n, m̃, k), fr,s(yr, ys), was derived in Kamps and Cramer (22).
Namely,

fr,s(yr, ys) = Cs−1,n

s∑
i=r+1

r∑
j=1

a
(r)
i (s)aj(r)

(
F (ys)

F (yr)

)γi (
F (yr)

)γj f(yr)

F (yr)

f(ys)

F (ys)
, r < s 6 n, yr < ys. (10)

For simplicity, we write Yi instead of Y (i, n, m̃, k) and Xi instead of X(i, n, m̃, k). Therefore, by (7), the
distribution of the subrange, Wr,s = Xs − Xr, can be obtained by Lemma 3 of Kamps and Cramer (22),
namely,

fWr,s (wr,s )
=
Cs−1
Cr−1

s∑
i=r+1

a
(r)
i (s)e−γiwr,s , wr,s > 0. (11)

Thus, we have

fW
1,r

(w
1,r

) =
Cr−1
γ1

r∑
i=2

a
(1)
i (r)e−γiw1,r , w1,r > 0. (12)

Moreover, by Theorem 3.5.5 of (23), the subrange Wr,s can be expressed as

Wr,s =

s∑
i=r+1

(X(i, n, m̃, k)−X(i− 1, n, m̃, k)) =

s∑
i=r+1

Zi/γi,

where the normalizing spacings Zi, i = 1, 2, ..., n, are independent and identically distributed according to
Exp(1), which immediately implies, the independence between W1,r and Wr,s. Therefore, the joint pdf,
f
W1,r,Wr,s

(w1,r, wr,s), of W1,r and Wr,s is given by,

f
W1,r,Wr,s

(w1,r, wr,s) =
Cs−1
γ1

s∑
i=r+1

r∑
j=2

a
(r)
i (s)a

(1)
j (r)e−(γjw1,r+γiwr,s), w1,r > 0, wr,s > 0.
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By a standard method of transformations of random variables, it is not difficult to show that, the joint pdf,
f
V1,W1,r

(v1, w1,r), of V1 = Wr,s/W1,r and W1,r is,

f
V1,W1,r

(v1, w1,r) =
Cs−1
γ1

s∑
i=r+1

r∑
j=2

a
(r)
i (s)a

(1)
j (r)w1,r e

−(γj+γiv1)w1,r , w1,r > 0, v1 > 0.

Thus we have,

fV1
(v

1
) =

∫ ∞
0

fV1 ,W1,r
(v

1
, w1,r)dw1,r =

Cs−1
γ1

s∑
i=r+1

r∑
j=2

a
(r)
i (s)a

(1)
j (r)(γj + γiv1

)−2, v
1
> 0.

Hence (8) follows directly by evaluating the integration
∫ v1
0
fV1

(u)du. The limits of a 100(1− δ)% PCI of Ys
can be obtained by noting that FV1

(v
1,δ

) = Pr(V
1
6 v

1,δ
) = 1− δ. Which can be rewritten as

Pr(Yr 6 Ys 6 H−1(H(Yr) + v
1,δ

(H(Yr)−H(Y1))) = 1− δ. (13)

Clearly, the lower limit of an observed gos sample is ` = yr and an approximate upper limit, u
1

can be
accomplished by solving the nonlinear equation (9). Hence the theorem.

Theorem 2.2. Under the same conditions of Theorem 2.1, the exact cdf of the pivotal quantity V2, FV2
(v

2
),

can be written as,

F
V
2
(v

2
) = 1− Cs−1

Cr−1

s∑
i=r+1

a
(r)
i (s)

γi
(1 + γi v2)−r, v2 ≥ 0., (14)

Moreover, a 100(1 − δ)% observed predictive confidence interval (PCI) for Y (r, n, m̃, k), r < s is (`, u2),
where ` = yr, and u2 can be calculated numerically from the relation

u
2

= H−1 (− log(1− F (yr)) + tr,nv2,δ) ,

yr is an observed value of Y (r, n, m̃, k), tr,n is an observed value of Tr,n and v
2,δ

satisfies the nonlinear
equation F

V2
(v

2,δ
) = 1− δ.

Theorem 2.3. Under the same conditions of Theorem 2.1, the exact cdf of the pivotal quantity V3, FV3
(v

3
),

is given by

F
V
3
(v

3
) = 1− Cs−1

s∑
i=r+1

r∑
j=1

a
(r)
i (s) aj(r)

γi
(γj + γi v3

)−1, v
3
≥ 0, (15)

Consequently, an observed 100(1−δ)% predictive confidence interval (PCI) for Y (s, n, m̃, k), s > r is (`, u
3
),

where ` = yr, and u
3

can be computed numerically from the relation

u
3

= H−1
(
(1 + v

3,δ
)(− log(1− F (yr)))

)
, (16)

yr is an observed value of Y (r, n, m̃, k) and v
3,δ

satisfies the nonlinear equation F
V
3
(v

3,δ
) = 1− δ.

