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Abstract. Estimation of parameter in a new discrete distribution which is analogous to a Burr distri-
bution is discussed in this paper. The maximum likelihood and the method of moment estimators are
obtained. The asymptotic normality of the moment estimator is established. The asymptotic relative
efficiency of the maximum likelihood estimator over the moment estimator is computed. It is illustrated
that the new distribution fits better than the Poisson distribution to a clinical trial data set. A simulation
study has been carried out to demonstrate the asymptotic normality of the estimators.

1. Introduction

Sreehari (2010) has characterized a class of discrete distributions which turns out to be an analogue of
Burr (1942) family. The probability mass function (pmf) of the random variable X of the d-th distribution
of the class characterized by Sreehari (2010) is

p(x, θ) =

{
(x+ θ − 1) θx

(x+1)! , x = 0, 1, 2, . . .

0, otherwise,
(1)

0 < θ < 1. The distribution function of X is

F (x) =

{
0, x < 0

1− θ[x+1]

([x+1])! , x ≥ 0.
(2)

We refer to this distribution as S(d)- distribution.

The mean of the distribution is given by

E(X) =
∞∑
x=0

xp(x)

=
∞∑
x=0

θ θx−1

(x−1)! −
∞∑
x=0

(x+ 1) θx+1

(x+1)! +
∞∑
x=0

θx+1

(x+1)!

E(X) = θeθ − θ(eθ − 1) +
(
eθ − (1− θ)

)
.
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Therefore E(X) = eθ − 1.

Now,

E [X(X + 1)] =
∞∑
x=0

x(x+ 1)p(x)

=
∞∑
x=0

(x− 1) θx

(x−1)! + 2θ
∞∑
x=0

θx−1

(x−1)! − θ
2
∞∑
x=0

θx−1

(x−1)!

= θ2
∞∑
x=0

θx−2

(x−2)! + 2θeθ − θ2
∞∑
x=0

θx−1

(x−1)!

= θ2eθ + 2θeθ − θ2eθ.

E [X(X + 1)] = 2θeθ.

Hence E
[
X2
]

= 2θeθ − eθ + 1.

In turn, V (X) = eθ
(
2θ − eθ + 1

)
. We get E(X)− V (X) = e2θ − 2θeθ − 1.

Consider e2θ − 1 =
∞∑
r=1

(2θ)r

r! = 2θ
∞∑
r=1

2(r−1)θ(r−1)

r! > 2θ
∞∑
r=1

rθ(r−1)

r! = 2θ
∞∑
r=1

θ(r−1)

(r−1)! .

Therefore e2θ − 1 > 2θeθ. Hence E(X)− V (X) > 0.

Note that the pmf of S(d)- distribution is similar to that of Poisson distribution in structure. But the
mean and the variance of Poisson distribution are equal. Hence S(d)- distribution is a suitable model for
the data exhibiting under dispersion.

2. Maximum likelihood estimation

If X = (X1, X2, . . . , Xn) is a random sample on X having the pmf specified in (1), then the likelihood
function becomes

L(θ|x) =
n∏
j=1

P (X = xj)

L(θ|x) =
n∏
j=1

(xj + θ − 1) θxj

(xj+1)! .

The log-likelihood function is

logL(θ|x) =

n∑
j=0

log (xj + 1− θ) +

n∑
j=0

xj log θ − constant.

The likelihood equation is

d logL(θ|x)

dθ
= −

n∑
j=0

1

(xj + 1− θ)
+

∑n
j=0 xj

θ
= 0. (3)

The maximum likelihood estimate (MLE) of θ is the solution of

n∑
j=0

θ

(xj + 1− θ)
− nx̄ = 0. (4)

The likelihood equation does not yield a closed form expression for the MLE of θ. Hence a numerical
procedure like Newton-Raphson method can be employed to compute it.
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3. Fisher information

When X has the pmf specified in (1),

log p(x, θ) = log(x+ 1− θ) + xlog θ − log (x+ 1)!

Also

dlog p(x, θ)

dθ
=

−1

x+ 1− θ
+
x

θ

d2log p(x, θ)

dθ2
=

−1

(x+ 1− θ)2
− x

θ2
.

Hence

E[
d2log p(x, θ)

dθ2
] = −

∞∑
x=0

1

(x+ 1− θ)2
p(x)−

∞∑
x=0

x

θ2
p(x)

E[
d2log p(x, θ)

dθ2
] = −

∞∑
x=0

1

(x+ 1− θ)
θx

(x+ 1)!
− 1

θ2
E(X)

E[
d2log p(x, θ)

dθ2
] = −

∞∑
x=0

1

(x+ 1− θ)
θx

(x+ 1)!
− 1

θ2
(eθ − 1).