The proof of Theorems 2.2 and 2.3 are similar to the proof of Theorem 2.1 with suitable modifications.

3. Simulation

In this section, two special cases from gos model are considered to investigate the efficiency of the
theoretical results given in the preceding section, by executing a simulation study. The selected models are,
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1. oos with γi = n− i+ 1 for n = 20, r = 12, 14, 16 and s = r + 1, r + 2, ..., n− 1,
2. sos with γn = αn, γi = 2(n− i) + 1 for n = 20, r = 12, 14, 16 and s = r + 1, r + 2, ..., n− 1.

Clearly, the upper limit, U1, of the PCI of the gos Y (s, n, m̃, k), based on the pivotal quantity V1, is a function
of Y (r, n, m̃, k). Therefore, the expected value of the upper limit of a 100(1− δ)% PCI of Y (s, n, m̃, k), can
be obtained numerically from the relation E[U

1
] =

∫∞
µ−σξ

u1gY (r,n,m̃,k)
(yr) dy, where u1 is defined by (9) and

g
Y (r,n,m̃,k)

(yr) = Cr−1

r∑
i=1

a
(r)
i (1− F (yr))

γi−1f(yr),

with g
Y (r,n,m̃,k)

(yr) is the pdf of Y (r, n, m̃, k) (cf. Kamps and Cramer (22)).
The estimated root mean square error (ERMSE) for the upper PCI, based on Vi, i = 1, 2, 3, are obtained

from the relation

ERMSEVi =

 1

M − 1

M∑
j=1

(UVi(j)− Y ∗s+1(j))2

 1
2

, i = 1, 2, 3. (17)

where UVi(j), i = 1, 2, 3, denote the upper limits for the PCI of the jth sample, and Yi(j) denote the ith gos
for the jth sample, i = r − 1 or s+ 1. The computations are conducted by Mathematica 10 and the results
are presented in Tables 1 and 2.

4. Illustrative Examples

In this section, we illustrate the proposed procedure in Section 2 via analysis of two real data sets.

Example 4.1 (Maximum annual temperature).

The following data from Long Beach, California, represents the maximum annual temperature from 1990 to
2012:

86.7 81.7 84.3 86.4 84.9 85.1 89.7 82.3 84.2 85.8 82.4 81.5

84.3 84.1 90.5 89.4 87.5 88.4 90.3 84.1 88.4 83.0 86.6

An application to Kolmogorov-Smirnov (K − S) test for the complete data reveals that the two-parameter
extreme value distribution is adequate model for this data. The observed value of (K − S) test statistic
is 0.1147 and the associated p−value is 0.8895. The modified least square method (MLSM) for type II
right censoring samples (see El-Adll and Aly (17), and Aly (5)), is applied to the previous data, to obtain
estimates of the unknown distribution parameters, in the following two situations:
(a) For n = 23 and r = 15, µ̂ = 84.4399 and σ̂ = 2.44168, (b) while n = 26 and r = 22, yield µ̂ = 84.3723
and σ̂ = 2.81359. Table 3 summarize the prediction results for the maximum annual temperature data.

Example 4.2 (Sulfur Dioxide (1-Hour Averages)).

The second set of data were obtained through the courtesy of the South Coast Air Pollution Control District
(SCAPCD) of the State of California which was analyzed by Roberts (31). The annual maxima of sulfur
dioxide 1− hr average concentrations (pphm) are,

47 41 68 32 27 43 20 27 25 18 33 40 51 55 40 55 37 28 34.

(Long Beach, CA from 1956 to 1974, Data Courtesy South Coast Air Pollution Control District)
First of all, it is shown that the two-parameter extreme value distribution fit the data very well (the value
of K − S test statistic is 0.1001 and the associated p−value is 0.9809 ). Moreover, an application to MLSM
yields,
(a) µ̂ = 31.6186 and σ̂ = 11.9152, for n = 19 and r = 13, (b) µ̂ = 35.8844 and σ̂ = 18.6466, for n = 24
and r = 17. The prediction intervals of future oos Ys:n, s = r + 1, ..., n with r = 13(17) and n = 19(24) are
shown in Table 4.
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Table 1: 90% coverage probability, average lower limits, Ȳs, s = r + 1, ..., 18, r = 12, 14, 16, expected upper limits based on

V1, simulated average upper limits and root mean square errors based on V1, V2 and V3, respectively, for oos model from

GEVD(6.2, 1.2, 0.5).

r s CPV1 CPV2 CPV3 L = Ȳr Ȳs E[UV1 ] UV1 UV2 UV3
(ERMSE

V1
) (ERMSE

V2
) (ERMSE

V3
)

12 13 89.858 89.885 89.865 7.10071 7.38735 7.85667 7.87626 7.86093 7.86784

(0.58544) (0.56742) (0.57623)