The Fisher information becomes

I(θ) =

∞∑
x=0

1

(x+ 1− θ)
θx

(x+ 1)!
+

1

θ2
(eθ − 1).

Since 0 < θ < 1 , 1− θ > 0. Hence

∞∑
x=0

1

(x+ 1− θ)
θx

(x+ 1)!
<<

∞∑
x=1

1

x

θx

(x+ 1)!
<<

∞∑
x=1

θx

(x+ 1)!
=

1

θ
(eθ − 1) <∞.

Therefore
∞∑
x=0

1
(x+1−θ)

θx

(x+1)! is convergent and it can be evaluated numerically.

Note that

i) the support S = {x : p(x, θ) > 0} of p(x, θ) does not depend on the parameter θ

ii) the parameter space (0, 1) is an open interval

iii) log p(x, θ) can be differentiated thrice w..r.t. θ

iv)
∑∞
x=0 p(x, θ) = 1 is twice differentiable under the summation sign

v) there exists a function M(x) such that
∣∣∣d3 log p(x,θ)

dθ3

∣∣∣ ≤M(x) and

E[M(X)] <∞.
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In our case,
d3 log p(x,θ)

dθ3 = −2
(x+1−θ)3 + 2x

θ3 . Therefore,
∣∣∣d3 log p(x,θ)

dθ3

∣∣∣ ≤ ∣∣∣ 2
(x+1−θ)3

∣∣∣ +
∣∣ 2x
θ3

∣∣ . Since 0 < θ < 1, 0 < 1 − θ < 1.

Hence
∣∣∣d3 log p(x,θ)

dθ3

∣∣∣ ≤ ∣∣ 2
x3

∣∣+
∣∣ 2x
θ3

∣∣ ≤ 2
x + 2x

θ3 ≤ 2 + 2x
(θ0−ε)3 = M(x), ∀θ ∈ (θ0 − ε, θ0 + ε), ε > 0, x ≥ 1, where

θ0 is the true value of the parameter. Since the parameter space is an open interval such a neighborhood of
θ0 exists. Evidently E[M(X)] <∞.

Therefore p(x, θ) satisfies the regularity conditions of Cramer (1966) and it belongs to Cramer family.

Hence if X = (X1, X2, . . . , Xn) is a random sample on X having the pmf specified in (1) and θ̂mle is the
MLE of θ, then

√
n(θ̂mle − θ)

L−→ N(0,
1

I(θ)
), as n→∞.

That is θ̂mle is consistent and asymptotically normal (CAN) for θ with the asymptotic variance 1
I(θ) .

4. Method of moment estimation

When X = (X1, X2, . . . , Xn) is a random sample on X having the pmf specified in (1), the moment
estimator of θ is the solution of the equation eθ − 1 = X̄n. Hence the moment estimator of θ is

θ̂mme = log (X̄n + 1). (5)

Since the pmf of X does not belong to exponential family, we need to establish the asymptotic normality
of the moment estimator separately. The following theorem states the asymptotic normality of the moment
estimator.

Theorem: If X = (X1, X2, . . . , Xn) is a random sample on X having the pmf specified in (1), then

√
n(θ̂mle − θ)

L−→ N

(
0, eθ(2θ − eθ + 1)

1

(θ + 1)2

)
, as n→∞.

Proof: Since X1, X2, . . . , Xn are i.i.d. with E(X) = eθ − 1 and
V ar(X) = eθ(2θ − eθ + 1) <∞, by Levy- Lindeberg central limit theorem

Zn =
√
n(X̄ − (eθ − 1))

L−→ N(0, eθ(2θ − eθ + 1)), as n→∞.

Take g(x) = log(x+ 1). Then g′(x) = 1
(x+1) is non-vanishing and continuous for 0 < x < 1. hence stated in

Mann-Wald (2000) theorem,

√
n(log(X̄ + 1)− θ)) L−→ N(0, eθ(2θ − eθ + 1)

1

(θ + 1)2
), as n→∞.

That is θ̂mme is CAN with the asymptotic variance eθ(2θ − eθ + 1) 1
(θ+1)2 .

The asymptotic relative efficiency of the MLE over the MME is given by

ARE =
Asymptotic variance of MME

Asymptotic variance of MLE
.