14 89.958 90.074 89.955 7.10071 7.73163 8.60011 8.63904 8.59907 8.61676

(1.06382) (1.00444) (1.03301)

15 89.965 89.887 89.872 7.10071 8.16233 9.54281 9.61310 9.53254 9.56785

(1.76750) (1.63481) (1.69879)

16 90.008 89.979 89.987 7.10071 8.72005 10.86478 10.99009 10.83800 10.90425

(2.89677) (2.62623) (2.75659)

17 90.052 90.023 90.025 7.10071 9.50494 12.92836 13.16206 12.86921 12.99629

(4.95794) (4.38913) (4.66439)

18 90.082 90.095 90.159 7.10071 10.74222 16.70647 17.19924 16.57234 16.84385

(9.65554) (8.29131) (8.95637)

14 15 90.003 89.893 89.970 7.73163 8.16233 8.83346 8.89959 8.87176 8.88949

(0.93286) (0.90171) (0.92242)

16 90.071 90.031 90.085 7.73163 8.72005 10.07398 10.19435 10.11518 10.16486

(1.81459) (1.69398) (1.77361)

17 90.134 90.100 90.133 7.73163 9.50494 11.90520 12.12981 11.94707 12.06075

(3.41474) (3.10068) (3.30694)

18 90.170 90.041 90.159 7.73163 10.74222 15.14771 15.61719 15.18572 15.45247

(7.06251) (6.25434) (6.78200)

16 17 90.014 89.998 89.978 8.72005 9.50494 10.58802 10.92243 10.84111 10.90534

(2.08276) (2.00597) (2.06707)

18 90.021 90.077 90.010 8.72005 10.74222 13.41889 14.12340 13.83343 14.05984

(5.15911) (4.78010) (5.07909)

5. Concluding Remarks

In this work three pivotal quantities have been proposed to construct prediction intervals of the future
gos based on GEVD. The exact distributions of the pivotal quantities are obtained. Simulation studies
are conducted to compare the pivotal quantities and two real data sets have been analyzed for illustrative
purposes. In view of the results obtained in the preceding sections, the following remarks are reported.

1. The upper limits are closed to each other based on the three pivotal quantities,

2. based on the ERMSE, the pivotal quantity V2 is better than V1 and V3,

3. the values of the ERMSE’s increase with s− r,
4. according to the results of Section 4, good fitting for real data improve the prediction results.
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Table 2: 90% coverage probability, average lower limits, Ȳs, s = r + 1, ..., 18, r = 12, 14, 16, expected upper limits based on

V1, simulated average upper limits and root mean square errors based on V1, V2 and V3, respectively, for sos model from

GEVD(6.2, 1.2, 0.5).

r s CPV1 CPV2 CPV3 L = Ȳr Ȳs E[UV1 ] UV1 UV2 UV3
(ERMSE

V1
) (ERMSE

V2
) (ERMSE

V3
)

12 13 90.093 90.085 90.092 6.19528 6.33382 6.55341 6.55510 6.54922 6.55175

(0.25180) (0.24571) (0.24856)

14 90.064 90.017 90.037 6.19528 6.49477 6.86905 6.87601 6.86188 6.86796

(0.41822) (0.39989) (0.40836)

15 89.963 89.934 89.893 6.19528 6.68762 7.23782 7.25162 7.22577 7.23690

(0.63128) (0.59520) (0.61190)

16 89.961 89.967 89.966 6.19528 6.92780 7.71211 7.73596 7.69242 7.71116

(0.92743) (0.86384) (0.89326)

17 89.986 90.033 90.001 6.19528 7.24998 8.38590 8.42643 8.35340 8.38485

(1.39119) (1.28201) (1.33264)

18 90.070 90.010 90.022 6.19528 7.73077 9.50071 9.57446 9.44280 9.49957

(2.31685) (2.12605) (2.21489)

14 15 89.955 89.892 89.943 6.49477 6.68762 6.98904 6.99129 6.98198 6.98776

(0.36213) (0.35284) (0.35882)

16 89.917 89.939 89.939 6.49477 6.92780 7.47488 7.48274 7.45863 7.47355

(0.62967) (0.59846) (0.61848)

17 89.965 89.977 89.980 6.49477 7.24998 8.12870 8.14593 8.09670 8.12711

(1.04512) (0.97806) (1.02112)

18 89.958 90.008 89.991 6.49477 7.73077 9.18461 9.22079 9.12115 9.18265

(1.89024) (1.76522) (1.84536)

16 17 89.953 89.995 89.969 6.92780 7.24998 7.76209 7.77258 7.74839 7.76746

(0.70168) (0.68236) (0.69760)

18 90.019 90.030 90.031 6.92780 7.73077 8.82007 8.84627 8.77099 8.83004

(1.54274) (1.47362) (1.52843)
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