Since the asymptotic variance 1
I(θ) of the MLE does not have a closed form expression, it is computed

for various values of θ and the ARE is shown in the following table.
The ARE of the MLE over the MME is uniformly greater than unity and therefore the MLE is asymp-

totically more efficient than the MME.
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Table 1:

ARE of MLE over MME of the parameter
θ 0.1 0.2 0.3 0.4 0.5

ARE 1.3405 1.7759 2.3291 3.0257 3.8895
θ 0.6 0.7 0.8 0.9 0.95

ARE 4.934 6.1455 7.4479 8.6441 9.0807

5. Illustration

Sreehari (2010) has compared the fit of S(d) and Poisson models for a clinical trial data set. A bioe-
quivalence study was conducted for a test drug (T) and a reference drug (R) by administering them to 144
individuals using a two period, two sequence and two treatment crossover design. The time until maximum
concentration (Tmax) was one of the characteristics observed. Let Tit and Tir respectively denote the Tmax
values corresponding to the i-th individual for the test and the reference drugs. Take Di = |Tit − Tir|.
The individuals were administered the drugs and their blood concentrations were measured just prior to
medication and at time points (in hours) 1, 2, 4, 6, 8, 10, 12, 14, 16, 20, 22, 24, 30, 48, 60, 72, 96, 120 after
medication. Of the 144 individuals 7 did not complete the course of treatment. The observed values of Di

for the 137 individuals are shown in the following table.

Table 2:

The observed values of Di = |Tit − Tir|
x 0 1 2 3 Total

Frequency 75 46 14 2 137

For this observed distribution, mean = 0.583942 > variance = 0.534925 and it exhibits under dispersion.
And θ̂mme = loge(x̄n + 1) = 0.4599.

Table 3:

Clinical trial data set

x Frequency Expected Frequency
S(d) Poisson

0 75 73.9915 76.4043
1 46 48.5192 44.6157
2 14 12.268 13.0265
3 2 2.22129 2.95354
Chi-square value 0.41111 0.64342

It is evident that S(d) fits better than the Poisson model to this observed distribution.

But S(d) model cannot be fitted to all under dispersed data. We have 0 < θ < 1 and hence 0 < E(X) <

(eθ − 1). If 0 < x̄n < (eθ − 1) is violated, then it leads to θ̂mme = log(x̄n + 1) > 1 which is not meaningful.
For example, consider the data (shown in Table 4) on the number of scintillations from a radioactive decay of
Polonium reported by Rutherford et. al (1910). This data set has been reproduced in Santner et. al (1989).

For the observed data, mean = 3.871549 > variance = 3.694773. This exhibits under dispersion. But
θ̂mme = log(x̄n + 1) = 1.58341(> 1), is not an appropriate estimate of θ.
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Table 4:

Data on the number of Scintillations from a radioactive decay of Polonium

x 0 1 2 3 4 5 6
f 57 203 383 525 532 408 273
x 7 8 9 10 11 12 13 14
f 139 45 27 10 4 0 1 1

(x: number of scintillations, f: frequency)

6. Empirical study

Random observations on X can be simulated using the distribution function (2). A modest simulation
study has been carried out to study the performance of the MLE and the MME of θ. Using the R software,
1000 samples of size 50, 100, 150 were simulated for the specified value of θ = 0.4 and the estimates were
computed. The MLEs were obtained by solving the likelihood equation by Newton-Raphson method and
the MMEs were taken as the initial estimates. The histograms of the estimates are displayed in the following
Figures.

Figure 1: Histogram of the MMEs and the MLEs of θ under S(d) model based on 1000 sample of size 50 for θ = 0.4

These histograms give graphical evidence for the asymptotic normality of both the estimates. But the
MLE approaches normality faster than the MME.
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Figure 2: Histogram of the MMEs and the MLEs of θ under S(d) model based on 1000 sample of size 100 for θ = 0.4

7. Discussion and Conclusion

The S(d)-distribution is an appropriate alternate to Poisson model when the observed data exhibit
under dispersion. Though the maximum likelihood estimator of the parameter of S(d)- distribution has no
closed form expression, it can easily be computed by Newton-Raphson method. The moment estimator of
the parameter has a closed form expression and easy to compute. Both the estimators are asymptotically
normal. When computing facility is available, the MLE can be preferred to the MME, since the former
approaches normality faster than the latter.
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Figure 3: Histogram of the MMEs and the MLEs of θ under S(d) model based on 1000 sample of size 150 for θ = 0.4


